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Motivation

e Exploring very large datasets requires to provide user guidance

e Existing works on Exploratory Data Analysis (EDA) focus on SQL operators
allowing roll-up and drill-down (ATENA, User Groups)

e Deep Reinforcement Learning appears as a good solution to guided EDA, but
most works focus on roll-ups and drill-downs with simple reward designs

e In RL, the reward defines the incentive leading an agent to achieve a task

e Existing work in data exploration relies on extrinsic reward, an objective
reward determined by an evaluation of the success of the agent

e RL community has developed the notion of intrinsic reward, representing a
subjective motivation like curiosity



https://u.cs.biu.ac.il/~somecha/pdf/atena_sigmod.pdf
https://hal.archives-ouvertes.fr/hal-02972511/document

Goal

e Study the impact of new operators on the training of DRL agents for guided
EDA

e Study the impact of reward methods based on balancing extrinsic and intrinsic
rewards on the training of DRL agents for guided EDA



Contributions

Propose the BCF Pipeline Generation Problem that finds a policy
maximizing a combination of extrinsic (familiarity) and intrinsic (curiosity)
rewards

Develop DORA The Explorer, a data exploration system that leverages
state-of-art A3C curiosity-based learning and expressive data exploration
operators

Run experiments on real-world SDSS data (a very large astrophysics
dataset), showing that curiosity-based DRL combined with expressive data
exploration operators outperforms existing RL and DRL approaches for data
exploration



Extrinsic and intrinsic rewards

e Extrinsic reward comes from the environment

o An objective reward determined by an evaluation of the success of the agent
o Familiarity reward consists in rewarding the agent when it finds some predefined target items

o Used in many previous works in RL for EDA
Limited by the knowledge of the person defining the target items
e Intrinsic reward depends on the agent itself and on its experience
o Initially defined in N. Chentanez, A. Barto, and S. Singh. 2005. “Intrinsically Motivated

Reinforcement Learning”
o  Curiosity reward consists in rewarding the agent when it ventures into new and unexplored

states
o  Successful applications to games to compensate a lack or absence of extrinsic reward

O



An example itemset of galaxies in DORA The Explorer

e An itemset is defined with a conjunction of predicates
e EXxploration operators semantics is closed under itemsets

9671 galaxues z = (-9999.001, 16.189] | g=(17.752, 18.384] | r=(-9999.001, 16.928]

petroRad r =(5.596, 7.359]



Exploration operators

Operator RCC8 Formalism [25] Output description
by-facet(D, A) NTPPi returns as many subsets of D as there
are combinations of values of attributes
in A
by-superset(D, k) NTPP returns the k smallest supersets of input

set D (k is application-dependent)
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Exploration operators and pipelines

e EDA session = a pipeline of operators

fam:0.143 fam:0 fam: 0 fam: 0 fam:0.818 fam:0 fam: 0 fam:0.31 fam:0 fam: 0 fam: 0 fam: 0 fam: 0 fam: 0 fam: 0 fam: 0
cur: 0.001 cur:0.016 cur:0.022 cur:0.4 cur: 0.4 cur: 0.4 cur: 0.021 cur:04 cur:0.044 cur:0.044 cur:0.027 cur:0.018 cur:0.4 cur: 0.1 cur:0.017 cur:04

e \We model exploration pipelines as policies trainable by some RL agents
e \We formalize intrinsic curiosity reward to complement the usual extrinsic
familiarity reward



Familiarity reward

e Familiarity targets are obtained by sampling from classified data in the Galaxy
Z0oo project

e “Finding” an item in a very large dataset is not trivial, since it can be
“‘drowned” in a big itemset

e \We define familiarity as a function of the concentration ratio of target objects
in an itemset

e The familiarity reward of a state is the sum of the familiarity score of each
itemset displayed in this state

o7 . |O m T|2
Familiarity(s;, T) = 20esets(s;) m


https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/
https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/

Curiosity reward

Previous works on curiosity applied to games, like Curiosity-driven
Exploration by Self-supervised Prediction, use a complex multi-model

curiosity module to filter and recognize features of interest

In DORA The Explorer, every feature can be of potential interest and we can
keep track of the states the agent went through

We keep an occurrence counter for each state the agent goes through and
the curiosity reward is inversely proportional to its value

