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ABSTRACT
In text classification, recent research shows that adversarial attack
methods can generate sentences that dramatically decrease the classi-
fication accuracy of state-of-the-art neural text classifiers. However,
very few defense methods have been proposed against these gener-
ated high-quality adversarial sentences. In this paper, we propose
LMAg (Language-Model-based Augmentation using Gradient Guid-
ance), an in situ data augmentation method as a defense mechanism
effective in two representative attack setups. Specifically, LMAg
transforms input text during the test time. It uses the norm of the
gradient to estimate the importance of a word to the classifier’s pre-
diction, then substitutes those words with alternatives proposed by a
masked language model. LMAg is an additional protection layer on
the classifier that counteracts the perturbations made by adversarial
attack methods, thus can protect the classifier from adversarial attack
without additional training. Experimental results show that LMAg
can improve after-attack accuracy of BERT text classifier by 51.5%
and 17.3% for two setups respectively.
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1 INTRODUCTION
In the past few years, adversarial attack methods on text classifiers
have been studied extensively. The goal of this type of attack is to
rewrite a sentence such that a text classifier returns an incorrect pre-
diction. Recently proposed attack methods can drastically decrease
the accuracy of state-of-the-art classifiers: the adversarial sentences
they generate are semantically similar to the original sentences and
are of high grammatical quality making them had to detect and
discriminate from original sentences.
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As adversarial attacks can effectively degrade the accuracy of
a text classifier, defending against such attacks has become a nat-
ural need. The effort to defend against adversarial attacks on text
classification mainly uses adversarial training. However, adversarial
training of a text classifier is non-trivial for two reasons:
Efficiency requirement: A typical adversarial training process [14]
augments each training minibatch with their adversarial counter-
part, requiring the generation of adversarial examples efficiently.
However, finding adversarial examples for a sentence is computa-
tionally expensive because it often involves heuristic search [8, 25]
or inference of a neural language model [5, 10]. It is impractical to
generate adversarial examples during training. To address this issue,
researchers generate adversarial examples in advance and use a fix
set of adversarial examples to tune and robustify the classifier [8].
This solution reduces the efficacy of adversarial learning, because
when the classifier is improved, new adversarial examples are needed
to further robustify the classifier.
Efficacy requirement: no consensus on the efficacy of adversarial
training has been demonstrated yet [15]: some works (e.g., [8, 18])
showed that adversarial training is effective whereas others (e.g., [1])
showed it is not. Beyond the differences in the benchmark datasets,
we will show that the efficacy of a defense method can be measured
under two different setups, making the results hard to compare (See
Section 3).

In this paper, we propose a method to defend against adversarial
attacks by in situ augmentation – transforming the input sentence
during inference – rather than tuning the classifier. Since most at-
tack methods modify the sentence by substituting a small portion
of words in the sentence, counteracting these substitutions is one
intuitive idea to defend against attacks. We can assume that words
modified by the attack methods tend to have a high impact on the
classifier’s prediction, thus tending to increase the gradient norm.
By substituting these words, we can counteract the modifications
made by the attacker. As such, this paper proposes language-model-
based augmentation with gradient guidance (LMAg). In LMAg,
we compute the gradient of the classifier’s prediction with respect
to the input word embeddings. We then use the gradient norm as
a weight to randomly mask words in the sentence, and employ a
BERT [3] language model to fill in masked words. Since LMAg is a
data-augmentation method at test time, it does not need additional
training of the classifier and is easier to deploy. Our experimental re-
sults show that the proposed method is effective in defending against
various attacks.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 RELATED WORK
Significant research has been done concerning adversarial attacks on
text classifiers. Early works attempted to attack the classifier by in-
jecting anomalies such as typos [4, 11]. One line of research [8, 25]
uses synonym substitution to find adversarial sentences. Recent
works including [5, 9, 10, 24] introduce a pre-trained language
model in finding substitutions so that the adversarial sentences can
be more fluent. [27] provides a comprehensive survey on existing
attack methods. Adversarial attack libraries have also been devel-
oped [16, 26]. Adversarial training is an effective solution to protect
classifiers from adversarial attacks in computer vision [14, 20]. So
it’s not surprising that similar defending approaches have been ap-
plied to text classification. Among the attack methods mentioned
above, many [8, 10, 24, 25] use adversarial training to make the
classifier resist the attacks. Adversarial training is also used in tasks
such as reading comprehension [6, 23] and machine translation [2].
Jia et al. [7] proposes certified defense, but it can not be applied
on transformer-based models. Wang et al. [22] proposes synonym
encoding (SEM). SEM constructs a synonym dictionary, and maps
a cluster of synonyms to the most frequent word in that cluster to
offset the adversarial perturbation.

