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ABSTRACT
Various computational procedures or constraint-based methods for
data repairing have been proposed over the last decades to iden-
tify errors and, when possible, correct them. However, these ap-
proaches have several limitations including the scalability and qual-
ity of the values to be used in replacement of the errors. In this
paper, we propose a new data repairing approach that is based on
maximizing the likelihood of replacement data given the data dis-
tribution, which can be modeled using statistical machine learning
techniques. This is a novel approach combining machine learning
and likelihood methods for cleaning dirty databases by value mod-
ification. We develop a quality measure of the repairing updates
based on the likelihood benefit and the amount of changes applied
to the database. We propose SCARE (SCalable Automatic REpair-
ing), a systematic scalable framework that follows our approach.
SCARE relies on a robust mechanism for horizontal data partition-
ing and a combination of machine learning techniques to predict
the set of possible updates. Due to data partitioning, several up-
dates can be predicted for a single record based on local views on
each data partition. Therefore, we propose a mechanism to com-
bine the local predictions and obtain accurate final predictions. Fi-
nally, we experimentally demonstrate the effectiveness, efficiency,
and scalability of our approach on real-world datasets in compari-
son to recent data cleaning approaches.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; H.4 [Information
Systems Applications]: Miscellaneous

Keywords
data cleaning, inconsistent data

1. INTRODUCTION
Data quality experts estimate that erroneous data can cost a busi-

ness as much as 10 to 20% of its total system implementation
budget [7]. They agree that as much as 40 to 50% of a project
budget might be spent correcting data errors in time-consuming,
labor-intensive and tedious processes. The proliferation of data
also heightens the relevance of data cleaning and makes the prob-
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lem more challenging: more sources and larger amounts of data
imply larger variety and intrication of the data quality problems
and higher complexity for maintaining the quality of the data in a
cost-effective way. As a result, various computational procedures
for data cleaning have been proposed by the database community
to (semi-)automatically identify errors and, when possible, correct
them.

Most existing solutions to repair dirty databases by value mod-
ification follow constraint-based repairing approaches [3, 19, 18],
which search for minimal change of the database to satisfy a pre-
defined set of constraints. While a variety of constraints (e.g., in-
tegrity constraints, conditional functional and inclusion dependen-
cies) can detect the presence of errors, they are recognized to fall
short of guiding to correct the errors; and worse, may introduce
new errors when repairing the data [10]. Moreover, despite the re-
search conducted on integrity constraints to ensure the quality of
the data, in practice, databases often contain a significant amount
of non-trivial errors. These errors, both syntactic and semantic, are
generally subtle mistakes which are difficult or even impossible to
detect and express using the general types of constraints available
in modern DBMSs [20]. This highlights the need for different tech-
niques to clean dirty databases.

In this paper, we address the issues on scalability and accu-
racy of replacement values by leveraging Machine Learning (ML)
techniques for predicting better quality updates to repair dirty
databases. Our proposed approach is complementary to existing
efforts that leverage reference data [10] and user’s interaction [22].

Statistical ML techniques (e.g., decision tree, Bayesian net-
works) can capture dependencies, correlations, and outliers from
datasets based on various analytic, predictive or computational
models [23]. Existing efforts in data cleaning using ML techniques
mainly focused on data imputation (e.g., [20]) and deduplication
(e.g., [6]). To the best of our knowledge, our work is the first ap-
proach to consider ML techniques for repairing databases by value
modification.

Involving ML techniques for repairing erroneous data is not
straightforward and it raises four major challenges: (1) Several at-
tribute values (of the same record) may be dirty. Therefore, the
process is not as simple as predicting values for a single erroneous
attribute. This requires accurate modeling of correlations between
the database attributes, which assumes that a subset is dirty and its
complement is reliable. (2) A ML technique can predict an update
for each tuple in the database; and the question is how to distin-
guish the predictions that should be applied. Therefore, a measure
to quantify the quality of the predicted updates is required. (3) An
over-fitting problem may occur when modeling a database with a
large variety of dependencies that may hold locally for data sub-
sets but do not hold globally. (4) Finally, the process of learning a
model from a very large database is expensive, and the prediction
model itself may not fit in the main memory. Despite the existence
of scalable ML techniques for large datasets, they are either model



dependent (i.e., limited to specific models, for example SVM [21])
or data dependent (e.g., limited to specific types of datasets such as
scientific data and documents repository). What is more, scalability
is also an issue for constraint-based repairing approaches [8].

Such limitations motivate the need for effective and scalable
methods to accurately predict cleaning updates with statistical guar-
antees. Precisely in this paper, our contributions can be summa-
rized as follows:

• We formalize a novel data repairing approach that maximizes
the likelihood of the data given the underline data distribu-
tion, which can be modeled using statistical ML techniques.
The objective is to apply selected database updates that (i)
will best preserve the relationships among the data values;
and (ii) will introduce a small amount of changes. This ap-
proach enables a variety of ML techniques to be involved
for the purpose of accurately repairing dirty databases by
value modification. This way we eliminate the necessity to
predefine database constraints, which requires the added ex-
pense of experts involvement. In contrast to the constraint-
based data repair approaches, which find the minimum num-
ber of changes to satisfy a set of constraints, our likelihood-
based repair approach finds the bounded amount of changes
to maximize the data likelihood.

• One of the challenges is that multiple attributes values may
be considered dirty. Therefore, we introduce a technique to
provide predictions for multiple attributes at a time, while
taking into account two types of dependencies: (i) the de-
pendency between the identified clean attributes and dirty
attributes; as well as, (ii) the dependency among the dirty
attributes themselves. We present our technique by introduc-
ing the probabilistic principles which it relies upon.

• We propose SCARE (SCalable Automatic REpairing), a sys-
tematic scalable framework for repairing erroneous values
that follows our approach and, more importantly, it is scal-
able for very large datasets. SCARE has a robust mecha-
nism for horizontal data partitioning to ensure the scalability
and enable parallel processing of data blocks; various ML
methods are applied to each data block to model attributes
values correlations and provide “local” predictions. We then
provide a novel mechanism to combine the local predictions
from several data partitions. The mechanism computes the
validity of the predictions for the individual ML models and
takes into account the models’ reliability in terms of mini-
mizing the risk of wrong predictions, as well as, the signifi-
cance of partitions’ sizes used in the learning stage. Finally,
given several local predictions for repairing a tuple, we incor-
porate these predictions into a graph optimization problem,
which captures the associations between the predicted values
across the partitions and obtain more accurate, final tuple re-
pair predictions.

• We present an extensive experimental evaluation to demon-
strate the effectiveness, efficiency, and scalability of our ap-
proach on very large real-world datasets.

The rest of the paper is organized as follows: Section 2 defines
the problem and introduces the notion of maximal likelihood re-
pair. Section 3 presents our solutions for modeling dependencies
and predicting accurate replacement values. Section 4 presents
SCARE, our scalable solution to repair the data. We demonstrate
the validity of our approach and experimental results in terms of
efficiency and scalability in Section 5. We discuss related work in
Section 6 and conclude the paper in Section 7.

2. PROBLEM DEFINITION AND SOLU-
TION APPROACH

In this section, we formalize our maximal likelihood repair prob-
lem and introduce our solution approach.

2.1 Problem Definition
We consider a database instance D over a relation schema R

with A denoting its set of attributes. The domain of an attribute
A ∈ A is denoted by dom(A).

In the relation R, a set F = {E1, . . . , EK} ∈ A represents
the flexible attributes, which are allowed to be modified (in or-
der to substitute the possibly erroneous values), and the other at-
tributes R = A − F = {C1, . . . CL} are called reliable with
correct values. Hence, a database tuple t has two parts: the re-
liable part (t[R] = t[C1, . . . CL]), and the flexible part (t[F ] =
t[E1, . . . EK ]). For short we refer to t[R] and t[F ] as r and f ,
respectively (i.e., t = rf ). Note that the detection of the erro-
neous records is not the scope of our paper. We assume that it is
possible to identify a subset Dc ⊂ D of clean (or correct) tuples
and De = D −Dc represents the remaining possibly dirty tuples.
This distinction does not have to be accurate in specifying the dirty
records, but it should be accurate in specifying the clean records.
Our objective is to learn from the correct tuples in Dc to predict
accurate replacement values for the possibly dirty tuples in De.

There are various techniques to distinguish Dc as it is always
possible to use reference data and existing statistical techniques
(e.g., [17, 23]), as well as, database constraints (if available) to
provide a score Pe(t) ∈ [0..1] for each database tuple t for be-
ing erroneous. Applying a conservative threshold on the scores of
each tuple Pe(t), we can select high quality records to be used for
training.

Example 1: Consider the example relation in Figure 1 with
a sample of 8 tuples about some personal information: Name,
Institution, area code AC, telephone number Tel, in addition
to address information: City, State and Zip.

