
A collaborative framework for joint
segmentation and classification of remote
sensing images

Andrés Troya-Galvis, Pierre Gançarski and Laure Berti-Équille

Abstract In this article, we present a collaborative framework for joint segmenta-
tion and classification (CoSC). The framework is guided by and aware of the qual-
ity of each segment at every stage; it allows the consideration of both homogeneity
based criteria as well as implicit semantic criteria to extract the objects belonging
to a given thematic class. We apply CoSC to vegetation extraction in a very high
spatial resolution image of Strasbourg. We compare our results to a pixel-based
method, an object-based method and a hybrid segmentation-classification method.
The experiments show that CoSC manages to reach good classification results while
remarkably improving the segmentation results.

1 Introduction

Automatic interpretation of remote sensing images is a difficult but crucial task in
a wide range of applications. Since the apparition of Very High Spatial Resolution
(VHSR) imagery, the Object Based Image Analysis (OBIA) paradigm has been pre-
ferred over pixel oriented approaches [Blaschke, 2010]. Indeed, at VHSR a single
pixel is not informative enough for the classification task since the types and com-
plexity of identifiable objects increase considerably. Thus, image segmentation is
performed first in order to obtain higher level objects called segments which allow
a better description of the image.
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Figure 1 illustrates the complete workflow of OBIA. First (V)HSR images are
acquired via satellite sensors. Atmospheric and geometric corrections are applied as
pre-processing to produce ready-for-analysis images. Segmentation is then applied
and the image is now described by segments, which are sets of similar pixels satisfy-
ing a given homogeneity criterion. A vectorization stage consisting in representing
each segment as a vector of descriptive features such as shape, textural, or sophisti-
cated radiometric indexes is then applied. Next, classification techniques which may
use external information such as examples or ontologies, are applied to obtain a full
land-cover map of the image. As a final step, the resulting image is validated either
by an expert or by objective metrics in order to assess the quality of the results.
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Fig. 1: Typical workflow of OBIA methods

The segmentation and classification are – in our opinion – the most critical steps.
Many classification techniques such as [di Sciascio et al., 2013], have proven to be
successful when the segmentation approaches a one-to-one mapping between the
segments and geographic objects. Unfortunately, there is no single segmentation al-
gorithm leading to such perfect mapping in all cases. Our intuition suggests that
(1) the improvement of image segmentation should lead to the improvement of the
classification; and (2) classification results may be useful to improve the quality of
the segmentation. Moreover, while full interpretation is often desirable, the extrac-
tion of a single thematic class is generally sufficient for multiple tasks such as forest
mapping [Räsänen et al., 2013], deforestation tracking [Duveiller et al., 2008], land-
slide risk management [Promper et al., 2014], urban planning [Pham et al., 2011],
etc. Thus, we propose a collaborative framework for joint segmentation and clas-
sification (CoSC) which is quality-centric and attempts to simultaneously improve
both segmentation and classification for a given thematic class by the interaction of
these two paradigms which are closely related in the OBIA context.

The rest of this article is structured as follows: Section 2 introduces the context
and related work. Section 3 presents our collaborative framework for joint segmen-
tation and classification. Section 4 presents an experimental study demonstrating the
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applicability of the proposed framework. Finally, in Section 5 we conclude and give
some research perspectives.

2 Related work

Many work can be found in the literature about combining image segmentation and
classification methods in a remote sensing context. For instance, [Lizarazo and El-
sner, 2011] proposed a fuzzy segmentation approach in which the image pixels are
classified by fuzzy classifiers trained for every desired class, thus obtaining what
they call fuzzy segments; the fuzzy segments are defuzzyfied and merged together
following a set of logical rules in order to obtain a fully labelled image. [Derivaux
et al., 2010] proposed a supervised segmentation algorithm which adapts the param-
eters of the watershed segmentation algorithm by exploiting examples given by an
expert and applying evolutionary algorithms. [Kurtz et al., 2012] developed a hierar-
chical multi-resolution approach for the extraction of complex urban objects. They
take advantage of multi-source images which allows to have different views on the
same data; using low resolution images to extract coarse objects such as a whole
city and higher resolution images to extract finer objects like a district or individual
buildings. [Mahmoudi et al., 2013] proposed a multi-agent system for remote sens-
ing image classification where each agent is specialized in the extraction of a given
class. A particular agent is charged to manage conflict resolution. [Tarabalka et al.,
2009] presented Spectral-Spatial Classification (SSC), a hybrid approach mixing
pixel- and object-based approaches; it uses EM clustering as segmentation algo-
rithm, then a pixel-wise SVM classification is performed and a voting scheme is
employed to decide the label for each segment. A final filtering step is applied to re-
move small noisy segments. Recently, [Hofmann et al., 2014] formalised an Agent
Based Image Analysis (ABIA) framework, in which the idea is to let every seg-
ment be an independent agent which modifies itself trying to improve and modify
classification rules given by a domain ontology.

