Learn2Clean: Optimizing the Sequence of Tasks
for Web Data Preparation

Laure Berti-Equille 1+
IESPACE-DEV/IRD, UMR 228, IRD/UM/UG/UR, Montpellier, France
2 Aix Marseille Université, Université de Toulon, CNRS, LIS, DIAMS, Marseille, France
laure.berti@ird.fr

ABSTRACT

Data cleaning and preparation has been a long-standing challenge
in data science to avoid incorrect results and misleading conclusions
obtained from dirty data. For a given dataset and a given machine
learning-based task, a plethora of data preprocessing techniques
and alternative data curation strategies may lead to dramatically
different outputs with unequal quality performance. Most current
work on data cleaning and automated machine learning, however,
focus on developing either cleaning algorithms or user-guided sys-
tems or

argue to rely on a principled method to select the sequence of
data preprocessing steps that can lead to the optimal quality perfor-
mance of. In this paper, we propose Learn2Clean, a method based
on Q-Learning, a model-free reinforcement learning technique that
selects, for a given dataset, a ML model, and a quality performance
metric, the optimal sequence of tasks for preprocessing the data
such that the quality of the ML model result is maximized. As a
preliminary validation of our approach in the context of Web data
analytics, we present some promising results on data preparation
for clustering, regression, and classification on real-world data.

CCS CONCEPTS

« Information systems — Data extraction and integration; -
Computing methodologies — Reinforcement learning.

KEYWORDS

Principled data preprocessing; Data cleaning; Q-Learning; Rein-
forcement learning

ACM Reference Format:

Laure Berti-Equille 2. 2019. Learn2Clean: Optimizing the Sequence of Tasks
for Web Data Preparation. In Proceedings of the 2019 World Wide Web Con-
ference (WWW °19), May 13-17, 2019, San Francisco, CA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3308558.3313602

1 INTRODUCTION

Through the use of data mining, statistics, and machine learning,
data scientists and researchers can discover relevant patterns and
gain crucial and actionable knowledge from data. In the context
of Web data analytics, it is necessary to extract, transform, and
structure the data and also adapt the data volume, data format, and

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW 19, May 13-17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313602

2580

distributional characteristics in order to better suit the underlying
assumptions and constraints of statistical machine learning (ML)
models so that they can be effectively applied to the preprocessed
input data. It is essential to detect glitches (aka data quality prob-
lems) [2] because erroneous data limit the performance of statistical
methods and cause misleading results [3, 11].

Web Data can be big, noisy, unreliable, highly imbalanced, hetero-
geneous, and evolve over time [6]. In practice, Web data analytics
can suffer from a wide range of data anomalies such as missing
values, inconsistencies, outlying data, duplicates, etc. The results
of classification, clustering or predictive models obtained from the
data that were preprocessed inappropriately are misleading and
can cause inadequate decision-making. To mitigate the impact of
data anomalies and thus provide high quality analytical results, a
first necessary step is to preprocess data appropriately.

Data preprocessing has been acknowledged as a primary se-
quence of tasks to correct the negative effects and bias that data
anomalies may produce on output results as demonstrated in var-
ious contexts [9, 12]. Common data preprocessing tasks mainly
include: data extraction and formatting, selection of features, data
normalization, treatment of missing values and outliers, dedupli-
cation, inconsistency detection (wrt some rules and constraints),
data replacement, and pattern enforcement. Although there is a
vast number of data preprocessing methods available to achieve
these tasks in the context of Web mining [12-16], the selection
and orchestration of the sequence of tasks often remains ad hoc,
difficult, and with no guarantee that it is optimal. An important
question is: How do we actually measure the quality of data prepro-
cessing for a given analytics task? This is a challenging problem
with combinatorial issues if we consider the infinite “curation space”
with hundreds of possible techniques, each with various parame-
ter settings, and multiple possibilities in the combination and the
ordering of the cleaning tasks, and even worse when we consider
multiple iterations of certain tasks.