Name Institution AC Tel City State Zip

t 1 H. Garcia-Molina Stanford Univ. 650 723-0685 Santa Clara CA 94305

t 2 S. Madden MIT 617 258-6643 Cimradge MA 02139

t 3 J. Han UIUC 217 333-6903 Chicago IL 61801

t 4 C. Clifton Purdue Univ. 765 494-6005 Lafayette IN 47906

t 5 W. Aref Purdue Univ. 765 494-1997 WLafayette IN 47907

t 6 E. Bertino Purdue Univ. 765 496-2399 WLafayette IN 47907

t 7 J. Widom Stanford Univ. 650 723-7690 Stanford CA 94305

t 8 M. Stonebraker MIT 617 253-3538 Cambridge MA 02139

Figure 1: Illustrative example

This data is a result of integrating professional contact informa-
tion and lookup address database. Due to the integration process,
we know that some of the address attributes (City, State and
Zip) may contain errors. Therefore, we call the address attributes
flexible attributes. After the integration process, we could separate
high quality records by consulting other reference data or verifying
some widely known relationships among the attributes. For this ex-
ample, tuples t5, . . . , t8 ∈ Dc are identified as correct ones, while
we are not sure about tuples t1, . . . , t4 ∈ De. �

We introduce the data repair likelihood given the data distribu-
tion as a technique to guide the selection of the updates to repair
the dirty tuples. Our approach is different from the maximum like-
lihood approach to learn a ML model parameter. In that case, the
model’s parameters and the captured distribution changes accord-
ing to the observed data. In our case instead, we learn initially the
data distribution from the set of clean tuples; and then, we change
the dirty tuples carefully to maximize the data agreement with the
learnt distribution. Our hypothesis is that the more the update will



make the data follows the underline data distribution with least cost,
the more likely the update to be correct.

Note that the tuples usually come to exist in the database inde-
pendently (e.g., new customer records are inserted in the database
independent from other customers information); errors in the tuples
can be detected because of the existing values correlations among
the database attributes that hold across the tuples. Such values cor-
relations can be learnt using a ML model; and hence, the correct-
ness probability of the tuples is conditionally independent given
the learnt model. Consequently, the likelihood of the database D is
the product of the tuples’ probabilities given a probability distribu-
tion for the tuples in the database. Given the identified clean sub-
set of the database Dc, we can model the probability distribution
P (R,F ). Then, the likelihood of the possibly erroneous subset De

can be written (as log likelihood):

L(De|Dc) =
∑
t∈De

logP (t |Dc) =
∑

t=rf∈De

logP (f | r) (1)

where we use P (t |Dc) = P (f | r), which we discuss in Section 3.
Assuming for a given tuple t = rf a ML technique predicted f ′

instead of f . We say that the update u is predicted to replace f by
f ′. Applying u to the database will change the likelihood of the
data; we call the amount of increase in the data likelihood given the
data distribution as the likelihood benefit of u.

DEFINITION 1. Likelihood benefit of an update u (l(u)):
Given a database D = Dc ∪ De, t = rf ∈ De and an update
u to replace f by f ′, the likelihood benefit of u is the increase in
the database likelihood given the data distribution learnt from Dc,
or (L(Du

e |Dc) − L(De|Dc)), where Du
e refers to De when the

update u is applied. Using Eq. 1 we obtain:

l(u) = logP (f ′ | r)− logP (f | r). (2)

We also define the cost of an update as follows:

DEFINITION 2. Cost of an update u (c(u)): For a given
database tuple t = rf and an update u to replace f by f ′, the
cost of u is the distance between f and f ′,

c(u) =
∑
E∈F

dE(f [E], f ′[E]) (3)

where dE(f [E], f ′[E]) is a distance function for the value domain
of attribute E that returns a score between 0 and 1. Examples of
distance functions for string attributes include the normalized Edit
distance or Jaro coefficient; for numerical attributes, the normalized
distance can be used, e.g., dE(a, b) = |a−b|

maxE−minE
, where a and b

are two numbers in dom(E), and maxE ,minE are the maximum
and minimum values in dom(E) respectively.

Our objective is to modify the data to maximize its likelihood;
however, and similar to existing repairing approaches, we need to
be conservative in modifying the data. Therefore, we bound the
amount of changes introduced to the database by a parameter δ.
Hence, the problem becomes: given an allowed amount of changes
δ, how do we best select the cleaning updates from all the predicted
updates? This is a constrained maximization problem where the
objective is to find the updates that maximizes the likelihood value
under the constraint of a bounded amount of database changes, δ.
We call this problem the “Maximal Likelihood Repair”.

DEFINITION 3. Maximal Likelihood Repair: Given a scalar
δ and a database D = De ∪ Dc. The Maximal Likelihood Re-
pair problem is to find another database instance D′ = D′

e ∪
Dc, such that L(D′

e | Dc) is maximum subject to the constraint
Dist(D,D′) ≤ δ.

where Dist is a distance function between the two database in-
stances D and D′ before and after the repairing and it can be
defined as Dist(D,D′) =

∑
∀t∈D,A∈A dA(t[A], t′[A]), where

t′ ∈ D′ is the repaired tuple corresponding to tuple t ∈ D.
Note that δ can take values from 0 (i.e., no changes to the data

is allowed) to |De| × |F | (i.e., change all flexible attributes of the
dirty tuples). Regarding δ estimation, it is possible to use the score
Pe(t), which estimates the erroneousness of tuple t, to estimate
δ = ϵ

∑
t∈De

Pe(t), where ϵ ∈ [0..1]. The idea is that a possibly
erroneous tuple is expected to be modified according to its score of
being erroneous. ϵ can be chosen close to zero to be more conser-
vative to the amount of introduced changes.

2.2 Solution Approach
For each tuple t = rf , we obtain the prediction f ′ that represents

an update u to t. We compute the likelihood benefit and cost of u.
Finally, we need to find the subset of updates that maximizes the
overall likelihood subject to the constraint that the total cost is not
more than δ, i.e., Dist(D,D′) ≤ δ.

Formally, given a set U of updates and, for each update u, we
compute l(u) and c(u) using Eq. 2 and 3, respectively. Our goal is
to find the set of updates U ′ ⊆ U , such that:∑

∀u∈U′

l(u) is maximum subject to:
∑

∀u∈U′

c(u) ≤ δ. (4)

This is typically a 0/1 knapsack problem setting, which implies
that the maximal likelihood repair problem is NP-complete.

Heuristic and quality measure: To solve the above problem,
we use the famous heuristic to solve the 0/1 knapsack problem by
processing the updates in decreasing order of the ratio l(u)

c(u)
. This

heuristic suggests that the “correctness measure” of an update u is
the ratio of the update’s likelihood benefit to the cost of applying the
update to the database (i.e., the higher the likelihood benefit with
small cost, the more likely the update to be correct). Empirically,
this gives good predictions for the updates as we will illustrate in
our experiments.
Example 2: In Figure 1, assume that two updates were pre-
dicted to the database. u1 updates t3 such that f ′

3={“Chicago”,
“IL”, “60614”} and u2 updates t4 such that f ′

4={“WLafayette”,
“IN”, “47907”}. Assume also that both of l(u1), l(u2) have the
same likelihood benefit. In this case, u2 will encounter lower
cost in updating one character in both the Zip and the City at-
tributes (update the Zip from“47906” to “47907” and the City
from “Lafayette” to “WLafayette”), while u1 will cost updating 4
characters in the Zip from “61801” to “60614”. Hence, for δ ≤ 2
characters, only u2 will be applied to the database. �

3. MODELING DEPENDENCIES AND
PREDICTING UPDATES

The key challenge when considering data repair using the data
distribution is that multiple attributes values may be dirty. In the
case when a single attribute is erroneous, the problem is to model
the conditional probability distribution of the erroneous attribute
given the other attributes; and hence, a single classification model
can be used to obtain the predicted values for the erroneous at-
tribute. However, it is mostly the case that a set of attributes have
low quality values and not a single attribute. Therefore, we need to
model the probability distribution of the subset of dirty attributes
given the other attributes that have reliable values (i.e., most likely
to be correct) to achieve a better prediction of the replacement val-
ues.

