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Data Quality Problems in KBs

What can go wrong ?
In DL:

- Invalid ABox: Class (concept), Property
(role), Constant (individual)

- Invalid TBox: Set of axioms (Bad ontology
design defining relationships: hierarchies,
domains, ranges, etc.)

In RDF;

Invalid Triple:
<subject, property, object>

In KG:

Invalid Fact:
< head, relation , tail >

Invalid Reference to Extra-Information
— Mismatch of entity description
- Ambiguities in context mention

DATA QUALITY
PROBLEMS

TYPE CARDINALITY

Missing data Single-Point

Anomalous data Collection

Duplicate data

Inconsistent data

Obsolete data

Incorrect data

DETECTION/COvRRECTION MODE

Manual Inspection:
Expert and Human-In-the-Loop
Find-Fix-Verify Crowdsourcing

Semi- or unsupervised techniques:
Constraints, Rules, and Patterns

Descriptive Statistics

Model Inference and Machine Learning




Sources of errors
in KB Construction/PoBuIation

Garbage Data Reasoner (@ » d " Garbage

I Xm ML models o
n ﬁ .g’xm @ ut

Errors in unsupervised knowledge extraction from unstructured N
texts in open domain

Multi-lingual and cultural difficulties in information extraction

|dentity problem due to context/description mismatch

Obsolescence )
.
Accuracy of automatic data linking approaches and large-scale entity
disambiguation )
: : : N
Inadequate knowledge representations (information loss)
Inadequacy of KG semantic embedding techniques for I-N, N-1I, and
N-N relations y
\

Lack of automated large-scale knowledge verification and curation
Lack of KG completion explainability (provenance),
comprehensiveness, and interpretability 3




Profiling and Assess KB Quality

User-defined
Multidimensional
Concept

Accuracy, Consistency, Freshness, Completeness, Uniqueness

Precision, Timeliness, Conciseness, Interpretability, Accessibility, Objectivity, Security,

Relevance, Source Reputation, Understandability, Believability, Ease of use [...]

Up to 179 dimensions for Data Qualityl']
only |8 applicable to LOD!2! with a dedicated ontology[3]

[1T1Wang, Storey, Firth. A Framework for Analysis of Data Quality Research, IEEE Trans. Knowl. Data Eng., 7(4), p.623-640, 1995
http://mitig.mit.edu/documents/publications/TDQMpub/SURVEYIEEEKDEAug95.pd

[2] Acosta et al. Detecting Linked Data Quality Issues via Crowdsourcing: A DBpedia Study, Semantic Web, 2016

[3] Debattista, Lange, Auer - daQ, an Ontology for Dataset Quality Information LDOW?2014




Research Context

|. Designing ML-based solutions for Data and

Knowledge engineering is a
community

very hot topic in DB

2.Tsunami of Deep NN architectures and applications

[SIGMOD Blog, Feb. 2018]
@ ACM SIGMOD Blog

COURTING ML: WITNESSING THE MARR

[
OF RELATIONAL & WEB DATA SYSTEMS
napboned  MACHINE LEARNING
and Paolo Papotti = gigpata , Databases , Machine Learning # No Comment
FEBRUARY 14,

The web is an ever-evolving source of information, with data and knowled|
from it powering a great range of modern applications. Accompanying|
wealth of information, web data also introduces numerous challenges due|
diversity, volatility, inaccuracy, and contrad\ct\ons This year's WebDB 20

[VLDB'17 Keynote ]
Deep Learning

(m)eats Databases
(shortened)

[SIGMOD Record 2016]

Machine Learning and Databases:
The Sound of Things to Come or a Cacophony of Hype?
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Markov Chain (MC)

Deep Convolutional Network (DCN)
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Generative Adversarial Network (GAN)

DEEM
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for End-to-End Machine Learning
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Hopfield Network (HN)

Deep Residual Network (DRN)

A mostly complete chart of

Neural Networks

20% Fjodor van Veen - asimovinstitute.org

Perceptron (P)

Recurrent Neural Network (RNN)
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Auto Encoder (AE)
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Deconvolutional Network (ON)
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Liquid State Machine (LSM)

20

Feed Forward (FF)

o ot

Variational AE (VAE)

Boltzmann Machine (BM)

Kohorsen Network (KN)

Radial Basis Network (RBF

Long / Short Term Memory (LSTM)

\

v/

Denoising AE (DA€)

Restricted BM (REM)