3 PROBLEM FORMULATION
In this section, we formulate the adversarial attack task and two
defense setups.

Definition 3.1 (Efficacy of Adversarial Attack on Text Classi-
fication). Given a sentence x = {𝑥1, . . . , 𝑥𝑙 } and its label 𝑦, a text
classifier 𝑓 (·) is supposed to make a prediction 𝑦 = 𝑓 (x) where
𝑦 = 𝑦 with high probability. When 𝑓 (x) = 𝑦, an adversarial attack
method A(x, 𝑦, 𝑓 ) generates an adversarial sentence u where u is
grammatically correct and has the same semantic meaning as x, but
𝑓 (u) ≠ 𝑦. The efficacy of adversarial attack is measured by after
attack accuracy on the test set D such as:

P(x,𝑦)∼D [𝑓 (A(x, 𝑦, 𝑓 )) = 𝑦] . (1)

As attack methods can successfully decrease the accuracy of a
classifier, defending against these attacks is necessary. The goal of
the defense is to make the classifier 𝑓 ′(·) more robust such that it
retains high classification accuracy even when it is attacked with
adversarial sentences. Note that there is no constraint on how 𝑓 ′(·)
is constructed; it may be constructed either by tuning the classifier’s
parameters or by adding additional protections, such as adversarial
sentence detection and/or text transformation.

Definition 3.2 (Efficacy of Original defense Against Adversar-
ial Examples). In this setup (Setup I), we generate adversarial ex-
amples by attacking the original classifier 𝑓 (·), then we evaluate the
robustness of the original classifier based on the absence of mistakes
on these examples. In this setup, the after-attack accuracy on the test
set D is defined as:

P(x,𝑦)∼D [𝑓 ′(A(x, 𝑦, 𝑓 )) = 𝑦] . (2)

Several works [18, 22] follow this setup and show significant im-
provement in after-attack accuracy.

Definition 3.3 (Efficacy of Boosted defense Against Adversar-
ial Examples). In this setup (Setup II), we generate adversarial

Algorithm 1: LMAg method.
Input: Sentence x = {𝑥1, . . . , 𝑥𝑙 }; A classifier 𝑓 (·) which

includes the embedding layer 𝐸 (·), and upper layers
𝑔(·) which takes embeddings and returns a probability
distribution over classes; Number of rewrites 𝜆; Mask
ratio 𝛾 ; Hyperparameter 𝛼 .

Output: 𝜆 rewritten sentences.
1 results← empty list;
2 e1, . . . , e𝑙 ← 𝐸 (x);
3 max_log_p = max𝑘 𝑔(e1, . . . , e𝑙 )𝑘 ;
4 𝑤1, . . . ,𝑤𝑙 ← [∇e𝑖 max_log_p]𝑖=1...𝑙
5 𝑚 ← max(1, ⌊𝑙 × 𝛾⌋);
6 for 𝑖 in 1 . . . 𝜆 do
7 x(𝑖) ← x;
8 𝑡1, . . . , 𝑡𝑚 ∼ Cat[𝑤𝛼

1 , . . . ,𝑤
𝛼
𝑙
];

9 for 𝑗 in 1 . . .𝑚 do
10 𝑥

(𝑖)
𝑡 𝑗
← MASK;

11 end
12 x̂(𝑖) ← [argmaxBERT(x(𝑖) ) 𝑗 ] 𝑗=1...𝑙 ;
13 results.append(x̂(𝑖) );
14 end
15 return results

examples by attacking the robustified classifier 𝑓 ′(·). In this setup,
the after-attack accuracy is defined as:

P(x,𝑦)∼D [𝑓 ′(A(x, 𝑦, 𝑓 ′)) = 𝑦] . (3)

A few works [8, 25] following this setup show relatively lower
efficacy in defense.

The difference between the two setups is whether the attacker is
aware of the robustified classifier. We believe Setup II is prevailing
in practice because: (1) Setup I underestimates the efficacy of at-
tack methods. Most attack methods [5, 8, 25] stop early when an
adversarial sentence is found, but this early stop only indicates that
the algorithm has found an adversarial example against the original
classifier. This adversarial sample may fail on the robustified classi-
fier. But if the attack method directly attacks the boosted classifier
and runs sufficient iterations, it may still find efficient adversarial
examples; (2) Setup II is more realistic. When a robustified classifier
is deployed, users interact with the robustified classifier rather than
the original one. Thus, it is more likely that an attacker directly
attacks the robustified classifier.

