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1. Introduction

Four biotechnological advances have been accomplished of the last decade: i) sequencing
of whole genomes giving chance to the discovery of thousands of genes, ii) functional
genomics using high-throughput DNA microarrays to measure expression of each of
these genes in multiple physiological and environmental conditions, iii) scaling of
proteins using Proteome to map all the proteins produced by a genome, and iv) the
dynamics of these genes and proteins in a network of interactions that gives life to any
biological activity and phenotype. These major breakthroughs resulted in massive
collection of data in the field of Life Sciences. Considerable efforts have been made to
sort out, curate and integrate every relevant piece of information from multiple
information sources in order to understand complex biological phenomena.

Biomedical researchers spend a phenomenal time to search data across heterogeneous
and distributed resources. Biomedical data are indeed available in several public
databanks: banks for genomic data (DNA, RNA) like Ensembl, banks for proteins
(polypeptides and structures) such as SWISS-PROT', generalist databanks such as
GenBank’, EMBL’ (European Molecular Biology Laboratory) and DDBJ* (DNA
DataBank of Japan). Other specialized databases exist today to describe specific aspects
of a biological entity, including structural data of proteins (PDB’), phenotype data
(OMIM®), gene interactions (KEGG’) and gene expression data (ArrayExpressS).
Advances in communication technologies enabled these databases to be worldwide
accessible by scientists via the Web. This has promoted the desire to share and integrate
the data they contain, for connecting each biological aspect to another, ¢.g., gene
sequence to biological functions, gene to partners, gene to cell, tissue and body locations,
signal transductions to phenotypes and diseases, etc. However, semantic heterogeneity
has been a major obstacle to the interoperability of these databases, moving to semantic
scale the structuring efforts of biomedical information. Since then, interoperability, i.e.,
the linking of distributed and heterogeneous information items, has become a major
problem in bioinformatics. Besides, biological data integration is still error-prone and
difficult to achieve without human intervention.
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In spite of these barriers, we have assisted in the last decade to an explosion of data
integration approaches and solutions to help Life Sciences researchers to interpret their
results, test and generate new hypothesis. In high throughput bio-technologies like DNA-
chips, data warehouse solutions encountered a great success, because of constant needs to
store locally the delivered gene expression data, confront and enrich them with data
extracted from other sources, for multiple possibilities of novel analyses.

The Life Sciences data sources are supplied by researchers. They are also accessed by
researchers to interpret their results and generate new hypotheses.

However, in case of insufficient mechanisms for characterizing the quality of the data
they contain, such as: truthfulness, accuracy, redundancy, inconsistency, completeness,
and freshness, data is considered by scientists as a "representation” of reality. Many
imperfections in the data are not detected or corrected before integration and analysis. In
this context, tremendous amount of data warechouse projects integrate data from various
heterogeneous sources, having different degrees of quality and trust. Most of the time, the
data are neither rigorously chosen nor carefully controlled for data quality. Data
preparation and data quality metadata are recommended but still insufficiently exploited
for ensuring quality and validating the results of information retrieval or data mining
techniques (Berti-Equille and Moussouni, 2005).

Most-used on-line databanks for Life Sciences are riddled with errors and lots of factors
will cause them. The three major sources of data quality problems are the following:

[ Heterogeneity of data sources: Public molecular databases (GenBank, Swiss-Prot,
DDBJ, EMBL, PIR, among others) are large and complex artifacts. They already
integrate data from multiple sources, and transform it using various programs, scripts
and manual annotation procedures that are neither traced, nor documented and
reproducible, and that change over time. Extensive duplication, repeated submissions
of the sequences to the same or different databases and cross-updating of databases
accelerate the propagation of errors within and across the main on-line databanks.

[ Free-ruled data annotation: Biological data come from journal literature and direct
author submissions for otherwise unpublished sources. There are usually no content
restrictions for the submitters or collaborators to present their data to the databanks,
even allow them claim patents, copyrights, or other intellectual property rights in all
or a portion of the data with very few checking or assessment of the information
content validity. Data entry errors can be easily introduced due to the lack of
standardized nomenclature, variations in naming conventions (synonyms, homonyms,
and abbreviations). In addition, information content may have different
interpretations.

[ Instrumentation/Experimental errors. The tools driving the current automated, high-
throughput sequencing systems are not infallible. Even a 1% error rate will produce



page 3

10 mistakes in every 1000 bases generated by the machine. Due to the unboundary
information feature of coding and origin region in genomic sequence data, the
researchers of molecular biology have to extract the relevant data from them when
performing analysis and addressing specific research. Any data problem or error in
the symbol sequences and repetitions may cause misleading and wrong data analysis
results or misinterpretations.

[0 Inadequacy of data quality control mechanisms and scalability issues. Since the
data sizes of major public databanks have been increasing exponentially, (e.g.,
GenBank contains approximately 126,551,501,141 bases in 135,440,924 sequence
records in the traditional GenBank divisions and 191,401,393,188 bases in
62,715,288 sequence records in the WGS division as of April 2011), manual data
curation still predominates, despite its high cost and obvious problems of scalability
(Baumgartner et al., 2007). Systematic approaches to data checking and cleaning are
lacking (Buneman et al., 2008).

A wide range of data quality problems may emerge at any time during data life cycle
(i.e., data acquisition, assembly, transformation, extraction, integration, storage, internal
manipulation, etc.) from primary raw experiment databases to large public databanks and
specialized laboratory information management systems (LIMS).

Careful data cleaning and data preparation are very necessary prerequisites to any process
of knowledge discovery from integrated biological data.

In this chapter, we review the literature on data integration in the Life Sciences with a
particular focus on the approaches that have been proposed to handle biological data
quality problems (Section 2). We propose a classification of data quality problems in
biomedical resources and we present some of preprocessing solutions that can be
practically implemented before any task of data mining (Section 3). Based on our
previous work on data cleaning, integration and warehousing of biomedical data, we
present the lessons we've learnt and the approach we've implemented in practice (Section
4). Finally, we'll conclude this chapter with some challenging research directions for
biomedical data preprocessing and integration (Section 5).