Deep Conw

IXAEXAE]
\
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Extreme Learning Machine (ELM)

Support Vector Machine (SVM)

Deep Feed Forward (OFF)

)

Gated Recurrent Unit (GRU)

ot

Sparse AE (SAE)

A
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Echo State Network (ESN)

Neural Turing Machine (NTM)
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Sive Knowledge of the
deep learning models




Outline

Introduction
* Motivations
* Context
* Examples illustrating some relevant work

ML-based KG Curation
* KG refinement and ontology learning
* KG embedding
* KG completion
* Consistency checking and KG repairing

Concluding Remarks & Perspectives



Are all resources and KBs
equally complete, accurate, up-to-date, an
trustworthy?
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Example |. Completeness

C@OL—‘ “l |’||: ) Analytics ~ Query  About donal ®‘

The completeness tool
for Wikidata

C@OL—‘““’”:II A Home JliAnalytcs @ Query 1 About donald trump @
b Y

W Q22686 - Donald Trump Completeness rating Show

all properties v

15 out of 46 known non-functional properties are complete

Class name 4+ #Objects 4+ #Properties 4 Class completeness 4
Cats 133 2 0.00%

Fictional donkeys and some fact about them 14 3 2.38%

US Presidents 79 5 3.54%

States of Austria 9 2 16.67%

Cantons of Switzerland 26 3 6.41%

F. Darari, R.E. Prasojo, S. Razniewski, W. Nutt. COOL-WD:A Completeness Tool for Wikidata. ISWC'I 7 8



Example | (Cont’ed).
KB Representativeness and Bias

Suppose you have the accurate and complete knowledge of the world-wide populations
per city grouped into 4 categories: e.g. (<100k, [100k,500k], [500k,1M], >1M) and 4 KBs.
qc*

K, is more complete than K, but both are somehow biased toward one category

K, and K, are not as representative as K; or K,

Soulet, Giacometti, Markhoff, Suchanek: Representativeness of Knowledge Bases with the Generalized Benford's Law. International Semantic Web Conference (1)
2018:374-390

Wagner, Garcia, Jadidi, Strohmaier: It’s a man’s Wikipedia? Assessing gender inequality in an online encyclopedia. ICWSM. pp. 454—463 (2015)

Callahan, Herring: Cultural bias in Wikipedia content on famous persons. |. of the Association for Information Science and Technology, 62(10), 1899—1915 (2011)
Pitoura, Tsaparas, Flouris, Fundulaki, Papadakos, Abiteboul, Weikum. On Measuring Bias in Online Information. SIGMOD Record,Vol.46 No.4, December 2017 9



Example 2. KB Correctness

Relational data quality problems

Nobel Laureates

in Chemistry

Misfielded Value

Representation . .
Name | institution | Institution_City DoB
dowska-Curie Marie q Institut Pasteur @\
)X/I. Curie Pasteur Institute / Paris 1867-11-07
Melvin Calvin UC Berkeley / Berkeley 1911-04-08
buplicates | marie -~ pais /| Festeurinstiute - 20071107
fam Hershko NUL\ls/ / Haifa / NULL
] :
Typos “Ronaly Hoffman @ m ooooomfo

Inconsistencies

/

Incorrect Va

lues

Incorrect Value

Missing Values




Example 2 (Cont’ed). KB Correctness

Misfielded Value
1

Institution_City. DoB

Representation |
Name ituth

Knowledge Graph data problems
@Curie Marie 4 Institut Pa
Nobel Laureates in Chemistry: Excerpt e e
Marie Paris lfa@ [ 2007-11-07>
Avram Hershko NULJS/ / Haifa / NULL
Typos < onaly Hoffman @ i us )ﬁ ooocoo#ﬁ)
Incorrect Values

Incorrect Value | Missing Values ‘

07-11-1867

1
sameAs ? !

\
\
\
\ .
‘\\ Institut locatedIn alsoKnownAs
| N @
\
\
\

\

\
| sameAs ?