4 IN SITU DATA AUGMENTATION
In this section, we introduce LMAg, a in situ data augmentation
to defend adversarial attacks. LMAg consists of three steps: (1)
Estimate the importance of words using the gradient of the classifier;
(2) Generate multiple rephrases by stochastically masking important
words in the input sentence and filling in with alternative words
using a masked language model; and (3) Make a prediction based
on the majority of predictions on the rephrases. Algorithm 1 shows
the process of generating the rephrases.
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Name Type #C Cased Train/Test Len Orig PWWS TF PSO BA BAE

AG Topic 4 Y 120k/7.6k 54 92.2 29.9 9.9 20.8 17.9 73.6
MR Sentiment 2 N 9k/1k 24 88.1 18.4 9.4 7.5 13.8 37.0
Yelp Sentiment 2 Y 160k/38k 182 96.5 3.7 4.3 9.0 50.5

IMDB Sentiment 2 Y 25k/25k 305 89.8 10.0 6.3 18.2 46.1
SST2 Sentiment 2 Y 67k / 0.9k 54 92.4 14.7 7.5 8.1 20.8 38.6

Table 1: Dataset details. #C means number of classes. Cased means whether the dataset is cased or uncased. Len is the number of
BERT word-pieces in a sentence. Orig shows the accuracy of the original BERT-base classifier. PWWS, TF, PSO, BA, BAE shows the
after-attack accuracy on the original classifier using the corresponding attack method.

4.1 Estimate Word Importance using Gradients
Gradient information has been widely used in attack methods. In
white-box settings where attackers have full access to the classifier,
gradient is directly used to pick candidate substitution [11], whereas
in black box settings, gradient is approximated by comparing the
classifier’s output with or without a word [10]. When building a
defense, we assume that we have full access to the classifier; thus
we directly compute gradients to identify important words that con-
tribute the most to the classification. We split a text classifier into
two components:

𝑓 (x) = argmax
𝑘

𝑔(𝐸 (x))𝑘 ,

where 𝐸 (x) = e1, . . . , e𝑙 is the input embedding layer that converts
the words 𝑥𝑖 into embeddings e𝑖 , and 𝑔(·) is the upper layers that
made prediction from word embeddings. The output of 𝑔(·) is a
probability distribution over all classes. We use 𝑔()𝑘 to denote the
probability of 𝑘-th class. We compute the importance weight of each
word by

𝑤𝑖 = | |∇e𝑖 logmax
𝑘

𝑔(𝐸 (x))𝑘 | |2 .

For transformer-based models, e𝑖 denotes the sum of word embed-
ding, position embedding and token type embedding.

4.2 Stochastic Multiple Rephrasing
After calculating the importance weight of each word, we have to
replace the important words, hoping to counteract the adversarial
attack. However, if we threshold the importance weight then mask
and substitute words, it is possible to mask all important words and
make the sentence generated by the language model semantically
different from the original sentence. For example, in sentiment anal-
ysis, if we mask all the adjectives that express sentiment, then the
language model may generate a sentence with the opposite sentiment.
To overcome this problem, we used a stochastic substitute method.

We randomly sample 𝑚 = ⌊𝑙 × 𝛾⌋ positions in the sentence using
𝑤𝑖 as weights, where 𝛾 is the masking ratio. Specifically we sample
positions: 𝑡1, . . . , 𝑡𝑚 ∼ Cat(𝑤𝛼

1 , . . . ,𝑤
𝛼
𝑙
), where Cat means a multi-

nomial distribution, and 𝛼 is a hyperparameter. Then we replace
these positions with a special MASK token and use BERT language
model to impute the most likely sentence as

x̂ = [argmaxBERT(x)𝑖 ]𝑖=1...𝑙 ,

where BERT(x) is a BERT language model. Note that all 𝑙 words in
the rephrase x̂ are proposed by the BERT language model, although

only mask 𝑚 words are masked. x̂ may have more than 𝑚 word
substitutions.

Different mask positions result in different rephrases. To make the
classifier more stable, we generate 𝜆 sentences for each adversarial
sentence by selecting different mask positions. We then take the
majority predictions of 𝜆 sentences as the prediction for the input
sentence.