For example, in the context of Web usage data mining, data
characterizing the interaction of Internet-users with Web sites are
collected and analyzed in order to provide personalized Web-pages
or enhance search engines. To prepare such data before analysis,
one may define a preprocessing strategy that starts with a distance-
based deduplication for Web user and session identification, then
the removal of outliers, and ends with a regression-based imputa-
tion of missing values; another expert may use a totally different
sequence of methods with another ordering and add the re-iteration
of outlier detection and removal. Ultimately, the two preprocessed
datasets may be so different that the conclusions from classifica-
tion or clustering results may also differ radically. Similarly in the
context of Web content mining, the information presented on Web

https://doi.org/10.1145/3308558.3313602
https://doi.org/10.1145/3308558.3313602

a Data Curation O\ coatstate ([~ R

Quality Perf.

Classification Metrics

a Preparation \

S

Cleaning 1 CART

a Normalization)

Imputation

C LDA) A (Accuracy)

Deduplication)

()*@
0\ Y)
S———"||(Feature Selection) Tl Tl MSE
'S Outlier detection Inconsistency \
Dirty Data IQR LOF) detection —
v k(= j(- jj (zs8) [i)(i; 1CI HtCA) psitnouett
- - ~ KMEANS]/
N 2 W,
J1 M q

T Action a

=P transition

Learn2Clean <

quality

set of models metric

State s

I

Figure 1: Learn2Clean Architecture

pages combining text and multimedia content is used for page
classification, page summarization, entity extraction, and seman-
tic processing. The data need to be filtered because many objects
present on Web pages are not relevant with the stated objectives
(e.g., digital marketing or advertising). Text content by itself is
noisy: for example, sentences contain many words that have a
poor influence on the semantic content and various strategies for
text preprocessing, Web content cleaning and transformation into
feature vectors may lead to very different mining results.

There are several methods that optimize single data cleaning
operations based on downstream accuracy metrics (see [18] for a
survey) and also recent approaches such as [17], data transforma-
tion learning [22], and AutoML line of work [19, 20] in the area of
automated machine learning. However, the problem of selecting
the optimal data preprocessing pipeline has been understudied.

The focus of our work is first to study the impact of various
sequences of data preprocessing methods on the output results of
some representative ML models; second, we propose a novel method
that learns by reinforcement the sequence of tasks that can optimize
a preselected quality performance metric for the considered ML
model. In our study, we consider the following tasks of (1) selecting
features, (2) normalizing data, dealing with (3) missing values and
(4) outliers, (5) deduplicating, and (6) consistency checking, since
these methods are the most frequently used for preparing data.

2 OVERVIEW OF LEARN2CLEAN

Our overall approach can be summarized in Figure 1. We consider
a ML pipeline with a particular goal such as classification, regres-
sion or clustering. The ML pipeline includes: (i) the data D; (ii)
the feature set X; (iii) the learning algorithm M, along with the

2581

objective function £ that maximize a quality performance metric g;
and, possibly, (iv) its (trained) parameters w. The ML pipeline can
thus be formalized in terms of a space ® = (D, X, M, w). Input
data preprocessing is strongly dependent on the given practical
scenario. For example, additional constraints while preprocessing
the data have to be considered to conform the data with the ML
model requirements (e.g., normalization, discretization, deduplica-
tion, missing value imputation, extreme values replacement, etc.).
Typically, these constraints can be nevertheless accounted for in
the definition of the optimal curation strategy. In particular, we
characterize them by assuming that D’ is the dataset resulting
from a sequence of data modifications in the space of all possi-
ble data cleaning transformations of D such as D’ € ®(D) with
(D) = {$(D)|V¢}. The problem can be formalized as follows:

Given a ML pipeline 0 € © and the data sets resulting from all
preprocessing alternatives ®(D), the goal of preprocessing can be
characterized in terms of an objective function #; € R which eval-
uates how effective the preprocessing alternative D’ is with respect
to a given quality metric g. The result of the optimal preprocessing
strategy can be thus given as:

D* = argmax Z¢(D’, X, M, w). (1)
D' ed(D)

More intuitively, the problem we address is the following: Given
a dataset as input D, a ML pipeline 0 to apply to the input dataset,
a quality performance metric q, and the space of all possible data
preparation and cleaning strategies ®(D): Find the dataset D’ in
O(D) that maximizes the quality metric q.