; Complex combination of:
; @ * Missing links and entities
: Spurious links : existence, type, direction

alsoKnownAs
°

* Erroneous entity name

workAt
Pasteur
bornOnDate Institute  Errors in literal values with various
=777 locatedin degrees of severity:
locatedIn . . .
formatting, up-to-dateness, veracity issues

_-
_-
— o

Marie Curien



Example 3. Numerical Outliers

Z

(Classical Setting)

S

X,/ <——— Y
- Bivariate Analysis o Multivariate Analysis
o
,§_ + S . ‘
o Legitimate
S S - i
o 7] outliers
or
Y Y .
comparison data qua“ty
problems?
= S _
& &
'I | l‘ | | | ] |
10 20 50 100 10 20 50 100
X X

Rejection area: Data space excluding
the area defined between 2% and 98%
quantiles for Xand Y

Rejection area based on:
Mahalanobis_dist(cov(X,Y)) > xz(.98,2)



Example 3 (Cont’ed). Numerical Outliers in KG

Need for more approaches leveraging ontology, constraints
or dependencies to improve outlier detection

1000

population

J—— - -——— .
-

- ————
-
-
-~

-
-

e _m - T ———

Fig. 1: Example for subpopulation lattice for property population. Numbers to
the upper right of a node give the number of instances fulfilling the constraint
set. Dashed nodes would be pruned, the left one for too low KL divergence, the
right one for not reducing the instance set further.

Table 2: Area under the curve determined for the given samples and approaches
Approach elevation/height|populationTotal
Outlier Detection 0.872 | 0.888 0.876
Cross-Checked Outlier Detection| 0.861 0.891 0.941
Baseline 0.745 0.847 0.847
Multi-lingual Baseline 0.669 0.509 0.860

Fleischhacker, Paulheim, Bryl,Volker, and Bizer. Detecting Errors in Numerical Linked Data using Cross-Checked Outlier Detection. ISWC 2014
Debattista, Lange, Auer. A Preliminary Investigation Towards Improving Linked Data Quality Using Distance-based Outlier Detection, The Semantic
Web, 2016. 13



Example 4.Veracity and Trustworthiness
s

ML-based approach for knowledge-based trust:

o . . . KNOWLEDGE
Multi-Layer Model based on EM and Bayesian inference NFALIE T
. Distinguish extractor errors from source errors
Compute _
P(w provide v,| Observation correct value(s) for d
extractor quality) K whether source _ 1=
. . 2.58
Compute P(v, | | provides (d,v) pair | #Rs | (28m websites)
source quality) ‘ i - #Extractors 16
@ \{ As of 2014
dev <« Aw
Compute source v w| source
// \\ d Veracity of Big Data
a CC U ra C From Truth Discovery Computation
y @ Algorithms to Models of
e Misinformation Dynamics
e| extractor
Compute Precision Precision Recall Accuracy Parameters L
Recall of extractor

X. L. Dong, K. Murphy, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,W. Zhang. Knowledge Vault: A Web-scale approach to probabilistic knowledge fusion. VLDB 2015



Example 5: Up-to-dateness
Asynchronous Real World and KG evolution

Table 1. DBpedia - Classes and Properties

Version OWL Class |RDF Property Object Prop. |Datatype Prop.
# A [O[@# 4 [0 [ # [0 [O#F [ [
3.2/3 |174 720 384 336
3.4 204| 30 (-2 | 32 [2168|1448| -271 [1719|1144|-139(899|1024|-132| 820
3.5 255| 51 (-6 | 57 [1274|-894|-1198| 304 | 601 [-673(130| 673 |-525| 174
3.6 272/ 170 |17 (1335 61 | -37 | 98 [ 629 | -26 |54 | 706 | -11 | 44
3.7 31947 |-1| 48 [1643| 308 | -17 | 325|750 | -6 (127|893 |-11 | 198
3.8 359|140 (-1|41 |1775/132| -3 |135|800| -1 |51 |975 | -2 84
3.9 529(170(-1(171|2333| 558 | -8 | 566 | 927 | -6 [133|1406| -2 | 433
2014 683(154|-5|159(2795| 462 | -46 | 508 [1079| -9 [161(1716|-37 | 347
2015-04(735| 52 |-5| 57 [2819| 24 |-103 | 127 [1098| -23 | 42 (1721|-80 | 85
2015-10(739| 4 |-5| 9 (2833| 14 | -9 | 23 (1099 -3 | 4 (1734| -6 | 19
2016-04(754| 15| 0 | 15 [2849| 16 -2 18 (1103| -1 | 5 |1746| -1 13

{Today’s DBpedia Ontology: 685 classes described by 2,795 properties }

Mihindukulasooriya, Poveda-Villalon, Garcia-Castro, Gomez-Perez. Collaborative Ontology Evolution and Data Quality -An Empirical Analysis, in OWL:
Experiences and Directions — Reasoner Evaluation, Springer International Publishing, Cham, 2017, pp. 95—1 1 4.
https://www.w3.org/lcommunity/owled/files/2016/1 [ /OWLED-ORE-2016 paper 9.pdf