Example 3: In Figure 1 assuming we know that only the City
attribute contains some errors. This is the simple case because a
ML model can be trained by the database tuples considering the
City as the label to be predicted. However in practice, more than



one attribute can be dirty at the same time, for example, all the ad-
dress attributes. In this case, we need a ML technique to model the
distribution of the combination (City, State, Zip)—taking into
account their possible inter-dependencies—given existing reliable
values of attributes, e.g., (Name, Institution, AC, Tel). �

3.1 Modeling Dependencies
Let SR = dom(C1) × dom(C2) · · · × dom(CL) denotes the

space of possible reliable parts of tuples t[C1 . . . CL] (with clean
attribute values), and SF = dom(E1)×dom(E2) · · · ×dom(EK)
denotes the space of possible flexible parts of tuples t[E1 . . . EK ]
(with possibly erroneous values). Assuming that the tuples of
D are generated randomly according to a probability distribution
P (R,F ) on SR ×SF , P (F |r) is the conditional distribution of F
given R = r and PEi(Ei|r) is the corresponding marginal distri-
bution of the values of attribute Ei,

PEi(ei|r) =
∑

f∈SF |f [Ei]=ei

P (f | r)

Note that the posterior probability distribution P (F | r) pro-
vides the means to analyze the dependencies among the flexi-
ble attributes. The distribution informs about the probability of
each combination of values for the flexible attributes ⟨e1, . . . , eK⟩,
where e1 ∈ dom(E1), . . . , eK ∈ dom(EK).

Given a database tuple t = rf , the conditional probability of
each combination of the flexible attribute values f can be computed
using the product rule:

P (f | r) = P (f [E1] | r)
K∏
i=2

P (f [Ei] | r, f [E1 . . . Ei−1]). (5)

Note that we assume a particular order in the dependencies
among the flexible attributes {E1, . . . , EK}. To obtain this order,
we leverage an existing technique [14] to construct a dependency
network for the database attributes. The dependency network is
a graph with the database attributes as the vertices; and there is a
directed edge from Ai to Aj if the analysis determined that Aj de-
pends on Ai. In our case, there will be two sets of vertices; the
reliable set R and flexible set F . The first flexible attribute E1 in
the order is the one that has the maximum number of reliable at-
tributes as its parents in the graph. Then subsequently, the next
attribute in order i is the one with maximum number of parents that
are either reliable attributes or flexible attributes with an assigned
order. In our experiments, we followed this procedure by analyz-
ing a sample of the database to determine the dependency order of
the flexible attributes. Another alternative method to compute the
conditional probability P (f | r) without considering any particu-
lar order of the flexible attributes is to use Gibbs sampling [13];
however, it is very expensive to be applied to even moderate size
databases. Please refer to [14] for further details.

In Section 3.2, we introduce an efficient way to obtain the pre-
dictions f ′ that is desirable for our cleaning approach and compute
the conditional probabilities P (f | r).

3.2 Predicting Updates
We use a ML model M (as predictor) to model the above joint

distribution in Eq. 5. The model M is a mapping SR → SF that
assigns (or predicts) the flexible attributes values f ′ for a database
tuple t = rf given the values r of the reliable attributes R. The
prediction takes the form:

M(r) = ⟨M1(r), . . . ,MK(r)⟩ = f ′.

To estimate the joint distribution of the flexible attribute values,
P (f | r) in Eq. 5, we learn K classification models Mi(·) on the
input space SR ×dom(E1)× · · · ×dom(Ei−1), (i.e., using all the

Algorithm 1 GetPredictions(Classification Model Mi,
⟨r, f [E1], . . . f [Ei−1]⟩ input tuple ri, Probability P , Database
Tuple t = rf )
1: if (i > K) then
2: f ′ = ri − r
3: AllPredictions = AllPredictions ∪{(f ′, P )}
4: return
5: end if
6: fEi = Mi(ri)
7: rs = ⟨ri, fEi⟩
8: Ps = P × P (fEi | ri)
9: GetPredictions(Mi+1, rs, Ps, t)

10: if fEi ̸= t[Ei] then
11: r′s = ⟨ri, t[Ei]⟩ {Adding the original Ei’s value to the next

input}
12: P ′

s = P × P (t[Ei] | ri)
13: GetPredictions(Mi+1, r′s, P ′

s, t) {Predicting attribute Ei’s
value}

14: end if

reliable attributes and the flexible attributes up to attribute Ei).

Mi : SR × dom(E1)× · · · × dom(Ei−1) → dom(Ei)

We assume that Mi is a probabilistic classifier (e.g., Naïve
Bayesian) that will be trained using Dc and produce a probabil-
ity distribution over the values of the flexible attribute Ei given
⟨r, f [E1], . . . , f [Ei−1]⟩.

One efficient greedy way to approximate the optimal prediction
f ′ is to proceed as follows: given a tuple t = rf , the classifier
M1 is used to predict the value of attribute E1 (i.e., f ′[E1]) given
r. Then, M2 predicts the value for attribute E2 given r and f ′[E1]
as input. Proceeding in this way, Mi predicts the value of attribute
Ei given r and f ′[E1] . . . f

′[Ei−1]. This approach can be consid-
ered as searching greedily for a path in a tree that has the possible
values of f ′ ∈ SF at the leaves. We call this tree as the flexible
attributes values search tree. Needless to say this approach does
not guarantee finding the prediction f ′ with the highest probability.

For a tuple t, to find a better prediction that is desired for our
cleaning approach, we follow the conservative assumption in up-
dating the database by considering and preferring the original at-
tributes values in the tuple. Based on this assumption the best pre-
diction will be among these explored tree paths, which involve the
original values of the tuple t. Hence, we can compute, in addition
to the greedy path, additional paths that assume that the original
values in the tuple are the supposed predictions. The algorithm
to compute a set of predictions for the flexible attributes F for a
given tuple t is described in Algorithm 1, GetPredictions. Basi-
cally, GetPredictions proceeds recursively in the flexible attributes
values search tree. At each node tree level i, two branches are
considered when the prediction of attribute Ei is different from its
original value in the tuple, otherwise, a single branch is considered.
The initial call to Algorithm 1 to get predictions for tuple t = rf is
GetPredictions(M0, r, 1.0, t = rf ).

In Algorithm 1, Line 1 checks if we reached the prediction of
the last flexible attribute EK ; and in this case, we add the flexible
part f ′ of the obtained final tuple s to AllPredictions list. In Line
6, we predict the value fEi of attribute Ei. Lines 7 and 8 compose
the new input rs by adding fEi to ri and compute the prediction
probability so far, Ps. We then proceed recursively to get the pre-
diction for the next flexible attribute E(i+1). The lines 11-13 are
executed if the predicted value fEi is different from the original
value t[Ei]. In this case, we compose another input r′s using the
original value t[Ei] and compute the prediction probability so far
using P (t[Ei] | ri) from the model Mi, then finally, proceed recur-
sively to get a prediction for E(i+1).

Example 4: Consider the example relation in Figure 1. Assume



that tuple t4 was marked as erroneous and we want to obtain pre-
dictions for its flexible attributes. In GetPredictions initially ri is
the reliable attributes values {“C. Clifton”, “Purdue Univ.”, “765”,
“494-6005”}. In Line 6 the classifier M0, which was trained using
only the set of reliable attributes to predict the first flexible attribute
City, provides the prediction to be “WLafayette”. Then rs is com-
posed to be the input to the next classifier M1, which was trained by
the reliable attributes and the first flexible attribute City to predict
the second flexible attribute State, rs = {“C. Clifton”, “Purdue
Univ.”, “765”, “494-6005”, “WLafayette”}. Since the predicted
City is different from the one in the table, we compose another
input to the classifier M1 with the original City value, r′s = {“C.
Clifton”, “Purdue Univ.”, “765”, “494-6005”, “Lafayette”}. We
obtain the prediction for the State given the two inputs rs and r′s
and proceed recursively until we used M3 to predict the Zip, and
we finally extract f ′ from each ri in Line 2 to end up with the list
of AllPredictions. �

GetPredictions produces, for a given tuple t, at most 2K predic-
tions with their probabilities; however, in practice, the number of
predictions are far less than 2K . We select the prediction f ′ with
the best benefit-cost ratio, i.e., the update u that replaces f with
f ′ and results in the highest l(u)

c(u)
. Note that we need to compute

l(u) for only f ′ with P (f ′ | r) being greater than P (f | r), the
probability of the original values, otherwise the likelihood benefit
of the predicted update will be negative. Note also that P (f | r) is
included as well in the output of GetPredictions.

In Section 4, we present the method to scale up the maximal
likelihood repair problem and get the predicted updates u along
with their likelihood benefit l(u). The cost c(u) is straight forward
to compute.

4. SCALING UP THE MAXIMAL LIKELI-
HOOD REPAIRING APPROACH

One of the key challenges in repairing dirty databases is the scal-
ability [8]. In our case, the scalability issue is mainly due to learn-
ing a set of classification models to predict the flexible attributes
values. The learning process in most ML techniques is known to be
at least quadratic in the database size and the model itself may not
fit in main memory. Indeed, there are efforts on learning from large
scale datasets (e.g., scalable learning using SVM [21]). However,
there is no much efforts in learning from large databases with most
of attributes are string attributes and the number of correlations is
large because of the large domain size of each database attribute.