To solve this problem, we propose Learn2Clean a system based
on Q-learning that learns in an on-line fashion with interleaving
learning and execution. The intuition is the following. In the early

stages of execution, when little is known, it is important to explore
and try some data curation actions when their consequences on
the output quality performance of the given ML model are still un-
known. Rewards are given when the quality performance improves.
Later on, the system may want to almost always choose the action
that gets highest rewards; when there is little information to be
gained, the value of learning can be negligible. This is modeled with
a Q-learning function that assigns a probability of being chosen
for each possible action in a given state such that it should tend to
choose actions with higher Q-values, but should sometimes select
lower Q-value actions.

3 Q-LEARNING

Q-learning [10] is a form of model-free reinforcement learning,
where the system only needs to know what state exists next and
what actions are possible in each state. An estimated value Q-value
is assigned to each state. When the system visits a state and receives
a reward, the Q-value of that state is updated accordingly such as:

Q(s,a) = R(s,a) + ymaxyQ(s’,a’) (2)
where the value of taking action a in state s is the immediate reward
denoted R(s, a) for the state-action pair (s,a), plus the value of
the best possible state-action pair for the successor state. The y
parameter has a range of 0 to 1 (0 < y < 1). If y is closer to zero,
the system will tend to consider only immediate rewards. If it is
closer to 1, the system will consider future rewards with greater
weight, willing to delay the reward. We can use Eq. (2) to update
the Q-value of a state-action pair as a reward r’ is observed:

Qrt1(s.a) = 1" +ymaxa Q(s’,a). ®)
r’ is the reinforcement received when the system selected the a
action in the state s to move to the state s’. In our context, we repre-
sent data preprocessing and curation strategy as a graph: each state
is a node representing a preparation or cleaning task that generates
a “cleaner” version of the original dirty dataset. A sequence of tasks
is represented by a link between two nodes (i.e., between a cleaning
task and the next cleaning task). In the architecture presented in
Figure 1, we can start with any normalization method as a task
(e.g., ZS, MM, SM or DS) or feature selection method (e.g., CFS, WR,
LC)!, and move to the next task choosing one method amongst
the ones proposed either for deduplication, inconsistency checking,
outlier detection or imputation, until the system reaches the goal
state. We define the goal state and a particular quality metric we
want to maximize denoted G(q). For example, as shown in Figure 2,
the goal state for a LASSO regression applied to the input dataset is
the state of preprocessing that minimizes the mean squared error,
MSE. To reach this node as a goal, we associate a reward value to
each link between nodes. The nodes that lead immediately to the
goal node have an instant reward of 5, 4. There may be no link be-
tween nodes (encoded as -1 in the Reward R-matrix represented in
Figure 2). In this example, particular cleaning paths can be avoided
or task precedence can be enforced: e.g., after normalization, there
is feature selection, then imputation (either using MICE or KNN),
and then outlier detection (either with LOF or IQR), and again im-
putation. This figure represents a particular graph instantiation
of Learn2Clean architecture presented in Figure 1. The final goal

1 Acronyms of the methods are described in Section 3.1.

2582

Goal state

(" Feature
Selection

o\

Outlier

Normalization Imputation Regression

MSE

Fmax=100|

actions

state 7S LC MCE KNN LOF QR LASSO
zs [0 0 0 0 0 -1
e | a4 0 o 4 A
McE [o a1 A 4 0 0o 100
KN [0 4 4 0 0o 100
Rinit=10F | o 0 0 0 - 4 100
QR | o 0 0 0o - 4 100
Lsso | -1 - 0 0 0 0o

Figure 2: Simplified example of state-action graph with ini-
tial reward matrix.

state is ML model-dependent since the dataset should be prepared
and curated with respect to the specific requirements of the ML
model considered for the analysis. The goal state in the example
of Figure 2 is reached after a maximum number of 100 iterations
when LASSO regression is executed after either imputation or out-
lier detection such that MSE (the considered quality performance
metric) is minimal.