2. Related work

The first generations of data integration systems for the Life Sciences were based on flat
file indexing (e.g., SRS’, DBGet'’, Entrez'’, Atlas’’), multi-database query languages
(Kleisli, OPM, P/FDM), and federated databases (DiscoveryLink, BioMediator,
caGRID). Recent systems are now mediation systems (or mediators) that consist in
connecting fully autonomous distributed heterogeneous data sources. Mediators do not
assume that integrated sources will all be relational databases. Instead, integrated
resources can be various database systems (relation, object-relational, object, XML, etc.),
flat files, etc. The integration component of mediation is in charge of (1) providing a
global view of integrated resources to the user, (2) proving the user with a query language
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to query integrated resources, (3) executing the query by collecting needed data from

each integrated resource, and (4) returning the result to the user. For the user, the system

provides a single view of the integrated data as it was a single database. Several
mediation systems have been designed for domain specific integration of biomolecular
data, providing non-materialized views of biological data sources. They include:

- BioKleisli (Davidson et al., 1997, Buneman at al., 1998) and its extensions K2
(Davidson et al., 2001) and Pizzkell/Kleisli (also known as Discovery Hub, Wong,
2000)

- the multi-database system based on the Object Protocol Model (OPM) (Chen &
Markovitz, 1995) to design object views (Chen et al., 1997) and its Object-Web
Wrapper (Lacroix 2002),

- the DiscoveryLink (Haas et al., 2001),

- P/FDM (Kemp et al., 1999, 2000) and

-  TAMBIS (Baker et al., 1998).

Indeed mediation systems often offer an internal query language that allows the
integration of (new) resources (data and tools) in addition to a user’s query language that
is used by biologists to access, analyze, and visualize the data. Existing mediation
approaches rely on traditional database query languages (e.g., SQL, OQL). As a
particular example of ontology-based integration, TAMBIS (Baker et al., 1998) is
primarily concerned with overcoming semantic heterogeneity through the use of
ontologies. It provides users an ontology-driven browsing interface. Thus it restricts the
extent to which sources can be exploited for scientific discovery.

To summarize, these systems have made many inroads into the task of data integration
from diverse biological data sources. They all rely on significant programming resources
to adjust to specific scientific tasks. They are also difficult to maintain and provide user’s
query language that requires programming ability (such as SQL, OQL, Daplex, etc.) and
significantly limit the query capabilities.

However, none of the existing systems allows the management of data quality metadata
and none of them offers the flexibility of customization for ETL (Extract-Transform-
Load) or data preprocessing tasks. These functionalities may be partially covered by
emerging scientific workflow management systems (Cohen-Boulakia & Leser, 2011;
Ives, 2009) emphasizing data provenance as a critical dimension of biological knowledge
discovery (Cohen-Boulakia & Tan, 20009).
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3. Typology of data quality problems in biomedical
resources

We can classify data quality problems occurring in biomedical resources into the

following categories illustrated with relevant examples:

[0 Redundancy: Redundant or duplicated data are mainly caused by over-submission.
This category is due to overlapping annotations and replication of identical sequence
information, e.g., the same sequence can be submitted to different databases or
submitted several times to the same database by different groups, and/or the protein
sequence may be translated from the duplicate nucleotide sequence and several
records may contain fragmented or overlapping sequences with more or less complete
sequences. The redundancy problem often comes along with partial incompleteness
of records and more generally it is caused by the evolving nature of knowledge.
Extensive redundancy is caused by records containing fragmented or overlapping
sequences with more complete sequences in other records (see Example 1 for
illustration).

Example 1. Redundancy. Consider two records describing the same biological entity,
GI:11692004 and GI:11692006 respectively from NCBI nucleotide databank
presented in Figure 1. The only difference between the two records relies on the
sequence length. The record GI:11692006 provides additional irrelevant bases “a”.
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LOCUS LB e 375 bp ) 01-FEB-2001
DBFINIT!ﬂE::Eégﬁus martensii alpha toxin TX1S nRNA, complete cds.

ACCESSION AFIESOT
VERSION AFl63016.1 CGI:116592004

1l getttoccayg aaaattcocat aaaacyggttc aaaatgaatt atttggtatt ttttagtttyg N\
6l gcacttotty taatgacagy tgtggagagt gtacgogaty gttatattgc cgacgataaa
1Z]1 aattgcgcat atttttgtygy tagaaatgcy tattgcocgaty acgaatgtaa gaagaacyggt
181 gctgagagtyg gotattgoca atggygcaggt gtatacggaa acgoctycty gtygctataaa
241 ttgcccygata aagtacctat tagagtacca ggaaaatgca atggocggtta aattgtaaga
agaaatgtat CCtaaatata actygttaaat aaatataaat aataaaatta tatttottte
aaaaaaaaaa aaaas

//

http:/’www.nebi nim.nih. gov/entrez/viewer. fegi?db=nucleotide&val=11692004

LoCuUs & ™7 432 bp wRNA NV 01-FEB-2001
DEFINITI Buthus martensii alpha toxin TX1S' nRNA, couplete cds.
ACCESSION <012

AFE

VERSION AF1l63017.1 GI:11692006

ORICIN

1l tgctttccca gaaaattcca taaaacyggtt caaaatgaat tatttggtat tttttagttt
61 ggcactteott gtaatgacay gtgtyggagay tgtacgogat ggttatatty ccgacgataa
121 aaattgcgca tatttttgtyg gtagaaatygce grtattgogat gacgaatgta agaagaacyy
181 tgctgagagt gygctattygoc aatgyggcagy tgtatacgyga aacgocctyet ggtgctataa
241 attgcccgat aaagtaccta ttagagtace agygaaaatygc aatyggcggrt aaattgtaay
301 atggaatgta tcctaaatat aactgttaaa taaacataaa Laataaaatt aaaaaaaaaa
361 2223232333 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAARAA
421 aaaaaaaaaa aa

//

http:/Aiwww. ncbi nim.nih. gov/entrez/viewer. fegi?db=nucleotide&val=11692006

Figure 1. Example of two redundant records with uninformative sequence portions

[0 Incompleteness: Paradoxically, over-submission does not prevent from submission of
incomplete records and fragmented information from one record to another with
potentially overlapping or conflicting data.