5 EXPERIMENTS
In this section, we compare the efficacy of LMAg with baselines
under two setups discussed in Section 3.
• Datasets. We use 5 text classification datasets: (1) AG’s News 1;
(2) Movie Reviews (MR) [17]; (3) Yelp Reviews [28]; (4) IMDB
Movie Reviews [13]; and the binary classification variation [21] of
Stanford Sentiment Treebank v2 (SST2) [19].
• Original Classifier. For all datasets, we use the BERT-base clas-
sifier [3] (#layers=12, hidden_size=768). We fine-tune the classifier
on 20k batches (5k batches on MR and IMDB), with batch size 32.
We use the AdamW optimizer [12] and learning rate 0.00002.
• Attack Methods: We pick 5 recently proposed adversarial attack
methods implemented in TextAttack [16]: (1) Ren et al. [18] pro-
poses the probability weighted word saliency (PWWS), which de-
termines the synonym substitution using both the word saliency and
the classification probability; (2) TextFooler [8] (TF) is a synonym
substitution algorithm with semantic similarity checker and part-
of-speech checker; (3) BERT-ATTACK [10] (BA) and (4) BAE [5]
both use BERT language models to propose word substitutions; and
(5) SememePSO [25] (PSO) substitutes words based on sememes –
the minimum semantic units, and uses particle swarm optimization.

Details of the datasets, the performance of the original classi-
fier, and the after-attack accuracy of attack methods on the original
classifier are shown in Table 1.
• Baselines: We compare our method with 2 baselines: (1)
SEM [22]: we follow the hyper-parameters recommended by au-
thors. We convert the training data using SEM and train the classifier
using the same convention as the original classifier mentioned above;
and (2) Adversarial training (AT): we sample 10k sentences from
each of the training set, then use TF2 to attack the original classi-
fier with these sentences. We then merge the generated adversarial
sentences with the original training set, then fine-tune the original
classifier for another 5k batches. For each training batch, we sample

1http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
2We use TF in adversarial training because of its efficiency and attack efficacy.

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Figure 1: After-attack accuracy of the classifier (×10−2) for each adversarial method (X-axis) on both setups: Setup I (top) – The
adversarial examples are generated to attack the original classifier on the original test set (Orig); Setup II (bottom) – The adversarial
examples are generated to attack the robustified classifier.

half of the sentences from the original training set, and the other half
from the set of adversarial sentences.
Our Method: For LMAg, we set the number of rephrases 𝜆 = 10, the
mask ratio 𝛾 = 0.2, and 𝛼 = 0.6. We fine-tune the BERT language
model on the training set for 5000 steps with batch size 32 and
learning rate 0.00002.

5.1 Experimental Results
Figure 1 (top) shows the performance of Setup I for attacks on
the original classifier. In this setup, all the methods including ours
successfully defend against a large portion of adversarial examples,
and improve the accuracy by more than 45%. Our LMAg improves
the accuracy by 51.5% in average while AT performs slightly better
with an improvement of 53.7%. LMAg and AT cause slight decrease
in accuracy on the original test set compared to SEM.

Figure 1 (bottom) shows the performance of Setup II. The after
attack accuracy is significantly lower than in Setup I, showing that
this setup is more challenging. SEM has a negative impact on the
model whereas AT slightly improves the after-attack accuracy by
6.6%. LMAg can improve the after-attack accuracy by 17.3% in
average which is significantly better than the other two baselines.
Furthermore, LMAg achieves the best improvement on all 5 datasets
and 4 out of 5 attack methods.

6 CONCLUSION
In this paper, we laid out two different setups in defending adver-
sarial attack, namely (1) original defense and (2) boosted defense
against adversarial examples. We show that the latter is both more
realistic and more challenging. We introduce LMAg, a novel in situ
augmentation to defend adversarial attacks on text classifiers. LMAg
achieves comparable performance on the first setup and significantly
better performance on the second one. Since LMAg is a in situ data
transformation. It does not change the architecture of the classifier,
so it can be easily integrated with other defense methods. Although

we improved the after-attack accuracy by 17.3%, the problem of
defending adversarial attack is far from being solved. In the future,
we will attempt to further improve the defense method by integrat-
ing LMAg with other methods, and meanwhile try to improve the
efficiency.
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A ILLUSTRATIVE EXAMPLES
Hereafter, Table 2 gives a few examples of using LMAg to correct
the prediction of adversarial sentences. In the table, Orig and Adv
indicate the original sentence and the adversarial sentence found by
TextFooler respectively. Positive or negative in the parenthesis is
the prediction of the original classifier. The 3rd row visualizes 𝑤𝑖

at BERT’s word-piece level. We boldface 5 word-pieces with the
largest weights and underlines 5 word-pieces with the second largest
weights. The following five rows show 5 rephrases of the adversarial
sentence generated by LMAg. We boldface the masked word-pieces.
Note that LMAg may change unmasked words. In both examples,
the classifier’s prediction is corrected.