Reinforcement via reward. The reinforcement function pro-
vides, for each new state s’ reached from state s, a signal r’ that
can be a reward or punishment, this signal takes the value {—1}
when the state s is not linked to the new state s’ or a value in
[0, 1], which is used by the update function in Eq. (3) to adjust the
Q-value function associated with the state-action pair. The reward
r’ is computed as follows:

r’ = B(Norm(s,qm) — Norm(s', qp,)) 4)

where Norm(s, gm), Norm(s’, q},) are the normalized quality met-
ric values ¢ and ¢’ in [0,1] for the considered ML model m and

= ~Fmax if Norm(s,qm) — Norm(s’,q),) <0
rmax if Norm(s,qm) — Norm(s’,q),) > 0

with iy, the user-defined maximum reward value. This penalizes
the next data curation task when it provides a lower quality per-
formance metric compared to the ones obtained after the current
cleaning task.

Selection of the next curation tasks. The probability of se-
lecting the highest Q-value action should increase over time and
this can be defined by the Boltzmann distribution as follows:

¢Q(s.a)/k

P(als) = —————.
(als) 5, QG @)k

(©)
The k parameter (often referred to as temperature) controls the
probability of selecting non-optimal actions. If k is large, all actions
will be selected fairly uniformly. If k is close to zero, the best action
will always be chosen. We begin with k large and gradually decrease
it over time. Each edge contains an instant reward value, as shown
in the initial reward matrix R;,;; given as example in Figure 2.
Learn2Clean will learn through experience in an unsupervised
way. It will explore from state to state until it reaches the goal.
Each exploration consists of the system moving from the initial
state to the goal state. Each time, it arrives at the goal state, the
program goes to the next exploration. Learn2CLean algorithm is
given in Algorithm 1 where the system learns from experience. Each
exploration is equivalent to one training session. In each training

session, the system explores the curation graph (represented by
matrix R), receives the reward (if any) until it reaches the goal state
(lines 6—8). The purpose of the training is to enhance the decision
of the system, represented by matrix Q to get more training results
in a more optimized matrix Q. In this case, if the matrix Q has been
enhanced, instead of exploring around, and going back and forth
to the same tasks, the system will find the fastest route to the goal
state.

Algorithm 1 Learn2CLean Algorithm

1. INPUT y and reward matrix R
2. ML model m, quality metric q
3. Initialize Q matrix
4. FOR each exploration
5. Select the initial state
Apply the corresponding curation method to generate
. a “cleaner” dataset, and apply m to it
6. WHILE {goal G(m, q) has not been reached}

7. Select one among all possible actions with prob.
in Eq.(5) for the current state

8. Using this possible action, move to the next state

9. Get max Q-value for this next state based on all

. possible actions

10. Compute Eq.(2)

11. Set the next state as the current state.

12. END_WHILE
13. RETURN the list of actions with highest Q-values and
optimal quality metric and the final curated dataset

The algorithm finds the actions with the highest reward values
recorded in matrix Q (lines 9-10) and returns the sequence of states
from the initial state to the goal state where the quality metric is
optimal (either minimized for regression MSE or maximized for
classification accuracy or clustering silhouette) and the ultimately
cleaned dataset to be used for the considered ML model (line 13).

Why Q-learning? In model-based reinforcement methods, the
model learns the transition probability T(s1|(so, a)) from the pair
of current state sy and action a to the next state s;. However, model-
based algorithms become impractical as the state space and action
space grows, which is typically the case with the space of data
cleaning strategies. Moreover, the transition probability and the
dynamics of the system is not given a priori. These are the reasons
why model-free algorithms are more adequate for our problem.
We choose Q-Learning instead of other model-free reinforcement
learning methods (like Monte-Carlo or SARSA methods) because
Q-learning will not wait until the end of the episode (i.e., cleaning
task) to update the expected future reward estimation, it will only
wait until the next time step to update the value estimates and may
not use the same policy to choose the next action. This makes it
agile and performant compared to other model-free reinforcement
learning methods.

3.1 Data preprocessing methods

As shown in Figure 1, various types of representative preprocess-
ing techniques were used in our study with the long-term goal to
provide an extensible library for data cleaning and preparation.