Outline

Introduction
* Motivations
* Context
* Examples illustrating some relevant work

» ML-based KG Data Curation



ML-based Solutions for KG Curation

Knowledge Graph Refinement LB
Ontology Learning to learn a concept level Ontology
description of a domain (e.g., Cities are Places)

Matching

Knowledge Extraction

Fact Extraction and Verification : Knowledge Fusion Methods

Completion of Knowledge Graphs | = .o oo
* Learning Embeddings
* Methods for Entity Linking & Link Prediction : classification, rank,
probabilistic graph models, deep (reinforcement) learning
Error Detection and Repair in Knowledge Graphs

* Rule learning for detecting/correcting erroneous type assertions,
relations or literal values

* User-guided repair with updates




KG Refinement

GLUE: Learning to find similar
ontological concepts

* Glue applies ML technique to find,
for each concept node in a
taxonomy, the most similar concept
in the other taxonomy

* It applies the multi-learning
approach of LSD (Learning Source
Description)

Doan, Madhavan and Halevy. Ontology Matching: A Machine Learning Approach. Handbook on Ontologies in Information Systems (pp.

385-403), 2004

Mappings for O ,, Mappings for O ,

Relaxation Labeler

Common knowledge &/T

. Similarity Matrix
Domain constraints /

T

Similarity Estimator

/

Similarity function  Joint Distributions: P(A,B), P(A, notB), ...

f

Meta Learner M

Distribution

— T Estimator

Base Learner L | ..... Base Learner Lj

T

Taxonomy O, Taxonomy O,
(tree structure + data instances) (tree structure + data instances)

Fig. 2. The GLUE Architecture



KG Refinement

GLUE: Learning to find similar
ontological concepts (2)

* |t leverages the joint probability distribution:
— P(A,B), P(A, not(B)),P(not(A),B), P(not(A),not(B))

* ML is used to infer whether P(A,B) can be approximated with
P(A intersect B)

— By defining a classifier for instances containing concept A (resp. B)
and using it to classify instances of B (resp.A)

A Ut G upB ypetAR
A . IB/\H |:’>'“—'~"\1234 @@-m
t5 16,17 ine s
/ \ — — Tramed‘ 55, 56 6
Learner L
E F 1 ] A,ntB
tB
2 3,4 not A upe U yne ‘AJ“B

U, 52,53 54

Taxonomy O , Taxonomy O,

(a) (b) © () (e ¢y

Fig. 3. Estimating the joint distribution of concepts A and B

Doan, Madhavan and Halevy. Ontology Matching: A Machine Learning Approach. Handbook on Ontologies in Information Systems (pp.
385-403), 2004 19



KG Refinement KG embedding

Learning distributed representations of
entities and relations of KG

. TransR
) LI n ea r m O d e I S Projection matrix
— Translation-based : TransE, TransH, TransR, R e

STransE, FTransE i
— Tensor product-based: RESCAL, DistMult, AT,

C O m P I EX’ S i m P I E’ Tu C kE R Entity Space Relation Space of r

* Deep Learning or convolution
— HypER, ConvE, ConKB, SLM, LFM, ER-MLP NTN

Model Scoring Function Relation Parameters Space Complexity
RESCAL (Nickel et al., 2011) C:W,.C“ W, € R4 ’ O(ned, + n,d?_)
DistMult (Yang et al., 2015) (es, W, €,) w, € R O(n.d. + n,d,)
ComplEx (Trouillon et al., 2016) Re((es,w,,€,)) w, € C% O(nede + nyde)
ConvE (Dettmers et al., 2018) f(vec(f([eg:w, ] * w))W)e, w, € R® O(nede + n,d,)
HypER (Balazevic et al., 2018) f(vec(e, x vec™(w, H))W)e, w, € R® O(nede. + n,d,)
SimplE (Kazemi & Poole, 2018) 3 ((h. ., w,, t. )+ (h. ,w,-1,t.)) w, € R% O(nede + n,d.)
TuckER W X1 es Xo W, X3€, w, € R% O(ned. + n,d,)