[l Inconsistency: Multiple database records of the same nucleotide or protein sequences
contain inconsistent or conflicting feature annotations. This category includes data
entry errors, misspelling errors, mis-annotations of sequence functions, different
expert interpretations, and inference of features or annotation transfer based on best
matches of low sequence similarity. Problematic data that lack of domain
consistency, such as contaminated data existing in coding region due to unsure



reasons, outdated, missing and discrepant annotations comparing with other
databanks. Various kinds of inconsistency may occur:
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(1 Syntax errors: The syntax errors are violations of syntactic constraints on

particular format/fields of the databank record.

(1 Semantics errors: Semantics errors contain data field discrepancy, invalid
data content identified either by the databank flatfile format or other NCBI

specifications. For examples, invalid MedLine or PubMed numbers,

invalid reference number, etc. Another type of error is the mis-use of fields
when data content does not correspond to the field usage (see Example 2).

[0 Naming ambiguities: The manifestation of synonyms, homonyms and
abbreviations results in information ambiguities which cause problems in
biological entity identification and keyword searching. For example, BMK
stands for “Big Map Kinase”, “B-cell/myeloid kinase”, “bovine midkine”,
as well as for “Bradykinin-potentiating peptide”. The scorpion neurotoxin
BmK-X precursor has a permutation of synonyms. It is also known as
“BmKX”, “BmK10”, “BmK-M10”, “Bmk M10”, “Neurotoxin M10”,

“Alpha-Neurotoxin TX9”, and “BmKalphaTx9”.

O Undersized/oversized fields: Sequences with meaningless content can be

found in protein records queried using Entrez to the major protein or

translated nucleotide databases: these are protein sequences shorter than
four residues and sequences shorter than six bases. The undersized fields
may alter the entity identification: e.g., “M” is the synonym of the protein
“ACTM_HELTB” (record GI:1703137) but “M” also corresponds to

1,389,441 records on NCBI protein database.

(1 Cross-annotations with conflicting values: Multiple database records of
the same nucleotide or protein sequences may contain conflicting feature

annotations, data entry errors, mis-annotation of sequence functions,

different expert interpretations, and inference of features or annotation
transfer based on best matches of low sequence similarity (see Example 2).

[0 Putative information: Functional annotation sometimes involves

searching for the highest matching annotated sequence in the database.
Features are then extrapolated from the most similar known searched

sequences. In some cases, even the highest matching sequence from

database search may have weak sequence similarities and therefore does
not share similar functions as the query sequence. “Blind” inference can

cause erroneous functional assignment.

Example 2. Inconsistency. Consider the bibliographic reference provided in the

record GenBank: AF139840.1 presented in Figure 2.
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REFERENCE 1 (bases 1 to 687)
AUTHCRS Direct Submission.

control region (LCR)
JOURNAL Unpublished
REFERENCE 2 (bases 1 to 687)
AUTHORS Kutlar,F., Leithner,C., Zeng,S. and Tuan,D.
TITLE Direct Submission

USA

TITLE A long terminal repeat (LTR)of the human endogenous retrovirus ERV-9
is located in the 5' end of the human beta globin gene locus

JOURNAL Submitted (31-MAR-1999) Hematology/Oncology, Hemoglobin Laboratory,
Medical College of Georgia, 15 th St. AC-1000, Augusta,

Ga 303812,

Figure 2. Example of mis-use of the bibliographic references field

This record and sequence information has been directly submitted to GenBank and they

don't correspond to a peer-reviewed publication stricto sensu.

[ Irrelevancy: Less meaningful, nonsense or irrelevant data existing in free-text field of
annotation or description, e.g., coding region, which intervene with the target

analysis. Some values of finer granularity may be concatenated and automatically

imported into a data field of coarser granularity. These values are so-called misfielded

(see Example 3).

[0 Uninformative features or data. A profuse percentage of the unknown
residues (“X”’) or unknown bases (“N”) can reduce the complexity of the
sequence and thus, the information content of the sequence.

[1 Contaminated data: Introns and exons must be non-overlapping except in
cases of alternative splicing. But in some erroneous records, nucleotide
sequences have overlapping intron/exon region and some sequences can

possibly be contaminated with vectors commonly used for the cloning.

Example 3. Irrelevancy. Consider the following pErInTTION field of the protein record
AAB25735.1 (http://www.ncbi.nlm.nih.gov/protein/AAB25735.1): it includes the
species, the sequence length, etc. These additional information items are irrelevant and

mis-fielded.

DEFINITION neurotoxin, NTX [Naja naja=Formosan cobra, ssp. atra, venom, Peptide,

62 aal

[l Obsolescence: Instead of checking existing records related to the biological entity of
interest and updating one of them, users may prefer to submit a new record. This may
increase not only the inter-record redundancy and overlaps in the databank but it also
has two consequences, first on increasing the difficulty to achieve entity resolution
and correctly group together the records that may be truly related to the same
biological entity, and second on keeping out-of-date records with misleading or no

longer valid knowledge elements.

Table 1 summarizes a categorization of potential intra-record data quality problems into

categories and the fields they can affect in a traditional record content.




page 9

Categories Data quality Record Fields
problems
Global | Definition | Taxonom References Cross- Feature Raw
Identifier y Links annotations | data
Inconsistency Typo/ Mis- X X X
spelling
Format X X X X
violation
Ambiguous
naming
(homonyms, X X X X X
synonyms,
abbreviations)
Mis-fielded X X X X
values
Undersized/
over-sized field X X X
Measurement
error,
Contaminated X X X
data
syntax errors
and format X X X X X X
violations
Irrelevancy Putatlve_ X X X
information
Uninformative X % X X
data
Incomplete
Incompleteness | data / default X X X X X X
values
Obsolescence Out-of-date X X X X X X
data

Table 1. Categorization of potential intra-record data quality problems.