In this section, we present a model-independent method to learn
and predict updates to the database that is based on horizontally
partitioning the database. Each database tuple will be a member
of several partitions (or blocks). Each partition b is processed to
provide predictions to the erroneous tuples t ∈ b depending on the
database distribution learnt from block b (i.e., local predictions).
Finally, we present a novel mechanism to combine the local pre-
dictions from the different partitions and determine more accurate
final predictions.

This method is in the flavor of learning ensemble models [5] or
committee-based approaches, where the task is to predict a single
class attribute by partitioning the dataset into several smaller par-
titions; then a model is trained by each data partition. For a given
tuple, each model provide a prediction on the class attribute, and
the final prediction is the one with the highest aggregated predic-
tion probability. But, in our case, we want to predict the values of
multiple flexible attributes together; and we are not limited to pre-
dict a single attribute value. Hence for a given tuple, we obtain a
prediction (a combination f ′ of the flexible attribute values) from
each data partition. We then propose a technique to combine the
models’ predictions into a graph optimization problem to find the
final prediction for the flexible attributes. Our main insight is that

Algorithm 2 SCARE(D dirty database, H = {h1, . . . , hJ} DB
partitioning functions)
1: Given H , partition D into blocks bij .
2: for all block bij do
3: Learn the models Mij .
4: for all tuple t = rf ∈ bij ∧ t ∈ De do
5: Use Mij to predict f ′

j and get Pij(f
′
j | r) and Pij(f | r)

6: Store f ′
j , Pij(f

′
j | r) and Pij(f | r) in RS. {store in the

Repair Storage.}
7: end for
8: end for
9: for all tuple t = xy ∈ D do

10: RS(t) = the candidate tuple repairs for t in RS.
11: f ′ =SelectFinalPrediction(RS(t))
12: For the update u to change f to f ′, compute the likelihood

measure l(u) if f ̸= f ′.
13: end for

the final (combinations of) predicted values are those which would
maximize the associations among the predicted values across the
partitions. Our mechanism to collect and incorporate the predicted
updates takes into account the reliability of the learnt classification
models themselves to minimize the risk of the predicted updates.

After obtaining the final predicted values with their likelihood
benefit l(u), we use them into the maximal likelihood repair prob-
lem (Eq. 4).

4.1 Process Overview
Algorithm 2 illustrates the main steps of the SCARE process to

get the predicted updates along with their likelihood benefit. The
primary input to the framework is a database instance D. The sec-
ond input is a set of database partitioning functions (or criteria)
H = {h1, . . . , hJ}.

There are two main phases for SCARE: (1) Updates generation
phase (lines 1-8), and (2) Tuple repair selection phase (lines 9-13).

In Phase 1 (Line 1), each function hj ∈ H will partition D into
blocks {b1j , b2j , . . . }. Then, the loop in lines 2-8 processes each
block bij as follows: (i) Learn the set of classifiers Mij from the
identified clean tuples in bij (lines 3); (ii) Use Mij to predict the
flexible attributes values for the possibly erroneous tuples in bij
using Algorithm 1 (lines 4-7). For each tuple, the prediction is
considered a candidate tuple repair and it is stored in a temporary
repair storage, denoted as RS. Since each tuple will be a member of
several data partitions, we will end up with a set of candidate tuple
repairs for each possibly erroneous tuple. The details of the repair
generation is provided in Section 4.2.

Phase 2 (lines 9-13) loops on each tuple t ∈ De and retrieves
all its candidate tuple repairs from the repair storage RS, then uses
Algorithm 3 SelectTupleRepair to get the final tuple repair (update)
with its estimated likelihood benefit. The details of the repair selec-
tion algorithm is provided in Section 4.3. Note that each iteration in
Phase 1 does not depend on other iterations (similarly for the itera-
tions of Phase 2). Hence, SCARE can be efficiently parallelized.

4.2 Repair Generation Phase
In this phase, the data is partitioned, as we will explain shortly,

for two main benefits: (i) scale for large data by enabling indepen-
dent processing for each partition; and (ii) more accurate and effi-
cient learning of the classification models for the prediction task.
The first benefit is obvious and the second benefit is obtained be-
cause of the following: When we train a classification model for
prediction, ideally, we need the model to provide high prediction
accuracy capturing all the possible dependencies from the data (we
call it a model with global view). All the statistically significant
dependencies are considered as the model’s search space. How-



ever, if the space contains a lot of weak dependencies, most likely,
the model will not be able to capture them. But if it does, the
global view will not be accurate enough for prediction because of
the model overfitting. Partitioning the database helps to capture lo-
cal correlations that are significant within subsets of the database
and that require a different degree of “zooming” to be recognized.
Each of the partition functions h ∈ H provides the search space
partitioned according to the criteria shared by the tuples within the
same block. If we train models on multiple blocks, we will have
models with several local views (or specialized models, sometimes
called experts [16]) for portions of the search space. Combining
these local views, will result in a better prediction accuracy.

Partitioning the database: Each partition function or criterion
h(·) maps each tuple to one of a set of partitions. Multiple criteria
H = {h1, . . . , hJ} is used to partition the database in different
ways. Each tuple t is mapped to a set of partitions, i.e., H(t) =∪

∀ j hj(t).
A simple way to choose the partition criteria is Random (i.e.,

randomly partition the data many times). Another way to choose
the criteria is Blocking, where partitions are constructed under the
assumption that similar tuples will fit in the same block or inversely,
tuples across different blocks are less likely to be similar. Many
techniques for blocking have been introduced for the efficient de-
tection of the duplicate records (refer to [6] for a survey).

It is worth mentioning that increasing the number of partition
functions will result in a more accurate final prediction, because
the variance in the predictions decreases as we increase the number
of ways (partition functions) to partition the data. We found that
partitioning the data using different blocking techniques provided
more accurate predictions with less number of partition functions
in comparison with the random partitioning.

Example 5: Consider again the relation in Figure 1. In
this example, one may partition the database based on the
Institution attribute (as a partition function) to get the tuples
partitioned as follows: {t1, t7}, {t2, t8}, {t3}, {t4, t5, t6}. The re-
sult of the learning process from these data partitions will be expert
models based on the person’s institution. Another function may
use the AC or a combination of attributes. Partition functions can
be designed based on a signature based scheme or clustering as we
elaborate in the experimental section. �

Reliability measure and risk minimization: In order to be con-
servative in considering the predictions from each block bij and its
model Mij , we propose a mechanism to measure the reliability of
a model and adapt the obtained prediction probability accordingly
to support or detract the model’s predictions.

Two major components help us judging the reliability of a model
Mij : (i) the model quality, which is classically quantified by its
loss L(Mij) = 1

|bij |
∑

t∈bij ,t∈Dc,E∈F dE(f [E], f ′
ij [E]), where

|bij | is the number of tuples in partition bij , E is one of the flexible
attributes F , dE is a distance function for the domain of attribute
E and f ′

ij is the prediction of Model Mij on the flexible attributes
F for the tuple t ∈ bij and t ∈ Dc; (ii) the second component
is the size of the block: the smaller the block is, the less reliable
the predictions will be. Hence, the reliability of model Mij can be
written as:

Re(Mij) =
|bij |
|D| (1− L(Mij)) . (6)

Finally, the prediction probabilities obtained from model Mij

are scaled to be: P̃ij(f
′ | r) = Pij(f

′ | r)×Re(Mij).
Aggregating Suggestions: As mentioned earlier, a tuple

t = rf will be a member of |H(t)| data partitions. From
each partition, we get a candidate tuple repair for t, which
are then stored in the storage RS with the following schema:
{t_id, partition,E1, ..., EK , P̃ (f ′|r), P̃ (f |r)}, where t_id is the
original tuple identifier, partition is the partition name, Ek ∈ F ,

RS(t4) City State Zip P(f '|r ) P(f |r )

f' 1 WLafayette IN 47907 0.7 0.6

f' 2 lafytte IN 47906 0.6 0.5

f' 3 WLafayette IN 47906 0.4 0.3

f' 4 Lafayette IN 47907 0.8 0.6

f' 5 Lafayette IL 47906 0.5 0.5

Figure 2: Generated predictions for tuple repairs with their
corresponding prediction probabilities for tuple t4 in Figure 1.
P̃ (f ′ | r) is the prediction probability of the repairing update f ′,
and P̃ (f | r) is the probability of the original values in t. The space
required for RS is of O(|D| × |H|).

Example 6: Consider tuple t4 in Figure 1 and the flexible
attributes are City and State, Zip. Assume that we used 5
partition functions and hence t4 was a member of 5 partitions,
consequently, we obtain 5 possible candidate tuple repairs. The
table in Figure 2 illustrates the candidate tuple repairs of t4,
RS(t4), with the corresponding prediction probabilities obtained
from each partition. �

4.3 Tuple Repair Selection Phase
Once the candidate tuple repairs are generated, we need a repair

selection strategy to pick the best one among the candidate set. One
suggestion for a selection strategy can be the majority voting. For a
tuple t, the majority voting can be done by selecting the most voted
value from the partitions on each attribute Ei individually.