20



KG Refinement >> KG embedding

Impact of Noise and Sparsity
in KG embeddings

|'(|)|TS@1‘0 fOI“ corrupted FB15K |-!)|TS@1 0 for sparsified FB15K .. Trading off sparse & noisy training data
N...'A . 2 910% N0ISE  hasuussnnssnnnsnnnnsnnnnsnnnsnnnsnnnns ]
0.7 - =#=20% noise |
9_&. N .. .. » 30% nolss | mMSUSnEESsasEEREEERSsamEEEsEEses o
065 | “¥60% noise
@ %::.&....0:.. o "~ -4-90% noise
Uy RO = L tFUIGAMESEl  uuassennnnnennnnne i e e e enns
I_ \ ‘ L} .0 0.. % 06 == 10% sparsity
i 5 \ & * Q. 0‘. :E = == 10% corruption
5- S ] I
- \& ., ‘O : o, 55 @ TransE (stable)‘iz N % oo
©TransE (sparsem KN ey 0.5 ®TransH (stable) 30 o
@ . ©TransH (sparse) ~ ‘e Q- " e D os ‘
£04 o ) N\ o O, N OHOlE (stable) @)e, O 2
) olE (sparse) Ny S P 45- &ST E (stabl % Ve, U e i v —
4+  #STransE (sparse) o By ¢ _.(]2 ransE (stable) “w'a, * 6
s—  @TransE (corrupt) =04 ©TransE (sparse) ¢ o, e, 045 ‘
LLO.3" @TransH (corrupt) \) L~ DTransH (sparse) LN 0 . 4
©HolE (corrupt) ~ 035- @HOoIE (sparse) e, 04 ‘
oz ‘STransE (corrupt) ™ ASTransE (sparse) 0
0 ‘ll5. iol ! | 15 t é B %% 05 1 15 2 25 085 o5 1 s 2 25 3
rpies Impacte Triples Removed *'° Noisy Triples Adde

A large, unreliable training dataset may be better than an
extremely sparse, high-quality one.

Pujara, Augustine, Getoor. Sparsity and Noise:Where Knowledge Graph Embeddings Fall Short. ACL 2017
https://www.github.com/lings/pujara-emnlp17
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KG Refinement > KG embedding KG completion

Link Prediction with Reinforcement Learning

No reward

belong_to?
[U.S. Government{— g L — —(Rudy_GiuIian)

belong_to

collaborate
collaborate_with “With  Training example

( Barack_ObamaJ\ onhn_McCai#j

—~— E—

belong_to

~ dorsed_by
born in ~ 2 o\rse =y " collaborate Overfit to
- collaborate_with? — ~ live_in _with the observed
! locate i live in answers
( Hawai f——=— us. J——=" C Hillary_Clinton )

* Leverage multi-hop KG query answering
* Use pre-trained model-based on-policy reinforcement learning
* New reward shaping and policy network with action dropout

Shaping XiVictoria Lin, Socher, Caiming Xiong. Multi-Hop Knowledge Graph Reasoning with Reward. EMNLP 2018

22
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KG Refinement KG embedding KG completion

Link Prediction with Reinforcement Learning

rq?
Path sampled _e-e-TTTT T T = -<
w/ 7Ty O v O *O  if en rg e
ro ées Coreoer rr er observed
LSTM path ‘ ......................... Reward +1
encoder —_— — . —>
ho h; hr '
S otherwise
action selection
.................................................................................... Y e
Policy Network with Action Dropout *.._ | Reward Shaping

/’@‘\ _f((’.\'. rg, er)

1111 Y I
075 N\N % Vi

rq h e A molalls) m  Tolads:) es ry er

* Leverage multi-hop KG query answering
* Use pre-trained model-based on-policy reinforcement learning
* New reward shaping and policy network with action dropout

Shaping XiVictoria Lin, Socher, Caiming Xiong. Multi-Hop Knowledge Graph Reasoning with Reward. EMNLP 2018
23




KG Refinement > KG embedding KG completion

Joint Entity Linking
with Deep Reinforcement Learning

WWW 2019, May 13-17, 2019, San Francisco, CA, USA Zheng Fang, Yanan Cao, Dongjie Zhang, Qian Li, Zhenyu Zhang, and Yanbing Liu