Since redundancy can be observed from a group of records, it can be classified as inter-

record data quality problem. In the next table, we present the existing solutions for

consolidating data both at the intra- and inter-record levels. These solutions are based on
integrity, format and constraint checking, comparative analysis and duplicate detection
depending on the type of data quality problem.
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Categories Data quality problems | Attribute-based | Intra-record | Inter-record
solutions solutions solutions
) . . Constraint
Inconsistency Typo/ Mis-spelling checking
Ambiguous naming Dictionary look- Entity Duplicate
(homonyms, synonyms, d )
o up resolution detection
abbreviations)
e Constraint
Mis-fielded values checking
Format violation Integn_ty Formatting Schema
constraints ETL remapping
Undersized/ over-sized Size Comparative
field checking analysis
Vector
Measurement error , sereening, Constraint | Comparative
: sequence . ;
Contaminated data checking analysis
structure
parser
synta_x errors and format Format checking
violations
Irrelevancy Putative information Keywords
search
Uninformative data
Incomplete data / default Constraint Constraint | Comparative
Incompleteness ) : .
values checking checking analysis
Obsolescence Out-of-date data

Table 2. Practical solutions to biological data quality problems.

4. Cleaning, integrating and warehousing biomedical
data

Within this specific context, the aim of this section is to report on our experience during
the design of GEDAW, the Gene Expression Data Warehouse (Guérin et al., 2005) and
the implementation of the biomedical data integration process in the presence of syntactic
and semantic conflicts. We will precisely point out on the lessons learned from data pre-
processing and propose the different but complementary solutions we have adopted for
quality aware data integration.

4.1. Lessons learned from integrating and warehousing
biomedical data on liver genes and diseases

Liver diseases, including those from infectious, alcoholic, metabolic, toxic and vascular
etiology, are a major public health problem. They are frequently complicated by the
occurrence of acute liver failure or the development of cirrhosis and liver cancer which
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shorten life expectancy. Molecular mechanisms involved in the occurrence of these
diseases and of their complications are still not well known. Ongoing researches focus on
identifying new relative molecular mechanisms leading to new diagnostic and therapeutic
tools.

One way to study liver diseases and correlated complications is the use of DNA-Chips
technologies for high-throughputs transcriptome study. Using this technology, thousands
of genes can be studied simultaneously, in order to find out the subset of genes that are
abnormally expressed in injured tissues, and that gives an attractive big turn in delivering
new knowledge on gene networks and regulation mechanisms.

However, the data generated on gene expression are massive and involve difficulties in
their management and analysis. Furthermore, for the interpretation of a single gene
expression measurement, the biologist has to consider the available knowledge about this
gene on different databanks, including its chromosomal location, relative sequences with
promoters, molecular function and classification, biological processes, gene interactions,
expressions in other physio-pathological situations, clinical follow-ups and an
increasingly important bibliography.

The Gene Expression DAta Warehouse GEDAW, we have developed at the National
Medical Research Institute INSERM), stores data on genes expressed in the liver during
iron overload and liver pathologies. Relevant information from public databanks, DNA
chips home experiments and medical records have been integrated, stored and managed
in GEDAW for globally analyzing the delivered gene expression measurements.

GEDAW aimed at in silico studying liver pathologies by using expression levels of genes
in different physiological situations, enriched with annotations extracted from the variety
of the scientific data sources, ontologies and standards in Life Sciences and medicine.
For the case of GenBank, each record, usually associated to a gene, describes the
genomic sequence with several annotations and is identified by a unique accession
number. It may also be retrieved by keywords (cf. Figure 5. GenBank screen shots for
HFE Gene). Annotations may include the description of the genomic sequence: function,
size, species for which it has been determined, related scientific publications and the
description of the regions constituting the sequence (codon start, codon stop, introns,
exons, ORF, etc.).

However, designing a single global data warechouse schema that integrates syntactically
and semantically many heterogeneous Life Sciences data sources is a challenging task.
Only structured and semi-structured data sources were used to integrate GEDAW, using a
Global As View (GAV) schema mapping approach and a rule-based transformation
process from a given source schema to the global schema of the data warehouse (cf.
Figure 3). As an almost hands-off integration method, this technique was quite advanced
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at this time, comparing to previous developed warehouses like (Paton et al., 2000) for

which yeast data were completely flat.

<IELEMENT Bioseaq (
Bioseq id .
Biosea descr? ,
Bioseq inst. .
Biosea annot? )>
<IELEMENT Bioseq id ( Bioseq id E+.y>
<IELEMENT Biosea descr ( Seadescr )>
<IELEMENT Biosea inst ( Seq inst >’
<IELEMENT Biosea annot ( Sea annot™ )>
<IELEMENT Seadescr ( Seqdesc+ j>

<IELEMENT Seadesc ( D e | |RNA |

Seqdesc_moltype | ';.-
Seqdesc_m]e b

Seadesc molinfal> v
<IELEMENT Seadesc_ mfe ( #PCDATA )>
<IELEMENT MolInfo (.~

Molinfo biomol? ,

Molinfo tecH? .

Molinfo techexp? .

Molinfo cgmpleteness? )a-’
<IELEMENT Molinfo biomol ( %INTEGER; )

GEDAW Global

@0‘—'1 Region }(is_a{ Non_franscribed_region I

Schema

> mRNA j&—] Expre;sion_leveasl

- Ontology_annotation

GO_annotation UMLS_annotation

<IATTLIST Mollfio: biomol va!ue (
unknown | .
qenoml-t -
pre-RNA T
mRNA
rRN '|
tRNA |
snRNA |
scRNA |
peptide
other-aenetic |
aenomic-mRNA |
other ) #IMPLIED >

GenBank DTD
————— -==>

DESCRIPTION

|

[Locus |[ size | [ moL | [ vear

COLLECTION
) [ [
| PROMOTER | EXON ]

INTRON | | ORF |

Figure 3. Mapping GenBank DTD to GEDAW

Figure 3 gives a synthesized Class diagram of GEDAW and some correspondences with
the GenBank DTD (e.g., Seqdes _title and Molinfo values were extracted, transformed and
migrated to other description attributes of the class Gene in the GEDAW global schema).
The GEDAW system presented in (Guérin et al., 2005) allows massive import of
biological and medical data into an object-oriented data warehouse that supports
transcriptome analyses specific to the human liver. It focused on the relevant genomic,
biological and medical resources that have been used to build GEDAW. The integration
process of the full sequence annotations of the genes expressed was performed by parsing
and cleaning the corresponding XML description in GenBank, transforming the recorded
genomic items to persistent objects and storing them in the warehouse. This process is
almost systematic because another aspect related to the conciliation of duplicate records
has been added. Elements of formalization of expertise rules for mapping such data were
given. This ongoing work is still a difficult problem in information integration in Life
Sciences and has not yet satisfied answers by classical solutions proposed in existing
mediation systems. In order to lead strong analysis on expressed genes and correlate
expression profiles to liver biology and pathological phenotype, a second way of
annotation has been added to the integration process.
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4.2. Data quality-aware solutions

Different input data sources have been considered during the built of GEDAW: i)
GenBank for the genomic features of the genes, i7) annotations of genes in biomedical
ontologies and terminologies (such as UMLS", MeSH'* and GO"’), and iii) gene
expression measurements generated in different physiological conditions.