2583

e Normalization. Three methods were applied to numerical
data: min-max (MM), Z-score (ZS), and decimal scale nor-
malization (DS);

o Feature selection. Four methods were tested to select an
optimal set of features, namely: based on a user-defined
acceptable ratio of missing values (MR), removing collinear
features (LC), using a wrapper subset evaluator (WR) [8],
and a tree-based classifier for feature selection (TB);

e Imputation. Four imputation methods were used to im-
pute missing values: two distance-based imputation methods:
Expectation-Maximization (EM), K-NN [1], Multiple Imputa-
tion by Chained Equations (MICE) [5], and replacement by
the most frequent value (MF);

e Outlier detection. Outliers were detected using three meth-
ods including: a statistic-based approach, Inter Quartile
Range (IQR), the Z-score-based method (ZSB) [7], and a
density-based approach (Local Outlier Factor, LOF) [4]. Out-
liers were replaced using one of the previous imputation
methods;

e Deduplication. Exact duplicate (ED) and approximate du-
plicate (AD) detection methods were used. In the later case,
various comparison functions were used to measure the sim-
ilarity distance between pairs of records to detect duplicates
based on the user-defined threshold (e.g., Jaro-Winkler or
Levenshtein distance);

o Consistency checking. Two methods based on constraint
discovery and checking (CC) and pattern checking (PC) were
used to identify inconsistencies.

3.2 ML Models and Quality Performance

Our goal is to study the impact of data preprocessing pipeline
selection and how it can affect the output results of statistical ML
methods. In particular for Web usage data analysis, we considered
the following ML models and corresponding quality performance
metrics.

o Clustering. We used two clustering methods: HCA (Hier-
archical Clustering) and K-means with silhouette metric
to evaluate the quality of the clustering as silhouette =
(b(i) — a(i))/max{a(i), b(i)} with a(i) the average distance
between i and all other data within the same cluster and b(i)
the smallest average distance of i to all points in any other
cluster, of which i is not a member;

o Regression. We used three regression methods: LASSO
(Least Absolute Shrinkage and Selection Operator), OLS (Or-
dinary Least Squares Regression), and MARS (Multivariate
Adaptive Regression Splines) and as quality metrics, we used
MSE (Mean Squared Error) to measure the robustness of
regression as MSE = Zf.il(Yi - Y;)%/N; and

o Classification. We used three classification methods: LDA
(Linear Discriminant Analysis), NB (Naive Bayes), and CART
(Classification and Regression Trees) with accuracy metric
as accuracy = (TP + TN)/(TP + TN + FP + FN) with TN
and FN true and false negatives and TP and FP true and
false positives respectively in the classification result.

Our approach is not limitative and other ML models, quality
metrics or preprocessing methods could be added and used by
Learn2CLean.

4 EXPERIMENTS

We have performed preliminary experiments to compare the prepro-
cessing alternatives (described in Section 3.1) for the classification,
regression, and clustering methods (described in Section 3.2) using
real-world datasets from Kaggle? repository as shown in Table 1.

All methods and Learn2CLean are implemented in Python
(Jupyter Notebook 5.5, Python 3.6.5). Source code and datasets
used in our study are available at: https://github.com/LaureBerti/
Learn2Clean.

Table 1: Real-world datasets

Datasets [#]Att. | [#]Rows

Regression
*[Classification|

Google Play Store Apps 13 10.8k
Google Play Store Users 5 64.3k
House Prices 81 1.46k

5| | 5| Clustering

o
o

4.1 Compared Methods

We have compared the results of data preprocessing strategy re-
turned by Learn2CLean to four types of data cleaning: (1) random
selection (RAND) of a sequence of one (or none) curation task
from each block of possible actions for normalization, feature se-
lection, imputation, outlier, duplicate and inconsistency detection
and removal (as depicted in Figure 1) with no particular order; (2)
manual cleaning by a human expert in Data Science (DS_EXP);
(3) one automated ML approach (AUTO) obtained by MLBox> in-
cluding cleaning and preprocessing; and (4) NO-PRE when no data
preparation/curation is achieved. In particular, we have compared
the quality metrics of the ML models applied to the preprocessed
datasets obtained from these various preparation strategies, respec-
tively MSE for regression, accuracy for classification, and silhouette
for clustering?. In the case of random preprocessing, we averaged
the results in terms of quality and time over the total number of
execution runs.