Local Encoder

hq h; hp—1
LSTM LSTM LSTM Global
(Vm' Ve) ——————————— ) Encoder
I
I Reward
Concatenate | Va, hqy Va, h, hy—1 Vo,
I
Policy: Network{ S: \QZ \ A\ }
I
() (e
: Entity
I Selector
L (V) Vg V) Vg Ver) o Vimy Vi) Vs Vor) Vi, Vg
1 t t t
LSTM Lst™ || o . v T
L LI [ I SR ol ___L__
(wr ). )(wr) () (w)C.OH)(w) Local Representations
Mention Context Entity Embedding Entity Description

Figure 2: The overall structure of our RLEL model. It contains three parts: Local Encoder, Global Encoder and Entity Selector.
In this framework, (Vp,,, v, f) denotes the concatenation of the mention context vector V;;,, and one candidate entity vector v, ks
The policy network selects one entity from the candidate set, and V,, denotes the concatenation of the mention context vector
Vm, and the selected entity vector Ve; . h; represents the hidden status of V;,, and it will be input into S;1.

24



KG Refinement KG embedding KG completion

To assessing link quality:

ldentity Problem or Link Quality Problem ?

JJJJJJJJJ

John Adams
Network topology and link properties
Link type, content, and context |I
Ontology axioms and ontology quality %
Provenance: source and extractor  sameAs
reliability _ o ¥
Accessibility, reachability < -
Information gain sameAs
Task-dependent properties: e.g., in KG
completion: path predicting power, path

diversity (to avoid overfitting due to

spurious paths)

-y

-

sameAs

25



KG Refinement KG embedding KG completion KG Repairing

Error Detection and Repairing

Error detection

Probabilistic techniques [Ruckhaus et al. 2014, Debattista et al., 2015,
Li et al. 2015]

Value imputation
Statistics: SDType [Paulheim, Bizer, 2014],

Pattern enforcement

o Syntactic patterns (date formatting)
o Semantic patterns (name/address)

Consistency checks and value update to satisfy

o A set of rules, constraints, FDs, CFDs, Denial Constraints (DCs),
Matching Dependencies (MDs) with minimal number of changes

o Integrity, Cardinality, Range or String-based constraints using W3C
Shape Constraints Language (SHACL) and Shape Expressions
Language (ShEX) [Rashid et al. 2019] see http://github.com/AKSW/RDFUnit

26




KG Refinement > KG embedding KG completion KG Repairing

Consistency analysis in evolving KB

Hypothesis(H)

H1: Dynamics features from periodic data profiling can help to identify completeness issues.
H2: Learning models can be used to predict correct integrity constraints using the outputs of the data profiling as
features.

Learning Minimum Cardinality Maximum Cardinality Range
Algorithm Precision Recall F1 Precision Recall F1 Precision Recall Fl1
Random Forest 0.9890 0.9574 0.9730 0.9842 0.9920 0.9881 0.9457 0.9527 0.959%4 —

Least Squares SVM 0.9944 0.9468 0.9700 0.8491 09574  0.9000 0.8596 0.9231 0.8902
Multilayer Perceptron 0.9674 0.9468 0.9570 0.8167 09601 0.8826 0.8262 0.8657  0.8456
K-Nearest Neighbour 0.9511 0.9309 0.9409 0.8797 0.8750 0.8773 0.8361 0.8425 0.8393

Naive Bayes 0.9401 0.8351 0.8845 0.9065 0.7739  0.8350 0.8953 0.7951 0.8422

Rashida, Rizzo, Torchianoa, Mihindukulasooriyac, Corchoc, Garcia-Castroc. Completeness and Consistency Analysis for Evolving Knowledge
Bases. Journal of Web Semantics.Volume 54, January 2019, Pages 48-71. 27
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KG Refinement > KG embedding KG completion KG Repairing

Rule discovery in KB

AMIE+; https://www.mpi-inf. npg.de/departments/databases-and-

information-systems/research/yago-naga/amie/

RuleN: http://web.informatik.uni-mannheim.de/RuleN/

RUDIK: https://github.com/stefano-ortona/rudik

[ 1] Galarraga, Teflioudi, Hose, Suchanek. Fast rule mining in ontological knowledge bases with AMIE+.The VLDB Journal, 24(6):707-730, 2015
[2] Meilicke et al. Fine-Grained Evaluation of Rule- and Embedding-Based Systems for Knowledge Graph Completion. ISWC 2018 (2018): 3—20.
[3] Ortona, Meduri, Papotti. Robust discovery of positive and negative rules in knowledge-bases. ICDE 2018.
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KG Refinement > KG embedding KG completion KG Repairing