Because gene expression data is massive (more than two thousands measures per
experiment and a hundred of experiments per gene), the use of schema integration in our
case — i.e., the replication of the source schema in the warehouse - would highly burden
the data warehouse.

By using a Global as View (GAV) mapping approach for integrating one data source at a
time (cf. Figure 3 for GenBank), we have minimized as much as possible the problem of
identification of equivalent attributes. The problem of equivalent instance identification is
still complex to address. This is due to general redundancy in the occurrence of a
biological entity even within one data source. As we pointed out in Section 3, biological
databanks may have inconsistent values of equivalent attributes referring to the same
real-world object. For example, in GenBank, there are more than 10 data forms
associated to the same human HFE gene, a central gene associated to iron uptake!
Obviously the same segment could be a clone, a marker or a genomic sequence.

This is mainly due to the fact that Life Sciences researchers can submit any biological
information to public databanks with more or less formalized submission protocols that
usually do not include names standardization or data quality controls. Erroneous data
may be easily entered and cross-referenced. Even if some tools propose clusters of
records (like LocusLink'® for GenBank, more recently called EntryGene) to identify a
same biological concept across different biological databanks for being semantically
related, biologists still must validate the correctness of these clusters and resolve
interpretation of differences between records.

Entity resolution and record linkage is required in this situation. It is even augmented and
made more complex due to the high-level of expertise and knowledge it requires (i.e.,
difficult to formalize because related to many different sub-disciplines of biology,
chemistry, pharmacology, and medical sciences). After the step of biological entity
resolution, data are scrubbed and transformed to fit the global data warehouse schema
with the appropriate standardized format for values, so that the data meets all the
validation rules that have been decided upon by the warehouse designer. Problems that
can arise during this step include null or missing data; violations of data type, non-
uniform value formats, and invalid data.

4.2.1. Biological entity resolution and record linkage

As the first preprocessing step for data integration, the process of entity identification,
resolution and record linkage has to be performed using a sequence of increasingly
sophisticated linkage techniques, described in the following, and also additional
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knowledge bases, ontologies and thesaurus (such as UMLS Metathesaurus and MeSH-SR
vocabulary), each operating on the set of records that were left unlinked in the previous
phase:

1. Linkage based on exact key matching: i.e., based on gene names and cross-referenced

accession numbers (for instance between a gene from HGNC" and a protein in
SWISS-PROT),

2. Linkage based on nearly exact key matching (i.e., based on all the synonyms of a
term and all the identifiers of a gene or gene product in HGNC, the UMLS
Metathesaurus and MeSH-SR and in the cluster of records proposed by EntryGene),

3. Probabilistic linkage based on the full set of comparable attributes (i.e., based on the
search for information about a gene or a gene product: the set of concepts related to
this gene in the Gene Ontology (Molecular Function (F), Biological Process (P) and
Cellular Component (C)) and the set of concepts related to the gene in UMLS and
MedLine'® abstracts (including chemicals & drugs, anatomy, and disorders),

4. Search for erroneous links (false positives),

5. Analysis of residual data and final results for biological entity resolution.

As an example, consider data related to Ceruloplasmin, a gene expressed mainly in the
liver and involved in iron metabolism through its ferroxidase activity, which is dependent
of the copper charge of the protein. Relative disease, called Aceruloplasminemia, is a
genetic disease responsible of iron overload (Loreal et al., 2002). The level of plasmatic
ceruloplasmin is modulated during various chronic liver diseases (Laine et al., 2002).

As shown in Figure 4, a first phase of linkage based on a search of Ceruloplasmin in
GOA" database and HGNC provides related terms and returns the corresponding
accession numbers in GeneEntry (1356) or SWISS-PROT, approved gene name
(Ceruloplasmin ferroxidase), and gene symbol (CP). The accession number can then be
used to find information in external sources.

Another search of the term on Gene Ontology returns the set of concepts of each of the
categories F, P and C. From the UMLS context, terms associated to Ceruloplasmin in the
Metathesaurus and terms that co-occur with Ceruloplasmin in MedLine are extracted and
MedLine abstracts are made accessible.
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‘ Ferroxidase activity

‘ Transmembrane transport

Relationships
GO Assignments in UMLS
in GOA

‘ Oxidation reduction process

| Metaloprotein | | Carrier protein‘ ’0xidoreductase ‘ ’ Iron sulfur protein
\

Ceruloplasmin| or | Ferroxidase

‘ Extracellular region ‘

‘ Cellular iron ion homeostasis ’7

HUGO-GENEW

CO-OCCURRENCE

CP IN MEDLINE
Ceruloplasmin Liver
P00450 Iron Overload
1356 Duodenal ulcer
Fatty liver

NM_000096
T Tumor markers

SwissProt

External sources

Medline
abstracts

Figure 4. Entity resolution and record linkage of Ceruloplasmin gene

Indeed, in our experience, combining medical and molecular biology knowledge provides
valuable information about genes, e.g., Ceruloplasmin is involved in molecular functions
such as iron transport mediation, and has relationships to diseases like, /ron overload and
Duodenal ulcer. It can be used to support various tasks to cluster genes according to their
properties. Moreover, integration is required for better understanding of disease-
molecular data relationships. All these functionalities are presented with more details in
(Guérin et al., 20006).

4.2.2. Biomedical data scrubbing and conflict resolution

In order to define an appropriate data aggregation of all the available information items
resulting from the previous step of biological entity resolution, data conflicts have to be
resolved using rules for mapping the source records and conciliating different values
recorded for a same concept.