Majority Voting (MV): The majority voting strategy implies the
assumption that each attribute was predicted independently from
the others. For a tuple t = rf , we predict the combination of the
flexible attributes f ′ together. Thus, the independence assumption
of the attributes is not valid. Therefore, we propose a mechanism to
vote for a final combination of the flexible attributes that takes into
account the dependencies between the predicted values obtained
from each partition.

Example 7: Consider the candidate tuple repairs of t4 in Figure
2. Note that if we use the majority voting while using the predic-
tion probability as the voter’s certainty, the final prediction would
be {“Lafayette”, “IN”, “47906”}. This solution does not take into
account the dependencies between the predicted values within the
same tuple repair. For example, there is a stronger association be-
tween “47907” and “IN” than between “47906” and “IN”. This re-
lationship is reflected on their corresponding prediction probabili-
ties. The values “47907” and “IN” were predicted in f ′

1, f
′
4 with

probabilities 0.7 and 0.8, while “47906” and “IN” were predicted
in f ′

2, f
′
3 and their probabilities are smaller, 0.4 and 0.6. The same

applies for the relationship between “WLafayette” and “IN”, which
have a stronger relationship than “Lafayette” and “IN”. A more de-
sired prediction will be {“WLafayette”, “IN”, “47907”}. �

For a given database tuple t = rf , our goal is to find the final
combination f ′∗ = ⟨e∗1, . . . , e∗K⟩ such that

∑
bij ,t∈bij

P (f ′∗ | r)
is maximum. This requires the computation of the probability of
each possible combination of the flexible attribute in each data
block. Instead, we can search for the values that can maximize
all the pairwise joint probabilities. In principle, if we maximize
the pairwise association between the predicted values, then this im-
plies maximizing the full association between the predicted values.
Hence, the final update is the one that would maximize the predic-
tion probabilities for each pair of attribute values. We formalize
this problem as follows:

DEFINITION 4. The Tuple Repair Selection Problem: Given
a set of predicted combination for the flexible attributes RS(t)=
{f ′

1, . . . , f
′
|H|} for database tuple t = rf along with the prediction

probabilities of each combination, (i.e., for f ′
j ∈RS(t), we have the
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Figure 3: Step by step demonstration for the SelectTupleRepair algorithm. At each iteration, the vertex with minimum weighted
degree is removed as long as it is not the only vertex in its corresponding vertex set.

corresponding prediction probabilities P (f ′
j | r)), the tuple repair

selection problem for tuple t is to find f ′∗ = ⟨e∗1, . . . , e∗K⟩ such
that the following sum is maximum∑

∀ e∗i , e∗
k
, i ̸=k

∑
∀ f ′∈RS(t),e∗i =f ′[Ei], e∗

k
=f ′[Ek]

p(f ′ | r).

Solving the Tuple Repair Selection Problem: To find a so-
lution, we map this problem to a graph optimization problem for
finding the K-heaviest subgraph (KHS) [2] in a K-partite graph
(KPG). The key idea is to process each database tuple t individu-
ally and use its set of candidate tuple repairs, RS(t), to construct a
graph, where each vertex is an attribute value, and an edge is added
between a pair of vertices iff the corresponding values co-occur in
a prediction f ′ ∈RS(t). The edges will have a weight derived from
the obtained prediction probabilities. It is worth noting that this
strategy is applied for each tuple on separate, therefore, this phase
can be efficiently parallelized.

Finding KHS in KPG: The K-heaviest subgraph (KHS) prob-
lem is an NP optimization problem [2]. In an instance of the KHS
problem, we are given a graph G = (VG, EG), where VG is the
set of vertices of size n, EG is the set of edges with non-negative
weights (Wwv denotes the weight on the edge between vertices
w, v), and a positive integer K < n.

The goal is to find V ′ ⊂ VG, |V ′| = K, where∑
(w,v)∈EG∩(V ′×V ′) Wwv is maximum. In other words, the goal

is to find a K-vertex subgraph with the maximum weight.
A graph G = (VG, EG) is said to be K-partite if we can di-

vide VG into K subsets {V1, . . . , VK}, such that two vertices in
the same subset can not be adjacent. We call KHS in KPG prob-
lem, the problem of finding KHS in a K-partite graph such that the
subgraph contains a vertex from each partite.

DEFINITION 5. The KHS in KPG problem. Given a K-
partite graph G = (V1, . . . , VK , EG), find V ′ = {v1, . . . , vK}
such that vk ∈ Vk and

∑
(vi,vj)∈EG∩(V ′×V ′) Wvivj is maximum.

LEMMA 1. The KHS in KPG is NP-Complete.

PROOF. This is a proof sketch. It is straight forward to see that
we can reduce the problem of finding K-Clique (Clique of size K)
in K-partite graph to the KHS in KPG problem. The problem of
K-Clique in K-partite graph G is NP-complete by reduction from
the problem of (n−K)-vertex cover in the complement K-partite
graph G′, which is NP-Complete (see [15] for details).

Mapping the Tuple Repair Selection Problem to the KHS
in KPG problem (KHSKPG): Given a set of predictions RS(t)=
{f ′

1, . . . , f
′
|H|} for the flexible attributes of a tuple t = rf , where

f ′
j = ⟨e(j)1 , . . . , e

(j)
K ⟩ and K = |F | is the number of flexible at-

tributes.
The repair selection problem can be mapped to the KHS in KPG

problem using the following steps:

1. Building vertex sets for each attribute Ek: For each at-
tribute Ek, create a vertex v for each distinct value in
{e(1)k , . . . , e

(|H|)
k }. Note that we have a set of vertices for

each attribute Ek (i.e., partite).

2. Adding edges: Add an edge between vertices v, w when
their corresponding values co-occur in a candidate tuple re-
pair. Note that v, w can not belong to the same vertex set.

3. Assign edge weights: For an edge between v, w, the weight
is computed as follows: Let f(v,w) = {f ′

j |f ′
j contains both

v, w}, i.e., the set of predictions that contain both the values
v, w.

Wvw =
∑

f ′
j∈f(v,w)

Pij(f
′
j | r)

where Pij(f
′
j | r) is the prediction probability of f ′

j obtained
from partition bij .

The graph construction requires a single scan over the predic-
tions RS(t)= {f ′

1, . . . , f
′
|H(t)|}, hence, it is of O(K |H|). The

number of vertices is the number of distinct values in the candidate
tuple repairs.

Example 8: Figure 3(a) shows the constructed 3-partite graph
from the predictions in Figure 2 for tuple t4 in the original relation
of Figure 1. For each attribute, there is a vertex set (or partite),
e.g., the corresponding set of the Zip attribute contains {“47906”,
“47907”}. In the graph, we replaced the actual attributes values by
a character abbreviation to have a more compact graph as follows:
{“6” → “47906”, “7” → “47907”, “L” → “Lafayette”, “W” →
“Wlafayette”, “F” → “lafytte”, “N” → “IN”, “I” → “IL”}.

Note that there is an edge between “W” and “N” with edge
weight of 1.1 (= 0.4 + 0.7). This is because “WLafayette” and
“IN” co-occur twice in f ′

1 and f ′
3 and their probabilities are 0.7 and

0.4 respectively. Also, there is an edge between “I” and “6” with
weight of 0.5, because “IL” and “47906” co-occur once in f ′

5 with
probability 0.5. Similarly, the rest of the graph is constructed. �

Finally, finding the KHS in the constructed KPG is a solution
to the tuple repair selection problem. The underlying idea is that
the resulting K-subgraph G′(V ′, E′) will contain exactly a single
vertex from each vertex set. This corresponds to selecting a value
for each flexible attribute. Moreover, the weight of the selected
subgraph corresponds to the result of maximizing the summation
in Definition 4.

Computing the likelihood benefit: For a tuple t = rf , the so-
lution of the KHS in KPG problem is the final prediction f ′ for the
flexible attributes. The final prediction probability of f ′ is com-
puted from the solution graph G′(V ′, E′) by

P (f ′ | r) = 1

|E′|
∑

evw∈E′

1

|f(v,w)|
∑

f ′
j∈f(v,w)

Pij(f
′
j | r).

The inner summation averages the probability of each pair of at-
tribute values (i.e., each edge in G′) in the final prediction f ′. The



outer summation averages the probability over all the edges in the
final graph G′.

The prediction probability of the original values in the flexible
attribute f is computed following the ensemble method by averag-
ing the obtained probability from each partition, i.e., P (f | r) =
1

|H|
∑

bij ,t∈bij
Pij(f | r).

Finally, for the update u changing f into f ′, we can compute the
likelihood benefit l(u) using Equation 2.