Fine-Grained Evaluation:
Rule-based vs embedding-based approaches

Test Set Partitioning (FB15k)

0.5
0.4
0.3
0.2 ;
peers(x,y) awardNominee(x,y)
01l < peers(y,x) <« awardWinner(x,y) 2-hop
0_ I_I_'_'TI — I—hop
.5 6 .7 8 9 1 < .6 .7 .8 .9 5 .6 7T .8 9 1 .5 .6 T 8\9 1
Symmetry ~ Equivalence Subsumption P, Uncovered
(Inverse on top)
containedBy(x,y) topic(x,y) currency(x, z)
© contains(y, x) o category(x,y) « adjoins(x,y) A currency(y,z)

All (100%) | Sym (7.2%) | Eq (60%) | Sub (6.8%) | P2 (7.3%) | UC (18.4%)
h@] | h@l0|h@] |h@10 |h@] | h@]10|h@] |h@]0|h@] |h@10|h@] |h@10
AMIE 647 | .858 |.906 | .983 |.766 | .961 | .720 | .950 |.451 | .736 | .205 | .486
RuleN J72| 870 [.992 | 1.0 |[.940 | 982 | .831 | 954 | .536 | .724 |.207 | .480
HolE 366 | 706 |.046 | 936 | .484 | .811 | .505 | .814 |.179 ] 438 | 127 | .339
RESCAL | .267 | .600 |.126 | .768 | .308 | .638 | .333 | .645 | .288 | .546 | .158 | 416
TransE 031 | .796 |.000 | .852 |.039 | .893 | .024 | 884 | .019| .661 |.027 | 479

Meilicke et al. Fine-Grained Evaluation of Rule- and Embedding-Based Systems for Knowledge Graph Completion. ISWC 2018 (2018): 3—20.



Concluding Remarks

* ML provides a principled framework and
efficient tools for automating and optimizing
many KG management tasks (e.g., extraction,
population, completion, consistency checking)

* Paradox: ML for KG curation need high quality
training data

* Hybrid approaches combining Humans-in-
the-loop, AutoML techniques and distant
supervision are promising for KG curation
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* Integrate the Human “in the Loop of ML-tools”

Perspectives for ML-Based KG Curation

— “Taskify” and minimize the amount of interactions with the users
while, at the same time, maximize the potential “ML benefit” for

KG management tasks

Current efforts:

Crowdsourcing, active learning, user-guided repair

— Detecting LoD Quality issues via Crowdsourcing (DBpedia)

[Acosta et al. 2016]

— Data cleaning with oracle crowds [Bergman et al., SIGMOD’15]

— User-guided repair of KB [Arioua, Bonifati, EDBT 2018]

Direction:
— Orchestration of Humans and ML-tools for KG curation
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Be inspired !

A Condensed View of ML-based curation solutions for structured data

Repair
System

ML
Approach

Goal

Febrl
[Churches et al., 2002]

HMM and MLE

Standardizing loosely structured texts (e.g., name/address) based
on the probabilistic model learnt from training data

SCARE Multiple ML models used to Find the candidate repair that maximizes the likelihood repair
[YEaIkout, Beré:i-EquiIIe, capture data dependencies benefit under a cost threshold of the update
magarmid, H 1+1
SIGMgOD’I3] across multiple data partitions
Continuous Logistic classifiers Learning from past user repair preferences to recommend
Cleanin next more accurate repairs

[Volkovs et aEICDE’ 14]

Lens
[Yang et al.,VLDB'’15]

Various ML models encoded in
Domain Constraints

Declarative on-Demand ETL with prioritized curation tasks based
on probabilistic query processing and PC-Tables

HoloClean Probabilistic inference on factor | Mixing statistical and logical rules, DCs, MDs, etc. to infer

[Rekatsinas et al.,VLDB graphs with SGD and Gibbs candidate repairs in a scalable way with domain pruning and
2017] sampling constraint relaxation

BoostClean Mixing statistical and logical rules, domain constraints for

[Krishnan et al., 2017]

Learn2Clean
ji_Berti-EquiIIe,
heWebConf2019]

Poster #1293 on
Wednesday !

Reinforcement Learning

detection and repair combinations to maximize the predictive
accuracy over test data

Learn from trial-and-errors the sequence of data

preprocessing tasks that maximizes the quality of a given
ML model




Reinforcement learning for data cleaning

Learn2Clean: Optimizing the Sequence of Tasks for Data Preparation
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