B EFFECT OF HYPERPARAMETERS
We further evaluate the effect of three hyperparameters of LMAg,
namely the number of rephrases 𝜆, the mask ratio 𝛾 , and 𝛼 . We
tune one hyperparameter with the other two fixed. The results are
demonstrated in Figure 2.
• We measure 𝜆 = 1, 5, 10, 20 when 𝛾 = 0.2 and 𝛼 = 0.6. We

observe that when increasing 𝑘 from 1 to 10, the accuracy on
the original test set increases significantly. When 𝑘 = 1, the
accuracy on the original test set decreases as much as 6% on
the SST2 data set. We interpret it as when 20% of the words
are covered, the language model may generate a sentence
whose label is different from the original sentence, which
causes a significant drop in accuracy on the original test set.
Using multiple rewrites can alleviate this problem. We also
observe that the after attack accuracy improves on 3 out of 5
datasets when 𝜆 increases.

• We measure 𝛾 = 0.05, 0.1, 0.15, 0.2, 0.25 while 𝜆 = 10 and
𝛼 = 0.6. We observe that masking more words leads to more
improvement on after-attack accuracy but leading to lower
accuracy on the original test set. When masking more words,
it’s harder for the language model to rephrase the sentence
and retain the same label; meanwhile it is more likely to
counteract adversarial modifications.
• We measure 𝛼 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 with 𝜆 = 10 and
𝛾 = 0.2. Note that when 𝛼 = 0, the mask positions are sam-
pled uniformly. We observe that larger 𝛼 leads to higher after-
attack accuracy but lower accuracy on the original test set.
The reason for this is that when 𝛼 becomes larger, the prob-
ability distribution of the selected position becomes sparser.
Some positions have a high probability of being masked while
others are hardly masked. In this case, the same masking po-
sitions may be selected for multiple rewrites, which is similar
to setting a smaller 𝜆.

C DISCUSSION
Although LMAg can effectively defend against adversarial attacks
on text classifiers, the protection comes with a yet high computation
cost. The original text classifier runs one forward pass to get one
prediction. LMAg needs 1 forward and backward pass to estimate
𝑤𝑖 . Then 𝜆 forward passes to rephrase the sentence, and 𝜆 forward
passes to get predictions for each rephrase sentence. Thus, LMAg is
(2𝜆 + 2)× slower than the original BERT-based classifier. Even if we
use parallelization on GPU, we still observe 4.4𝑥 slow down when
𝜆 = 10.
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Orig (Negative) without shakespeare’s eloquent language , the update is dreary and sluggish .
Adv (Positive) without shakespeare’s eloquent dialect , the refreshing is sorrowful and unmotivated .
Visualize 𝑤𝑖 without shakespeare ’ s el ##o ##quent dialect , the refreshing is sorrow ##ful and un ##mot ##ivated .
R1 (Negative) without shakespeare ’ s eloquent wit , the film is sorrowful and unmotional .
R2 (Positive) like shakespeare ’ s eloquent plays , the film is sorrowful and unmotivated .
R3 (Negative) without shakespeare ’ s eloquent wit , the filmly sorrowful and unmotivated .
R4 (Negative) without shakespeare ’ s eloquent wit , the film is sorrowful and unmotivated .
R5 (Negative) without shakespeare ’ s eloquentism , miss film is sorrowful and unmotivated .

Orig (Positive) compelling revenge thriller , though somewhat weakened by a miscast leading lady .
Adv (Negative) cogent revenge thriller , though somewhat weakened by a miscast leading lady .
Visualize 𝑤𝑖 co ##gent revenge thriller , though somewhat weakened by a mis ##cast leading lady .
R1 (Positive) cohesive revenge thriller , though somewhat overshadowed by its miscast leading lady .
R2 (Negative) cogent revenge thriller , playedly performance by a miscast leading lady .
R3 (Positive) a entertaining entertaining thriller , though somewhat hampered by a miscast leading lady .
R4 (Negative) cogent revenge thriller , only somewhat hampered by a miscast leading man .
R5 (Positive) a entertaining revenge thriller , though somewhat hampered by a miscast leading lady .

Table 2: Two adversarial sentences and their rephrases generated by LMAg.
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Figure 2: The effect of hyperparameters. The upper row shows the change of after-attack accuracy on each data set, the lower row
shows the change of original test set accuracy.
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