We used default parameter settings for all the ML models with no
particular hyper-parameter optimization and future work will be to
integrate this important aspect and provide an in-depth experimen-
tal analysis and a fair comparison with other AutoML approaches
[20] (such as AutoSklearn®). In these approaches, the user has to
predefine the pipeline of default preprocessing methods to be used
for feature selection (e.g., drift thresholding for MLBox or variance
thresholding for AutoSklearn) and imputation techniques (e.g., One-
Hot encoding for AutoSklearn). They do not include approximate

https://www.kaggle.com/datasets

Shttps://mlbox.readthedocs.io/

“For technical details on the quality metrics: https://scikit-learn.org/stable/modules/
classes.html#module-sklearn.metrics

Shttps://github.com/automl/auto- sklearn/tree/master/autosklearn/pipeline/
components/data_preprocessing

2584

duplicate or inconsistency detection/correction. Feature prepro-
cessing is a single transformer which implements, for example,
feature selection or transformation of features into a different space
(i.e., PCA). The AutoML preprocessors do not test and select the
optimal preprocessing method for a given dataset and their core
added-value is on hyper-parameter optimization of the ML models.

In average, it takes 1.55 seconds for Learn2CLean to enumerate
all possible cleaning strategies given the 19x19 Q-matrix for the 18
possible preprocessing methods. Then, each strategy as a sequence
of curation tasks is executed with a duration depending on the
dataset size, the number of glitches to detect and correct, and the
time complexity of each task. Ultimately, the strategy with best
quality metric is selected by Learn2CLean. In the last columns,
Table 2 presents the pipeline of curation selected by Learn2CLean
and the overall execution time.

4.2 Clustering

Clustering analysis was performed using K-Means (KMEANS) and
Hierarchical clustering (HCA) methods. The number of clusters
that maximizes the silhouette for each clustering method was auto-
matically selected to perform the clustering. Table 2 presents the
silhouette measures obtained by KMEANS and HCA applied to the
Learn2CLean-preprocessed vs no-preprocessing, random, manually,
and AutoML curated datasets. We can observe that Learn2CLean
and AUTO show the best silhouette values for the three datasets,
close or better to what an expert would obtain in reasonable time:
less than one minute for Google Play Store Apps dataset and from
15 to 40 seconds for the other datasets.

4.3 Classification

For classification, the observations were split into a training and
test set where 70% of data was used for training and 30% for testing.
The model was fit to the training set, and the fitted model was
used to predict the responses for the observations in the testing
set. Classification methods cannot be executed and accuracy can-
not be computed in presence of missing values, which is the case
for House Prices dataset where 3 variables have from 80% to 99%
missing values (MiscFeature, Fence, PoolQC). The classification
methods require first feature selection based on the ratio of missing
values for example, then imputation for other missing values, and
another feature selection to avoid collinearity. Consequently, RAND
and NO-PRE are not applicable (NA) and DS_EXP curation is the
best strategy for this dataset because the preprocessing pipeline is
quite complex with reiteration of feature selection methods before
and after handling missing values. For this set of experiments, we
initialized the Q-matrix of Learn2CLean to avoid re-iteration of
methods from the same block. In other words, feature selection
methods are mutually exclusive in the same pipeline; similarly only
one imputation method can be applied. This explains the relatively
low accuracy of Learn2CLean in this case and the need of exper-
tise. However, for Google Play Store Apps classification, AUTO
and Learn2CLean the best accuracy values for NB and and LDA
respectively; not surprisingly, NO-PRE and RAND give the worst
accuracy values.

 https://github.com/LaureBerti/Learn2Clean
 https://github.com/LaureBerti/Learn2Clean
https://www.kaggle.com/datasets
https://mlbox.readthedocs.io/
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://github.com/automl/auto-sklearn/tree/master/autosklearn/pipeline/components/data_preprocessing
https://github.com/automl/auto-sklearn/tree/master/autosklearn/pipeline/components/data_preprocessing