Example 9: Consider the constructed initial graph in Fig-
ure 3(a). Assuming that the solution for KHS in KPG is
the subgraph {“W”, “N”, “7”} shown in Figure 3(e). Now,
we have an update u to change the original values in tu-
ple t4 in Figure 1 from f ={“Lafayette”, “IN”, “47906”} to
f ′ ={“WLafayette”, “IN”, “47907”}. From the RS(t4) in Fig-
ure 2, we get P (f | r) = avg{0.6, 0.5, 0.3, 0.6, 0.5} = 0.5. For
P (f ′ | r) = 1

3

[
1
2
(0.7 + 0.4) + 1

2
(0.7 + 0.8) + 0.7

]
= 0.66. Fi-

nally, we can use Eq. 2 to compute l(u) = 0.12. �

4.4 Approximate Solution for Tuple Repair
Selection

For the general problem of finding the KHS, many approximate
algorithms were introduced (e.g., [1, 2, 12]). For instance, in [1]
the authors model the problem as a quadratic 0/1 program and ap-
ply random sampling and randomized rounding techniques result-
ing in a polynomial-time approximation scheme, and in [12], the
algorithm is based on semi-definite programming relaxation.

If K is very small, then the optimal solution can be found by
enumeration. For the case where K is not very small, we provide
here an approximate solution that is inspired by the greedy heuristic
discussed in [2]. For the general case graph problem, the heuristic
repeatedly deletes a vertex with the least weighted degree from the
current graph until K vertices are left. The vertex weighted degree
is the sum of weights on the edges attached to it.

In the following, we follow the same heuristic for the case of
K-partite graph. However, we iteratively remove the vertex with
least weighted degree as long as it is not the only vertex left in the
partite, otherwise, we find the next least weighted degree vertex.
The algorithm is a greedy 2-approximation following the analysis
discussed in [2].

Algorithm 3 SelectTupleRepair(G(V,E) graph, S =
{S1, . . . , SK})
1: while ∃S ∈ S s.t. |S| > 1 do
2: v =GetMinWeightedDegreeVertex(G,S)
3: If v = null Then break;
4: for all vertex w ∈ V s.t. ewv ∈ E do
5: Remove ewv from G.
6: Weighted_Degree(w) - = Wwv

7: end for
8: Remove v from its corresponding set S.
9: end while

Algorithm 3 shows the main steps to find the final tuple repair.
There are two inputs to the algorithm: (i) the constructed graph
G(VG, EG) from the predictions; and (ii) the sets of vertices S =
{S1, . . . , SK}, where each Sk represents the predicted values for
attribute Ek. We store for each vertex v its current weighted degree
in Weighted_Degree(v)=

∑
∀evw∈EG

Wvw, which is the sum of the
edges weights that are incident to v.

The algorithm proceeds iteratively in the loop illustrated in lines
1-9. The loop stops when a solution is found, where there is
only one vertex in each vertex set, i.e., |S| = 1 ∀S ∈ S.
In each loop iteration, we start (Line 2) by finding the vertex
v that has the minimum weighted degree using the Algorithm
GetMinWeightedDegreeVertex(G,S). Then, we remove all the
edges incident to v and update the WeightedDegree(w) by and sub-

tracting Wwv , where w was connected to v by the removed edge
ewv (Lines 4-7). Finally, vertex v is removed from G and from its
corresponding vertex set in Line 8.

GetMinWeightedDegreeVertex goes through the vertex sets that
has more than one vertex and returns the vertex that has the mini-
mum weighted degree.

Analysis: Algorithm 3 requires: First, visiting all n vertices
to remove them except for K ones. For each vertex, each set
S ∈ S of the K sets is visited to get its minimum vertex accord-
ing to the weighted degree. This requires O(nK log |S|), where
n ≈ O(K|H|) and |S|’s worst case is O(|H|). Hence, visit-
ing the vertices is of O(K2|H| log |H|). Second, removing the
vertices requires visiting their edges, O(|EG|), which has a worst
case of O(K2|H|). Then, the overall complexity of Algorithm 3 is
O(K2|H| log |H|).

Example 10: The SelectTupleRepair algorithm is illustrated
step-by-step in Figure 3. The algorithm looks for the vertex with
the least weighted degree to be removed. The first vertex is “I”,
which has a weighted degree equal 1.0 = 0.5+0.5, corresponding
to the two incident edges in “I”. This leaves the vertex set of the
State attribute with only one vertex, “N”. Therefore, we do not
consider removing the vertex “N” in further iterations of the algo-
rithm. The next vertex to remove is “F” to get Figure 3(c), and so
on.

Finally, we got the final solution in Figure 3(e), which corre-
sponds to a subgraph with 3 vertices —there is a vertex from each
initial partite. This graph is the heaviest subgraph of size 3 (i.e.,
the sum of the edges weight is the maximum), where each vertex
belongs to a different partite. It is worth mentioning that the final
graph does not have to be fully connected. Thus, the final predic-
tion is {“WLafayette”, “IN”, “47907”}. �

5. EXPERIMENTS
In this section, we evaluate our data repair approach; specifi-

cally, the objectives of the experiments are as follows: (1) Quality
evaluation of SCARE and the notion of maximal likelihood repair
in comparison with the constraint-based repairing approaches of
[3] and [11], the single model approach, and majority voting; (2)
Comparison between SCARE and ERACER [20] for missing val-
ues prediction; (3) Study of SCARE parameters varying the number
of changes, SCARE iterations and partition functions; (4) Assess-
ment of the scalability of SCARE.

Datasets: In our evaluations, we use three datasets: (i) Dataset 1
is a real-world dataset obtained by integrating (anonymized) emer-
gency room visits from 74 hospitals. This is the dataset we use
for most of the quality experiments. Since such data is com-
ing from several sources, a myriad of data quality issues arose
due to the different health care information systems used by
these hospitals and the different operators responsible for enter-
ing the data. We selected a subset of the available patient at-
tributes, namely Patient ID, Age, Sex, Classification,
Complaint, HospitalName, StreetAddress, City, Zip,
State and VisitDate. This is in addition to the Longitude
and Latitude of the address information. (ii) Dataset 2 is the
US Census Data (1990) Dataset1 containing about 2 M tuples. It
has been used only in the scalability experiments. (iii) Dataset 3 is
the Intel Lab Data (ILD2) used to evaluate SCARE for predicting
missing values and compare it to ERACER [20], as a recent sys-
tem that relies on relational learning for predicting missing data in
relational databases.

Setup: To evaluate the quality of the repairing techniques in the
first comparative study, we manually cleaned the dirty Dataset 1:
we used addresses web sites and repositories, external reference

1http://archive.ics.uci.edu/ml/datasets/US+Census+Data+ (1990)
2http://db.csail.mit.edu/labdata/labdata.html.
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Figure 4: Quality vs. the percentage of errors: SCARE main-
tains high precision by making the best use of δ, the allowed
amount of changes in Dataset 1.

data sources, and visual inspection to obtain the clean dataset con-
sidered as the Golden Standard. We selected a set of attributes to
be the flexible ones where we injected an increasing percentage of
errors introduced in multiple attributes of the records. The flexible
attributes of Dataset 1 that we considered for error injection and
repairing were (City, Zip, HospitalName, Longitude and
Latitude). Then, we compared the clean version of Dataset 1
(Golden Standard) with the repaired dataset outputs of each method
(including ours).

Parameters: In our evaluations, we study several parameters
that we list here with their assigned default values: (1) e: the per-
centage of the erroneous tuples in the dataset (default 30%), (2)
d: the dataset size (default 10,000 tuples), (3) δ: the maximum
amount of changes, as a fraction of d, the dataset size that SCARE
is allowed to update (default 0.1 or 10% of d). (4) I: the number
of iterations to run SCARE (default 1). (5) |H|: the number of
partition functions (default 5).

Regarding the partition functions using blocking, we repeat the
following process |H| times: we randomly sample from the dataset
a small number of tuples to be clustered in |D|

nb
clusters, where nb

is the average number of tuples per partition. Then, each tuple is
assigned to the closest cluster as its corresponding partition name.
This process allows for having different blocking functions due to
the random sample of tuples used in the clustering step of each iter-
ation. The tuples that have been assigned to the same partition have
common or similar features due to their assignment to the closest
cluster. In all our quality experiments, we use blocking as the tech-
nique to partition the dataset. Another simple way to partition the
dataset is to use random partitioning functions. In this case, given
nb, we assign each tuple to a partition name bij , where i is a ran-
dom number from {1, . . . , |D|

nb
}, and j = 0 initially. This process

is repeated |H| times while incrementing j each time.
All the experiments were conducted on a server running Linux

with 32 GB RAM and 2 processors each with 3 GHz speed. We use
MySQL to store and query the tuples. For the probabilistic clas-
sifiers, we use the Naïve Bayesian, specifically, we use the NBC
WEKA implementation3 with the default parameters settings. Java
is used to implement our approach and we use Java Threads to ben-
efit from a multiprocessor environment.