Mapping rules have been defined to allow data exchange from public databanks to
GEDAW. Apart from experimental data, public information items are automatically
extracted by scripts using the DTD (Document Type Definition) of the data source
translated into the GEDAW conceptual data model.
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Three categories of mapping rules were proposed for GEDAW: 1) structural mapping
rules, 2) semantic mapping rules and 3) cognitive mapping rules according to the
different knowledge levels involved in the biological interpretation of data.

Structural mapping rules are defined at the schema level according to the GEDAW
model by identifying the existing correspondences with relevant DTD elements; e.g., in
Figure 3, the Segdesc_title element in GenBank DTD is used to extract the attribute Name
of the gene and the Mollnfo biomol value to determine the type of molecule.

Semantic and cognitive mapping rules are used for data unification at the instance level:
several rules may use available tools for determining analogies between homologous data
(such as sequence alignment). The result of the BLAST algorithm (Basic Local Alignment
Search Tool) implemented as a set of similarity search programs allows considering that
two genomic sequences match.

The nomenclature provided by the entity resolution and record linkage phase, described
in the previous section is also considerably used to conciliate duplicate records, based on
several ontologies, like UMLS that covers the whole biomedical domain and Gene
Ontology™ (GO) that focuses on genomics, as well as additional terminologies, as that
provided by the HUman Genome Organisation (HUGO) Gene Nomenclature Committee
(HGNC) to resolve synonymy conflicts.

More semantic mapping rules are built using this information during the integration
process. For example, the Gene-ID is used to cluster submitted sequences (DNA, mRNA
and Proteins) associated to a same gene with cross-referenced records in GeneEntry
databank and the official gene name along with its aliases to relate different gene name
appearances in literature. These aliases are also stored in the data warehouse and used to
tackle the mixed or split citation problems similar to those studied by (Lee et al., 2005) in
Digital Libraries.

Example 4. Three distinct records are obtained from GenBank Nucleotide databank by
querying the DNA sequence for the human gene HF'E, as partially presented in Figures 5,
6 and 7 respectively.

[1 A first record || identified by the accession number AF204869 describes a partial gene
sequence (size = 3043) of the HFE gene”’ with no annotation but one relevant and
fundamental information item about the position of the promoter region at [/..3043]
in the “misc_feature” field which cannot be found in the other records.

[1 A second record Y identified by the accession number AF 184234 describes a partial
sequence (size = 772) of the protein precursor of HFE gene’’ with a detailed but
incomplete annotation.

[ The third record §] identified by the accession number 292910 describes the complete
gene sequence (size = 12146) of the HFE gene’ with a complete annotation.
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We need to integrate this information and to evaluate the quality of these three records
because they are complementary regarding to the biological topic of interest (i.e., HFE
human gene). The first record has a relevant data item that the other records do not have,
the second record overlaps the third one regarding the gene sequence but provide more
detailed annotations and the third record is complete regarding the gene sequence. This
example shows the main quality criteria we use: i.e. completeness, relevancy and detail
level of annotation.

In this example, using the BLAST algorithm for determining the sequence alignment
between the two sequences of the records § and Eashows 100% of alignment. This
indicates that the sequence in both records § and K are perfectly identical and can be
merged. The detailed annotation of record Y can be concatenated with the more complete
annotation of record k] in the data warehouse.

Several cognitive mapping rules may be used in this example for conciliating data such as
the position offset: in the record §] the fourth exon is located at position 6494 and in the
record M this same exon is located at the relative position 130, thus using overlapping
information that identifies the same entities, we can deduce the position offset and use the
following cognitive rule such as:

| record(AF18423)/exon[number>=4]/position = record(Z92910)/exon[number >=4]/position — 6364 |
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AF20486° 3043 bp DNA linear PRI |09-APR-2000
DEFINITION Homo sapiens hemochromatosis protein (HFE) gene, promoté

and partial sequence.

VERSION AF204869.1 GI:7528206
KEYWORDS L
SOURCE Homo sapiens (human) | SRR ) R LALS 2

ORGANISM Homo sapiens

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.

REFERENCE 1 (bases 1 to 3043)
AUTHCRS Malfroy,L., Roth,M.P., Coppin,H., Borot,N., Dupic,F.,

Ribouchon,M.T. and Offer,C.
TITLE ! flanking sequence
JOURNAL Unpublished
REFERENCE
AUTHCRS Malfroy,L., Roth,M.P., Co
Ribouchon,M.T. and Offer,C
TITLE |Direct Submission

JOURNAL Submitted (14-NOV-1999) ERS1590, CNRS, CHU Purpan, Toulouse 31400,

France
s Location/Qualifiers

source 1..3043

/organism="Homo sapiens"
/mol_type="genomic DNA"
/db_xref="taxon:9606"
/chromosome="g6"

/map="6p22-p21.3" A fundamental

ene 1..>3043

/gene="HFE" |I’If0rmat|0n !

/note="hemochromatosis protein”

sc feature 1..3043

/gene="HFE"
/note="contains promoter and S5'UIR"
1 ggtacctgta atcccagety Cttgggaggc tgaggcagga gaattgcttg aacctgggag
61 gaggagccag tQ@Cccgggat Ttg@gccacty cactccaace tgggcaatag agtgaggetce
21 _rqtcasaasa aasasaacat aggartatag atc

Figure 5. GenBank Screen Shot for HFE Gene: Record AF204869
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LOCUsS AF184224 1397 bp mRNA linear INV|19-SEP-1999
DEFINITION Drosophila melanogaster clone GH02505 Rh3 (Rh3) mRNA, complete gfs.
ACCESSION AF184224

VERSION AF184224.1 GI:5911285 :
KEYWORDS  FLI_CDNA. Date for computing
SOURCE Drosophila melanogaster (fruit £fly) freshness

ORGANISM Drosophila melanogaster
Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota:
Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha:;
Ephydroidea; Drosophilidae; Drosophila; Sophophora.
REFERENCE 1 (bases 1 to 1397)

AUTHORS Rubin,G.M., Wan,K.H., Harvey,D., Lewis,S.E., Brokstein,P.,
Tsang,G., Agbayani,A., Arcaina,T.T., Baxter,E., Blazej,R.G.,
Butenhoff,C., Champe, M., Chavez,C., Chew,M., Doyle,C.M.,
Farfan,D.E., Frise,E.,
Hoskins,R.A., Evans-Ho
Li,P., Moshrefi M., Pa thi,H.,
Snir,E., Svirskas,R.R.