Table 2: Experimental results for clustering, classification, and regression applied to three real-world datasets

Dataset Model (metric) NO_PRE | RAND | DS_EXP | AUTO | Learn2CLean Learn2CLean Time
Best strategy (seconds)

Google Play | HCA (Silhouette) 0.965 0.775 0.963 0.965 0.968 LC—»MF—HCA 55.6
Store Apps KMEANS (Silhouette) 0.668 0.798 0.652 0.808 0. 801 LOF—-AD—-KMEANS 46.1
LDA (Accuracy) 0.071 0.085 0.734 0.766 0.796 MICE—CART 15.5

NB (Accuracy) 0.175 0.158 0.679 0.786 0.722 | WR—IQR—-MICE—NB 13.5

Google Play | HCA (Silhouette) 0.965 0.775 0.878 0.804 0.965 HCA 14.8
Store Users | KMEANS (Silhouette) 0.417 0.429 0.676 0.587 0.655 MR—AD—KMEANS 39.5
HCA (Silhouette) 0.793 0.714 0.846 0.844 0.844 MM—ED—HCA 32.2

KMEANS (Silhouette) 0.644 0.609 0.632 0.674 0.678 KMEANS 28.3

House CART (Accuracy) NA NA 0.611 0.345 0.449 MM—AD—CART 58.7
Prices NB (Accuracy) NA NA 0.663 0.457 0.518 LC—»MF—-NB 20.1
LASSO (MSE) >1 >1 0.165 0.138 1.44E-12 KNN—ZSB—LASSO 24.2

MARS (MSE) 0.175 0.192 0.163 NA 0.231 IQR—-MICE—-MARS 134.5

OLS (MSE) >1 >1 0.176 0.137 2.20E-25 KNN—ZSB—OLS 45.1

4.4 Regression

For LASSO and OLS regression, we can observe that Learn2CLean
has the lowest MSE for House Prices dataset and it outperfoms the
other curation approaches. For RAND and NO-PRE, MSE values
are not reliable (>1) because of high collinearity of the dataset
variables.

In conclusion, the results of our limited set of experiments is
promising and has opened several directions for research and im-
provements of Learn2CLean algorithm and the experimental set-
up. In particular, we plan further experiments with semi-synthetic
data where noise injection is carefully controlled in order to study
more complex and intricate distributions of various glitch types
and patterns [3] (combining duplicates, inconsistencies, missing
and outlying values) and their impact on the robustness of our
approach. We also plan to combine AutoML hyper-optimization
with Learn2CLean extended library of preprocessing methods and
Q-learning based selection of the best preparation strategy.

5 CONCLUSIONS

We proposed an approach based on Q-learning that identifies the
optimal data preprocessing strategies for representative ML models
applied to various real-world datasets. To the best of our knowledge,
Learn2CLean is the first approach that leverages reinforcement
learning for data preparation. Although there is no universally ade-
quate data preprocessing procedure, we were able to learn hidden
features for selecting the optimal data preprocessing for a given
dataset and a given ML task. Our preliminary results show that an
instantiation of the proposed framework based on Q-Learning is
efficient and a promising direction for automating data curation.
As future work, we plan to explore a wider spectrum of datasets
from diverse applications of Web content extraction and mining,
and extend the set of data preprocessing and ML methods to test
Learn2CLean in a wider range of settings.

ACKNOWLEDGMENTS

The authors would also like to thank the anonymous referees for
their valuable comments and helpful suggestions. This research is

2585

supported by the French National Agency ANR under Grant No.:
18-CE23-0002 QualiHealth.

REFERENCES

[1] Batista G., Monard M.C,, et al. (2002). A Study of K-Nearest Neighbour as an
Imputation Method, HIS, vol. 87, pp.48.

[2] Berti-Equille L., Loh J.M., Dasu T. (2015). A masking index for quantifying hidden
glitches. Knowledge and Information Systems, 44, pp.253-277.

[3] Berti-Equille L., Dasu T., Srivastava D. (2011). Discovery of complex glitch patterns
: A novel approach to Quantitative Data Cleaning. Proc. ICDE, pp.733-744.