5.1 Quality Evaluation: Comparison with
Constraint Based Approaches

In the following experiments, we use the standard precision and
recall to measure the quality of the applied updates for string at-
tributes.

The precision is defined as the ratio of the number of values that
have been correctly updated to the total number of values that were
updated, while the recall is defined as the ratio of the number of

3NBC WEKA available at http://www.cs.waikato.ac.nz/ml/weka

values that have been correctly updated to the number of incorrect
values in the entire database. For numerical attributes, we use the
mean absolute error (MAE): 1

N

∑d
i=1 |vi − ai| where vi is the sug-

gested value by SCARE, ai is the actual value of the original data.
We can compute these values since we know the ground truth for
Dataset 1.

We report the quality results for four approaches:

• KHSinKPG: This is SCARE with the described tuple repair
selection strategy as described in Section 4.3.

• MV: In this approach, SCARE uses directly the majority vot-
ing to select an attribute value from the candidate tuple re-
pairs. We include this approach in the evaluation to compare
our tuple repair selection strategy to the straight forward ma-
jority voting strategy.

• SM: The single model approach, where the whole dataset is
considered as a single partition. Afterward, the likelihood
benefit and cost are computed to select the best updates. This
approach is included to show the advantages of combining
several models with local views rather than using a single
model with global view on the data.

• ConstRepair: One of the recent constraint-based repair ap-
proaches. We implemented (to the best of our understand-
ing) the technique described in [3], which uses CFDs as con-
straints to find dirty tuples and derive repairs. We manu-
ally compiled a list of CFDs during the process of cleaning
Dataset 1. Moreover, we implemented a CFD discovery al-
gorithm [9] to be used as input to the repairing algorithm.
To have a high quality rules and be fair to this approach, we
discovered CFDs from the original “correct” data, which can
not be the case in a realistic situation as we usually start with
dirty data. We specified the rules support threshold to be 1%.
Moreover, we assigned the attributes values correctness score
following the technique described in [3]. The implementa-
tion to discover the CFDs is very time-consuming, therefore,
this approach does not show up in all of our plots.

• MasterRpr: This is a recent data repair approach described
in [11] that rely on a master clean data in addition to Match-
ing Dependency (MD) rules as well as CFD rules. Since we
split the database into Dc and De, we can use Dc as the mas-
ter data. Also, we derived some MDs from the CFDs. More
information on the MDs and how it can be used to clean the
data is found in [11].

We use Dataset 1 and report in Figure 4 the precision and recall
results for the applied updates while changing e, the percentage
of tuples with erroneous values, from 10 to 50%. Generally, the
approaches that maximize the data likelihood substantially outper-
form the constraint-based approach for the precision. Moreover,
for the recall the likelihood approaches outperform the constraint-
based approach when the errors is up to 30%, afterwards, the recall
is comparable for all the approaches when errors is more than 30%.

SCARE with KHSinKPG shows the highest precision. The
precision increases using the three likelihood-based approaches
with the increase in the amount of errors, but the recall is decreas-
ing. For the Longitude and Latitude attributes, SCARE-
based approaches (KHSinKPG and MV ) corrected these at-
tributes with error rate between 1% and 5%.

For the SCARE-based approaches, the precision increases be-
cause we use a fixed δ. When the amount of errors in the data (noted
e) is small (10 to 20%), SCARE-based approaches modify more
data that allow for less accurate updates resulting in less precision
and relatively high recall. As e increases, the data needs more up-
dates to correct it, however, SCARE applies fewer, yet more ac-
curate updates, and hence the precision increases, but the recall
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Figure 5: Comparison between SCARE and ERACER to pre-
dict missing values. Generally, both SCARE and ERACER
show high accuracy in predicting the missing values. SCARE
uses in this experiment Naïve Bayesian model, while ERACER
leverages domain knowledge interpreted in carefully designed
Bayesian Network.

decreases (Figure 4(b)). The KHSinKPG approach outperforms
MV approach, because KHSinKPG takes into account further
associations between the predicted values across the data partitions.
These associations are ignored in the MV approach. Both SCARE-
based approaches that rely on data partitioning (KHSinKPG and
MV ) show a comparable, and sometimes even better, accuracy
than that of the SM approach.

The ConstRepair and MasterRpr have been outperformed
by all the likelihood-based approaches. The ConstRepair relies
on the heuristics of finding values replacement that are close to the
original data without considering any information on the data dis-
tributions and relationships. Moreover, the discovered CFDs that
were used in ConstRepair were not exhaustive enough to cover
all the problems in the data and this explains the low recall in addi-
tion to the low precision. The MasterRpr shows an improved per-
formance over the ConstRepair because, in addition to the CFDs,
the MasterRpr relies on a master clean data which helps in select-
ing the right replacement values through the MD rules. Therefore,
both the precision and recall of MasterRpr are better than those
for the ConstRepair. But, the precision and recall are still low
because, similarly with ConstRepair, the discovered CFDs and
MDs are not exhaustive enough to cover the data problems. In con-
trast, SCARE relies on statistical ML techniques, which are able
to cope with variable and multiple problems in the data and still
rely on the data distributions to accurately predict the replacement
values.

The recall of all the repairing approaches is in the range of 30
to 65%. However, for the likelihood-based approaches, the recall
can be improved by running the approach again over the resulting
database instance. We illustrate this improvement later in the ex-
periment of Figure 7. But, the ConstRepair approach achieves
about 35% recall that can not be further improved given a fixed set
of constraints.

To conclude, in comparison to the constraint-based repairing ap-
proaches, which demonstrated both low precision and recall, our
likelihood based approach demonstrated accurate updates with high
precision. Moreover, partitioning the data and combining the dif-
ferent predictions across the partitions provide more accurate pre-
dictions, because partitioning allows to learn data relationships at
different granularity levels (local and global).

5.2 SCARE vs ERACER to predict missing
values

In this experiment, we use Dataset 3, which includes a number
of measurements taken from 54 sensors once every 31 seconds. It
contains only numerical attributes. We include this dataset to eval-
uate SCARE for predicting missing values and compare it to ER-
ACER. We used the same dataset with the same introduced errors
as reported in ERACER evaluation of [20]. Thus, we were able to
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Figure 6: δ controls the amount of changes to apply to the
database: small δ guarantees high precision at the cost of the
recall and vice versa.

compare the effectiveness results of ERACER based on the same
dataset. The efficiency of ERACER was not demonstrated in [20]
and it requires domain expertise unlike our approach.

ERACER is a recent machine learning technique for data clean-
ing; it is specifically dedicated to replace missing values but it
can not be used for data repair by value modification. ERACER
leverages domain expert knowledge about the dataset to design a
Bayesian network. Then, ERACER uses an underlying relational
database design to store all constructed model’s parameters.

In Figure 5, we evaluate SCARE for predicting the missing val-
ues in comparison with ERACER. Here, we do not use δ as SCARE
is not updating an existing database value. Instead, we consider all
the predictions obtained from SCARE that fill a missing value.

Figure 5(a) reports the mean absolute error (MAE) while errors
in the dataset are in the form of missing values. Figure 5(b) reports
also the MAE, while errors are in the form of corrupting values,
e.g., adding random values. More details on how this data was
corrupted is provided in [20].

There are two major numerical attributes in the Dataset 3: hu-
midity and temperature. In Figure 5(a), both SCARE and ERACER
predict the missing values for the humidity and temperature with
almost the same low error percentage (2 to 4 %); and also in Fig-
ure 5(a), they both behave similarly when increasing the percentage
of corrupted data, and in this case, the error percentage in predic-
tion is between 3 and 7 %.

These numbers show that both techniques provide high accuracy
predictions. However, SCARE does not require the expensive do-
main expert to design a Bayesian network as for ERACER. For
this experiment, SCARE used the Naïve Bayesian for the statistical
models. The Naïve Bayesian did well when plugged into SCARE
in comparison to the Bayesian network which has to be carefully
designed for ERACER. This is thanks to the partitioning technique
used in SCARE, which enables several local views of the data that
are then combined at the end to obtain the most reliable global view
for accurate predictions. Moreover, SCARE can benefit from care-
fully designed learning techniques, like ERACER, and plug it in
the learning step to get more accurate predictions.

5.3 Parameters Study
Quality vs. the amount of changes δ: In this experiment,

we study the effect of bounding δ, the number of changes fixed
by the user on the repair quality. We report in Figure 6 the re-
sulting precision and recall when δ

|D| changes from 1% to 10%
(e.g., if δ

|D| = 5%, then SCARE can change up to 10% of the tu-
ples by replacing a selected attribute value v by v′ with distance
d(v, v′) = 0.5). Generally, low values of δ guarantee high preci-
sion and inversely. Increasing δ gives more chance to SCARE to
modify the data. Hence, the recall increases as we increase δ, but
updates with a lower confidence could be made. This justifies the
decrease in the precision when we increase δ.