Our work is mainly inspired by the wrapper-based segmentation framework
[Farmer, 2009], which aims at segmenting complex objects by the integration of
a semantic context to the segmentation process. This integration is done by wrap-
ping a classifier inside a segmentation algorithm and use it as a quality metric to
optimize. First, an initial segmentation is computed, this segmentation has to be
over-segmented in order to the wrapper based framework to be effective. Indeed,
the further steps consist in the filtering of irrelevant segments, the remaining seg-
ments are likely to be part of the object of interest. Then an optimization algorithm
which alternates between adding or removing a segment to the current segmenta-
tion, and the classification of the latter. When the classification probability reaches
an acceptable threshold, the best segmentation found and the classified objects are
returned. The use of the classification to guide the segmentation process eliminates
the homogeneity constraint on the segmentation allowing the extraction of complex
objects.
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Nevertheless, the wrapper framework supposes that the number of objects to ex-
tract is known to be relatively low and that their position can be easily determined to
filter out unnecessary regions. These assumptions are generally not satisfied within
a remote sensing context. Indeed, in a real-life scenario, objects of interest may vary
from a few tens to a many hundred, or may not be present at all in the image. More-
over, objects of a same class may vary in shape and sizes and can be all over the
image so it is not trivial to determine their possible locations.

We propose a generalization of the wrapper framework which allows the modifi-
cation of segments in a more flexible manner making possible to extract objects of
a given class regardless of their shape or position.

3 Proposition

The segmentation and classification paradigms pursuit different goals, yet they are
closely related in a remote sensing context. Indeed, segmentation tries to partition
the image spatially, mainly based on color properties (radiometric responses); while
classification aims at partitioning data based on some knowledge which can be ex-
plicitly modelled or implicitly injected as training examples. Our intuition is that
proper interactions between both approaches should lead to the improvement of
both segmentation and classification results simultaneously, as the ideal segmenta-
tion is the one allowing to best classify the image and the perfect classification result
in a partitioning with a one-to-one mapping between image regions and geographic
objects.

Studies have shown the benefits of treating a single thematic class at a time
[Musci et al., 2013]. In fact, it is easier to set the parameters of a segmentation
algorithm so that the resulting segments fit one class without taking care of the rest.
As a direct consequence, the classification of objects from this class is improved.
Thus, our collaborative framework for joint segmentation and classification (CoSC)
is devoted to the extraction of the objects belonging to one thematic class from the
image. Let C be such a class of interest, we assume the existence of the following
elements:

• An initial segmentation S = {Ri | 0 < i < W} where W is the number of seg-
ments; and where each segment Ri = {(xi

k,y
i
k)|0< k <M}with M is the number

of pixels in Ri.
• A 1-vs-all classifier CC allowing to discriminate objects of class C from the

rest. Note that this classifier has to be properly trained offline avoiding extreme
over- and under-fitting since no further learning is performed during the CoSC
process.
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3.1 Definitions

Let us pose some definitions which are necessary in order to formally describe the
proposed framework.

Definition 1. A specialized segmenter, noted SC, is a segmentation agent capable of
locally evaluating and modifying a given segment R.

Definition 2. A class extractor, noted CC, is a classification agent capable of deter-
mining by using CC, the probability PC(R) that a given segment R ∈ S belongs to
the class C.

Definition 3. A CoSC agent, noted SCC, is an agent capable of managing the col-
laboration between a specialized segmenter and a class extractor.

Definition 4. Let T∈ (resp. T6∈) be a threshold over the probability of being (resp.
not being) a C class object. Thus, T∈ and T6∈ define a reject zone [Chow, 1970] for
the classifier CC.