[4] Breunig M.M., Kriegel H.-P., Ng R'T., Sander J. (2000). LOF: identifying density-
based local outliers, ACM SIGMOD Record, vol. 29(2), pp.93-104.

[5] Buuren S., Groothuis-Oudshoorn K. (2011). MICE: Multivariate imputation by
chained equations in R, J. of Statistical Software, vol. 45, num. 3.

[6] Berti-Equille L., Scannapieco M. (2016). Quality of Web Data (Chapter). In the
2nd Edition of the book Data Quality: Concepts, Methodologies and Techniques,
Springer, 2016

[7] Filzmoser P., Garrett R.G., Reimann D. (2005). Multivariate outlier detection in
exploration geochemistry, Computers & Geosciences, vol. 31, pp.579-587.

[8] Kohavi R., John G. H. (1997). Wrappers for feature subset selection, Artificial
intelligence, vol. 97, pp.273-324.

[9] Serrano Balderas E.C., Berti-Equille L., Armienta Hernandez M.A., Grac C., (2017).

Principled Data Preprocessing: Application to Biological Aquatic Indicators of

Water Pollution. Proc. of the DEXA-BIOKDD’17 workshop.

Watkins J.C.H. (1989). Learning from Delayed Rewards, PhD Thesis, University

of Cambridge, England.

[11] Zaveri A., Maurino A., Berti-Equille L. (2014). Web Data Quality: Current State

and New Challenges, Int. J. Semant. Web Inf. Syst.,10(2):1552-6283, IGI Global.

[12] Suresh R.M., Padmajavalli R. (2006). An Overview Of Data Preprocessing In Data

and Web Usage Mining, Proc. of the 1st International Conference on Digital
Information Management, pp.193-198.

[13] Vellingiri J., Chenthur Pandian S. (2011). A Novel Technique for Web Log Mining

with Better Data Cleaning and Transaction Identification, Journal of Computer

Science, pp.683-689.

Chang-bin J., Li C. (2010). Web Log Data Preprocessing Based On Collaborative

Filtering, Proc. of IEEE 2nd International Workshop On Education Technology

and Computer Science, pp.118-121.

[15] Zheng L., Hui Gui H., Li F. (2010). Optimized Data Preprocessing Technology

For Web Log MiningaAl Proc. of IEEE International Conference On Computer

Design and Applications (ICCDA), pp. VI-19-VI-21.

Sudheer Reddy K., Kantha Reddy M., Sitaramulu V. (2013). An effective data

preprocessing method for Web Usage Mining, Proc. of the 2013 International

Conference on Information Communication and Embedded Systems (ICICES).

Bilalli B., Abell6 A. (2018). PRESISTANT: Learning based assistant for data pre-

processing, Arxiv CoRR abs/1803.01024.

[18] Chu X, Ilyas I. F., Krishnan S., Wang J. (2016). Data Cleaning: Overview and

Emerging Challenges. Proc. of the 2016 International Conference on Management
of Data (SIGMOD’16), pp.2201-2206.

=
S

[14

[16

[17

[19] Feurer M., Hutter F. (2018). Towards Further Automation in AutoML, Proc. of [21] Vanschoren J., van Rijn J. N., Bischl B., Torgo L. (2014). OpenML: Networked

ICML 2018 AutoML Workshop. science in machine learning, ACM SIGKDD Explorations Newsletter, 15(2):494AS-
[20] Feurer M., Klein A., Eggensperger K., Springenberg J., Blum M., Hutter F. (2015). 60.

Efficient and Robust Automated Machine Learning, Advances in Neural Informa- [22] Wu B., Knoblock C. A. (2016). Maximizing Correctness with Minimal User Effort

tion Processing Systems 28, December, pp.2962-2970. to Learn Data Transformations. IUI 2016, pp.375-384.

2586

	Abstract
	1 Introduction
	2 Overview of Learn2Clean
	3 Q-Learning
	3.1 Data preprocessing methods
	3.2 ML Models and Quality Performance

	4 Experiments
	4.1 Compared Methods
	4.2 Clustering
	4.3 Classification
	4.4 Regression

	5 Conclusions
	References