[

Curiosity(si) = W
Si
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https://arxiv.org/pdf/1705.05363.pdf
https://arxiv.org/pdf/1705.05363.pdf

Reward definition
e The reward of applying action e, on state s. causing a transition to state s, is:

R(sj, ej, si+1) = 0.Familiarity(si+1, T) + B.Curiosity(si+1)

e Each agent is trained with predefined weights & + 3 = 1
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Dora The Explorer

Current pipeline

@D ®0O® T o0 Qi

Current operator results

60 galaxies | redshift =(0.126,0.201] | i=(16.506, 17.063] | z=(16.189,16.753] | u=(22.76, 23.246)

m redshift = (0.126,0.201] | i=(16.506,17.063] | z=(16.189, 16.753] | u=(23.246, 23.808]

| 26 galaxies | redshirt = (0.126,0.201] | i=(16.506,17.063] | z=(16.189,16.753] | u=(23.808,24.54]

m redshift = (0.126,0.201] | i=(16.506,17.063] | z=(16.189,16.753] | u=(24.54, 25.475)

m redshift = (0.126,0.201] | i = (16.506, 17.063] | z=(16.189, 16.753] m

Exploration mode

Partially guided

Model selection

Target set Scattered

Curiosity weight: 0 ®

Operator selection

by_facet

Select the dimensions to group on

magnitude g
© magnitude r
petroRad_r

Pipeline management

Save current pipeline
Load previous pipeline
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Architecture of Dora The Explorer
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Architecture of Dora The Explorer
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Experiments

e 2.6 million galaxies dataset with 7 attributes

e Comparison of two sets of operators:
o TRADITIONAL = by _subset + by _superset (drill-down and roll-up)
o ALL-OPERATOR = TRADITIONAL + by _neighbors + by _distribution
e Comparison of different combinations of extrinsic and intrinsic rewards
FAMO for familiarity-only (this mimics exiting data exploration work)
CURO for curiosity-only
50FAM-50CUR for 50% familiarity and 50% curiosity
75FAM-25CUR for 75% familiarity and 25% curiosity
25FAM-75CUR for 25% familiarity and 75% curiosity

e \We trained the agents for 100 hours, then studied their reward evolution in
training and their behavior online

o O O O O

16



curiosity reward

familiarity reward

Reward evolution during training
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Reward evolution during training
e Curiosity reward is difficult to obtain in TRADITIONAL
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Reward evolution during training

e Curiosity only (CURO) is not adapted for EDA
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curiosity reward

familiarity reward

Reward evolution during training

e Except for FAMO-TRADITIONAL, the best results are obtained by mixed reward agents
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Reward evolution during training

e \We can observe policies switch when an agent changes its priority
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Operator usage

e Agent strategies are different and depend on the type of reward they seek
e Mixed reward agents shift their strategies multiple times during training
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Reward evolution during the online phase

Best results are obtained by
agents with mixed-reward
Curiosity reward is difficult to
obtain in TRADITIONAL, and
easier to obtain in
ALL-OPERATOR

cumulated familiarity reward

cumulated curiosity reward
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Summary of experiments

e Unlike in games, a full curiosity-based intrinsic reward is not adapted for EDA

e Importance of optimizing familiarity and curiosity in tandem

o The highest levels of familiarity reward were reached by agents with some level of curiosity
reward

o  When both reward sources are available, the agents tend to shift priority between curiosity-

and familiarity-based policies
Curiosity-based intrinsic reward is easier to produce with ALL-OPERATOR

o TRADITIONAL limits the agents to set generalization/specialization, while ALL-OPERATOR
allows them to reach sets with similar granularity

e Adding new operators benefits data familiarity-driven EDA for agents with a
mixed reward

(@)

Agents learn to choose the most efficient operators to produce the type of reward they seek
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Conclusion

e Our framework exploits the interplay between DRL with familiarity and
curiosity rewards and expressive data exploration operators

e Future investigations
o Examine the relation between curiosity/familiarity and the scattering of target objects
o Investigate the possible roles of user feedback
o Determine the ideal weights of familiarity and curiosity based on user feedback
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Thank you for listening

DORA The Explorer available at:

https://bit.ly/dora-application

Code freely available at:

https://qgithub.com/apersonnaz/rl-quided-galaxy-exploration
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https://bit.ly/dora-application
https://github.com/apersonnaz/rl-guided-galaxy-exploration