The conclusion from this experiment is that small δ guarantees
high precision at the cost of the recall. However, the recall can be
improved by further SCARE iterations over the data as we will see
in the next experiment.

Quality vs. the number of SCARE iterations: This experiment
shows the effect on the quality if we repeatedly execute SCARE
over the dataset I times, I = {1, . . . , 5}. After each iteration, the
repaired tuples are considered members of the clean subset of the
database, which is used in training the ML models. We report the
obtained precision and recall in Figure 7. For all the SCARE-based
approaches, the recall substantially improves from about 35% to
close to 70% as we increase the number of iterations, while, the
precision slightly decreases from the 90’s to the 80’s %. This in-
dicates that the overall quality improves as we run more SCARE
iterations. The KHSinKPG outperforms the other approaches in
terms of both precision and recall.

In each iteration, SCARE tries to repair the data to maximize the
data likelihood given the learnt classification models subject to a
constant amount of changes, δ. In the first few iterations, the dis-
covered updates have higher correctness measure (i.e., ratio of the
likelihood benefit to the cost of the update, l(u)

c(u)
) than those that

are discovered later. Therefore, the applied updates in the first iter-
ations have higher confidence, and hence, the precision starts high
and decreases in later iterations. The recall increases faster than
the decrease in precision, and therefore, the overall quality is im-
proving. The main reason is that most of the applied updates are
correct in the first few iterations, so the obtained database instances
after each iteration are of higher quality to be learnt and modeled
for predictions in the later iterations of SCARE. A stopping criteria
for the iterations can be computed from the obtained overall like-
lihood benefit of the updates. If the benefit is not significant, then
it is better to stop SCARE. In another setting, the user can be in-
volved interactively (e.g., [22]) to inspect very small number of the
least beneficial updates after each iteration. If the least beneficial
updates are correct, then most of the updates are correct according
to the data distribution.

Quality vs. the partition functions: Here, we study the use of
different partition functions (blocking techniques), as well as, the
effect of the number of partition functions |H| on the quality of
SCARE on all the datasets. In Figure 8(a), we report the repair
precision for Dataset 1 when we use four different blocking tech-
niques as we increase the number of partition functions. One of the
blocking techniques follows the clustering approach as described
earlier in this section. The remaining three blocking techniques are
signature based blocking, where we compute local sensitive hash-
ing (LSH) for different attributes (Zip, City, StreetAddress)
with different random seeds.

For each dataset, we note that as we increase the number of
functions, the performances of all the blocking techniques improve.
They all converge to obtain similar accuracy. Increasing |H| will
increase the chance that a tuple belongs to a larger number of par-
titions. SCARE learns a model from a local view (i.e., from one
partition) and predicts the values for the attributes of the considered
tuple. Consequently, a larger number of candidate tuple repairs is
proposed when increasing the number of partitions and the vari-
ance of the predictions decreases. The predictions become more
independent from the blocking technique being used. The repair se-
lection strategy combines the predictions of the local view models,
and this increases the chance to obtain more accurate predictions.

5.4 SCARE Scalability
The scalability is one of the main advantages provided by

SCARE, this is in addition to the quality of the updates demon-
strated in the previous experiments. In the following, we assess the
scalability of SCARE to large datasets.

In Figure 8(b), we report the scalability of SCARE on Dataset 2.
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Figure 7: Using SCARE in an iterative way helps improving
the recall and the overall quality of the updates. The decrease
in the precision is small compared to the increase in the recall,
achieving an overall high quality improvement demonstrated
by the f-measure.

We report as well the fraction of time for each of the two phases of
SCARE. The reported time includes the time for learning the clas-
sification models. SCARE scales linearly, because of its systematic
process of handling each data partition. Note also that SCARE fin-
ished the processing of a 1 M tuples in less than 6 minutes. Phase
1, the updates generation, takes 80-85 % of the time because of the
process of learning models and obtaining predictions.

In Figure 8(c), we report the overall time taken by SCARE to
handle datasets from Dataset 1 with different size from 5,000 to
50,000 tuples. We use two different partition techniques: Ran-
dom and Blocking. In general, SCARE still scales linearly with
the dataset size. Moreover, it is noted that partitioning the data by
blocking makes SCARE more efficient. The reason is that block-
ing makes a data partition containing less diversity of the domain
values. This results in a faster processing to train the classification
models for prediction.

Usually, the process of statistical modeling and prediction tasks
is quadratic, but this is not the case with SCARE because of the
robust mechanism of partitioning the data and the strategy used to
combine multiple predictions.

Finally, we mentioned that SCARE can be efficiently paral-
lelized. In our implementation we used Java Threads and in Fig-
ure 8(d), we demonstrate the speedup we obtain as we increase the
number of processors. Note that SCARE achieves a linear speedup,
which supports our claim.

6. RELATED WORK
Improving data quality has been the focus of a large body of

research for decades. Our work is closely related to two research
areas: i) constraint-based data repair; and ii) statistical machine
learning techniques for data cleaning.

Constraint-based data repair: In this approach, usually we
have a database instance that is inconsistent with a predefined set of
constraints. The objective is to find another database instance that
minimally differs from the original one and that is consistent with
the constraints. For example in [3], conditional FDs (CFDs) are
used as database constraints. The repairing technique is based on a
cost-based greedy heuristic to decide upon a repair of errors. The
authors use equivalent classes to group the attributes values that are
equivalent in obtaining a final consistent database instance. The
work in [18] uses FDs to map the repairing problem to hyper-graph
optimization problem, where a heuristic vertex cover algorithm can
help finding the minimal number of attributes values to modify in
order to find a database consistent with the FDs. The main draw-
back of these approaches is that the data should be covered by a set
of constraints that have been specified or validated by domain ex-
perts, which may be an expensive manual process and may not be
affordable for all data domains. Moreover, the constraints usually
fall short to correctly identify the right fixes [10].
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Figure 8: The effect of the blocking techniques and SCARE scalability experiments

The work in [11] presents an entropy based technique to provide
a guarantee on the applied cleaning updates. For SCARE, since
the data is partitioned and the predictions are aggregated, it is not
clear how the entropy measures can be aggregated. Instead, we
rely on the updates likelihood benefit-to-cost ratio as a measure
for the updates quality. Our experiments demonstrate overall high
precision in updating the database.

Statistical machine learning techniques for data cleaning:
Data cleaning using ML techniques mainly focused on deduplica-
tion (refer to [6] for survey), data imputation (e.g., [20]) and errors
detecting (e.g., [23, 17]). For instance, in [20], data imputation
is based on relational learning to learn the characteristics of the
attributes relationships in a relational database. Then, the learnt
model is used to infer the missing values. This technique requires a
priori knowledge about the relationships between the attributes to
construct the appropriate Bayesian network. Most of similar tech-
niques for data imputation are limited to numerical or categorical
attributes. SCARE does not have such limitation. Our probabilistic
setting is related to the efforts on predicting multiple class labels
[4] (i.e., multiple values for a single attribute). However, our task
is to predict a single value from multiple attributes predictions.

The main challenges for ML techniques are mainly (i) the scal-
ability for large databases to be modeled considering all existing
significant data correlations; and (ii) the accuracy of the replace-
ment values prediction due to the fact that existing methods usually
capture either local or global data relationships and do not combine
both views whereas SCARE approach does. Nevertheless, the use-
fulness of ML techniques can be leveraged inside the learning step
of SCARE and help further improving the accuracy of the predicted
updates to the data. Note that our approach is not limited to a spe-
cific (probabilistic) classifier. Moreover, it can also take advantage
of DB constraints and FDs when they are available.

7. CONCLUSION
In this paper, we propose SCARE, a robust and scalable ap-

proach for accurately repairing erroneous data values. Our solution
offers several advantages over previous methods for data repairing
using database constraints: the accuracy of the replacement values
and the scalability of the method are guaranteed; the cost of the re-
pair is bounded by the amount of changes that the user is willing to
tolerate; no constraint or editing rule is needed since SCARE ana-
lyzes the data, learns the correlations from the correct data and take
advantages of them for predicting accurate replacement values. Fi-
nally, as shown in our experiments, SCARE outperforms existing
methods on large databases with no limitation on the type of data
(i.e., string, numeric, ordinal, categorical) or on the type of errors
(i.e., missing, incomplete, outlying, or inconsistent values). Our
current work is to extend SCARE to enable duplicate elimination
while repairing errors both at the value and tuple levels.

Future work is to efficiently and interactively involve the user
in a visual repairing scenario so that the selection of the candidate
replacement values as well as the entire database repairing process
can be user-approved in real-time.
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