TITLE
JOURNAL
REFERENCE

AUTHORS Rubin,G.M., Wan,K.H./ Harvey,D., Lewis,S.E., Brokstein,P.,
Tsang,G., Agbayani,X., Arcaina,T.T., Baxter,E., Blazej,R.G.,
Butenhoff,C., Ch M., Chavez,C., Chew,M., Doyle,C.M.,
Farfan,D.E., Frise/E., Galle,R., George,R.A., Harris,N.L.,
Hoskins,R.A., Evarns-Holm,M., Houston,K.A., Hummasti,S.R., Kim,E.,
Li,P., Moshrefi, Pacleb,J.M., Park,S., Sequeira,A., Sethi,H.,

Svirskag,R.R., Weinburg,T. and Celniker,S.E.
TITLE

JOURNAL Submitted (08-SEP-1999) Berkeley Drosophila Genome Project,
University of California Berkeley, 539 Life Sciences Addition
#3200, Berkeley, CA 94720, USA
COMMENT Sequence submitted by:
Berkeley Drosophila Genome Project
University of California Berkeley
Berk vy, CA 9472
r quence i
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e
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Figure 6. GenBank Screen Shos for HFE Gene: Record AF184224
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DEFINITION Homo sapiens HFE gene.
ACCESSION 292910

VERSION 292910.1 GI:1890179
KEYWORDS haemochromatosis; HFE gene.
SOURCE Homo sapiens (human)

ORGANISM Homo sapiens

Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.

REFERENCE s 1 to 858)

LOCUS 292910 12146 bp DNA linear PRI |23-0CT-2008

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

AUTHCRS Albig,W., Drabent,B., Burmester,N., Bode,C. and Doenecke,D.

TITLE The haemochromatosis candidate gene HFE (HLA-H) of man and mouse is
located in syntenic regions within the histone gene cluster
JOURNAL J. Cell. Biochem. 69 (2), 117-126 (1998)

PUBMED 9548560
REFERENCE 2 (bases 1 to 12146)
AUTHORS Albig,W.
TITLE Direct Submission
JOURNAL Submitted (14-MAR-1997) Alb
Goettingen, Biochemie und Molekulare Zellbiologie,
23, Goettingen, FRG, 37073
FEATURES Location/Qualifiers
source 1..1214¢6
/organism="Homo sapiens"
/mol_type="genomic DNA"
/db_xref="taxon:9606"
/chromosome="6"
/map="6p"
/clone="ICRFy901D1223"
/clone_lib="ICRF YAC-library"
ene 1028..10637
/gene="HFE"
exon 1028..1324
/gene="HFE"
/number=1
CDs join(1249..1324,4652..4915,5125..5400,6494..6769,
6928..7041,7995..8035)
/gene="HFE"
/functi met "

fRen 79
/gene="H
/nunber=6
repeat region 9017..9340
/gene="HFE"
/rpt_family="Alu"
intron 9051..10208
/gene="HFE"
/nunmber=6
repeat region 9957..10239%
/gene="HFE"
/xrpt_family="Alu"
exon 10206..10637
/gene="HFE"
/nunber=7
polyA signal 10617..10622
/gene="HFE"
ORIGIN,.————————
1 ggatccttta accgaggaga ttat
| 61 grgatagtga gcaaagaact acaaactaac accaaaatgc aagcttaaag caaagrttat
121 tgaagcacaa taatacactg tgagggacag cgggcttatt tetgegaagt gaactcagea
TCt, ga (137 Tgtgg gga g

| p— (RN g g~ Y S — [ g ——

Humboldtallee

Figure 7. GenBank Screen Shot for HFE Gene: Record 292910
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4.2.3. Database profiling and data quality metrics

Several information quality dimensions with their related metrics can be then defined,

computed, and associated as metadata to the data extracted from biological databanks.

These metadata can be very useful for data integration, knowledge pre- and post-filtering.

We have categorized them into three categories (cf. Table 3):

[0 Bio-knowledge-based quality metadata such as originality, domain authority of the
authors who submitted the sequence,

[0 Schema-based quality metadata such as local and global completeness, level of
details, intra- and inter-record redundancy,

[ Contextual quality metadata such as freshness, and consolidation degree.

Category Quality Target Definition
Criterion
Originality Data items | Considering a set of records related to the same bio-entity (i.e., entity identification resolved), the originality
Bio- and sub- of a data (sub-) item in a record set is defined by its occurrence frequency and its variability based on the
Knowledge- items per normalized standard deviation of the edit distance between the considered strings.
based Quality record
Criteria Domain Record Domain authority is a grade in [0,1] that is computed depending on the status of the reference (Published,
Authority Submitted, Unpublished), the number of referenced submissions of the authors in the record and of the
user-grade defined on the journal and authors reputations of the most recent reference of these authors.
Local Record Local completeness is defined by the fraction of the number of items and sub-items with non null values on
Completeness the total number of items and sub-items in the local data source schema (DTD).
Global Record Global completeness is defined by the fraction of the number of items and sub-items with non null values
Schema- Completeness provided by a source on the total number of items and sub-items in the global schema of the data
based Quality warehouse.
Criteria Level of Detail | Data items | Level of detail is the number of sub-items per item described with non null values by a local source
and sub- normalized by the total of possible sub-items in the data source schema.
items per
record
Intra-Record Record Intra-record redundancy is defined by the fraction of items and sub-items in the record that are
Redundancy approximately the same based on the edit or g-grams distance functions or other semantic and cognitive
rules
Inter-Record Record Inter-record redundancy is defined by the fraction of items and sub-items in the record set that are
Redundancy Set of the | approximately the same based on edit or g-grams distance functions, BLAST or other sequence alignment
same bio- | techniques or other cognitive rules.
entity
Freshness Record Freshness is defined by the difference between the current date and the publication date of the record
Contextual Consolidation Data items | Consolidation degree is defined by the number of inter-record redundancies and overlaps.
Quality Degree and sub-
Criteria items per
record

Table 3. Computing Data Quality Metadata for Documenting Biomedical Sources Before Integration

4.3. Ontology-based Approaches

Semantic Web anticipates the use of ontologies to facilitate data sharing over the web,
and ontologies are proposed as a solution to conciliate and attain as much as possible
heterogeneity between data sources. As a result, the use of ontologies for semantic driven
data integration to build multiple data warehouses, that combine and analyse different
sorts of data was promising.

Two major events have urged the development of ontologies in Life Sciences: i/ a strong
emergence of large volume of data represented heterogeneously in multiple data sources
and ii/ increasing motivation to world-wide share these data on the web.
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Following the publication of the genome sequences and their various annotations, the use
of bio-ontologies became essential to deal with the heterogeneity of data and sources.
Bio-ontologies helped to unify different definitions, improve data quality and promote
data sharing and exchange.

Paradoxically, it is the medical informatics community that has first developed strategies
to facilitate and improve access to biomedical knowledge using ontologies. Thus, the
NLM (National Library of Medicine) has developed the Unified Medical Language
System (UMLYS), a rich knowledge base qualified as a medical ontology of more than one
million of concepts and developed by the unification of 60 biomedical terminologies
(Bodenreider 2004).

Thus, previous achievements on ontologies in the medical domain had a direct impact in
the bioinformatics community. The understanding of functional genomic data being also
one of the challenges of modern medicine, the two communities have joint their efforts in
the development of bio-ontologies.

While Gene Ontology has rapidly turned-out to be the leading Ontology in functional
genomics, other ontologies have emerged as a response to a constant need to formalize
the various fields of Life and Health Sciences. Consequently, the Open Biological and
biomedical Ontologies foundry” (OBO) archives a collection of bio-ontologies in a
standard format. A strong community involvement was crucial to avoid as much as
possible redundancy and ensure that only single ontologies for each area are placed in the
public domain.

As shown in Table 4, the OBO Foundry supports various domain knowledge of Life and
Health Sciences, and includes ontologies like: Gene Ontology, Pathway Ontology,
Disease Ontology, Systems Biology Ontology, and Chemical Entities of Biological
Interest (CHEBI) Ontology (Smith et. al., 2007).

Shared ontologies are used to conciliate and to attain as much as possible data conflicts.
Various standards in Life Sciences have been developed to provide domain knowledge to
be used for semantically driven integration of information from different sources.
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Unfortunately, the one way that was massively used to integrate life science data using
ontologies, is through the annotation of the multiple sorts of data in genomics (gene
sequences and proteins) using the common vocabulary carried by these ontologies. But
the great success of this approach has led to proliferation of bio-ontologies that again has
created obstacles to data integration. In some sorts, the OBO foundry consortium has
emerged to overcome this problem (Smith et. al., 2007).

More ideally, the aim of such ontologies in the context of data integration would be of
granting a model of biological concepts that can be used to form a semantic framework
for querying the heterogeneous Life Sciences sources or for systematizing annotation of
experimental results. As an experience, the TaO ontology (TAMBIS ontology), that
describes a wide range of Life Sciences concepts and their relationships, provided such
framework. Rather than materializing bio-data in integrated data warehouses, the
TAMBIS project aimed to providing a single and transparent access point for Life
Sciences information through the use of a mediating ontology (Baker et al., 1998).
Queries are written in terms of TaO ontology concepts and converted to queries to
appropriate sources.

More recently, there exists an extraordinary number of bioinformatics applications (Erson
et al., 2010) that are based on ontology as a background domain knowledge and a unified
model against Life Sciences resources to remediate data annotation, data integration, and
data heterogeneity. However, ontology development and maintenance is time-consuming
and requires constant investment from expert curators. Open collaborative platforms
enable the wider scientific community to become involved in developing and maintaining
them, but raises concerns regarding the quality and correctness of the information added
(Hoehndorf et al., 2009).

5. Conclusions and perspectives

Many data sources in the biomedical domain are renowned for containing data of
sometimes poor quality. This is due to the experimental nature of the field, the quickly
changing knowledge landscape, the high redundancies in experiments performed often
leading to contradicting results, and the difficulties in properly describing the results of
an experiment in a domain as complex as molecular biology. Furthermore, it was often
observed that data quality problems multiply when data of low quality are integrated and
re-used for annotation.

Based on our past experience of building the biomedical data warehouse GEDAW (Gene
Expression Data Warehouse) that stores all the relevant information on genes expressed

in the liver during iron overload and liver pathologies (i.e., records extracted from public
databanks, data generated from DNA chips home experiments, data collected in hospitals
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and clinical institutions as medical records), we presented some lessons learned, data
quality issues in this context and current solutions we proposed for quality-aware
integrating and warehousing our biomedical data. In this chapter, we gave an overview of
data quality problems and solutions relevant to any preprocessing approach and also
elements for data quality-awareness for the complex processes of integrating and
warehousing biomedical data.

With regards to the limits of any data warehousing approach, it is relevant to generate
quality metadata at the preprocessing and pre-integration stage, as long as the whole data
integration process (from the original data sources into the destination data warehousing
system) stays feasible automatically and with a reasonable performance. The final data
filtering task has generally to be performed by the expert on the delivered annotations or
data analysis before their storage in the warehouse by using multiple data quality criteria,
like the authoritativeness of the information source or the credibility of the authors of the
submitted record, for instance.

Quality in the results of data mining and knowledge discovery from biomedical resources
critically depends on the preparation and on the quality of analyzed datasets. Indeed
biomedical data mining processes and applications require various forms of data
preparation, correction and consolidation combining complex data transformation
operations and cleaning techniques, because the data input to the mining algorithms is
assumed to conform to “nice” data distributions, containing no missing, inconsistent or
incorrect values. This leaves a large gap between the available “dirty” data and the
available machinery to process and analyze the data for discovering added-value
knowledge and decision making in Life Sciences.

The aspects of measuring data quality and detecting hot-spots of poor quality constitute
very challenging research directions for the Bioinformatics community. These include
analyzing contradicting values in the case of duplicate entries and detecting hard-to-catch
errors. Such an erroneous data is one whose value looks perfectly legitimate. Yet, if we
examine this value in conjunction with other attribute values, the value appears
questionable. Detecting such dubious values is a major problem in data cleaning but it
becomes much harder in complex domains such as Life Sciences.
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