Definition 5. An ambiguous segment is a segment R such that T6∈ ≤ PC(R)≤ T∈.

3.2 Global CoSC process

The collaborative process is described in Algorithm 1. After the selection of an ini-
tial segmentation, the process involve interactions between classification and seg-
mentation approaches. In fact, the following steps are iterated until convergence:

1. A segment selection step relying on a classification-based criterion.
2. A segment modification step relying on local segmentation evaluation and seg-

mentation operators.
3. An evaluation step based on classification probability.

Thus, the first step aims at selecting a poorly classified segment; the second step
attempts to correct segmentation errors around the selected segment which in turn
should improve its classification; finally, the evaluation step allows the process to
quantify the improvement (or deterioration) of the current solution and checking for
convergence. In the following subsection we describe in detail one possible imple-
mentation of these steps.

3.2.1 Initialization

SC begins with an initial segmentation S which can be arbitrarily chosen. Never-
theless, over-segmentation is preferable to under-segmentation, since the latter is
harder to correct. Our experiments show that the closer the size of the segments are
close to the size of C class objects, the quicker collaboration converges.
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Algorithm 1: CoSC process
Input : Specialized Segmenter: SC ,

Class extractor: CC
Output: Segmentation: Sbest

1 begin
2 S← SC .initialSegmentation()
3 Sbest ← S
4 Scurrent ← S
5 while not CC .convergence() do
6 Ra←CC.candidate(Scurrent )
7 Rm← SC.SegmentModifications(Ra)
8 Update Scurrent with Rm
9 CC.evaluate(Scurrent )

10 if Scurrent is better than Sbest then
11 Update Sbest with Scurrent

12 return Sbest

3.2.2 Candidate segment selection

CC selects a candidate segment Ra to be modified. It is essential to chose a good
candidate segment, in other words, a segment which may lead to the improvement
of the classification after its modification. Different strategies can be used, such as
selecting a random segment, or selecting the segment which is closest to T∈ or T6∈.
In our experiments (Section 4) we select the most ambiguous segment, as follows:

Ra = arg min
Ri

|PC(Ri)−Tavg| (1)

where Tavg =
T∈+T6∈

2 .

3.2.3 Segment modification

SC evaluates the quality of the candidate segment and then tries to improve it’s
segmentation consequently. Following a given quality criterion, SC associates a seg-
ment with one of the following states: over-segmentation, under-segmentation or
undetected segmentation error.

A segment modification operator is a function O : Di→Di where Di = Ri∪NRi

and NRi denotes the set of points belonging to the segments which are adjacent to
Ri (i.e., neighbour segments). Thus, a list containing at least one function O is asso-
ciated to each segmentation state. For over-segmentation, the list OL should contain
operators which may make the segment bigger. For under-segmentation, the list
UL should contain operators which may make the segment smaller. For undetected
miss-segmentation, the list ML should contain a variety of mixed operators which
may help to improve the classification of the segment. The modifications are applied
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as depicted in Algorithms 2 and 3. A random operator is applied from one of the
three lists to the candidate segment in function of its quality state.

In our implementation (Section 4) three different O functions are used.
The first one, is intended to correct heavy over-segmentation, it is a merging

operator, noted FN, which merges segment Ri with its closest neighbour R j:

Z = arg min
R j∈NRi

δL∗a∗b(Ri,R j) (2a)

FN(Ri) = (Ri∪Z)∪ (NRi \Z) (2b)

where δL∗a∗b(Ri,R j) is the Euclidean distance between segments Ri and R j in the
L∗a∗b colorspace [Chen and Wang, 2004].

The other two, are intended to correct slight over- and under-segmentation, they
are based on morphological operators which may be easily applied to grow or shrink
a segment.

The growing operator, noted Gr, is defined by:

Gr(Ri) = Ri⊕�1∪N−Ri
(3)

where Ri⊕�1 denotes the morphological dilation [Haralick et al., 1987] of Ri by a
3×3 square; and N−Ri

= NRi \ ((Ri⊕�1)\Ri).
The shrinking operator, noted Sh, is defined by:

Sh(Ri) = Ri	�1∪N+
Ri

(4)

where Ri	�1 denotes the morphological erosion [Haralick et al., 1987] of Ri by a
3×3 square; and N+

Ri
= NRi ∪ (Ri \ (Ri⊕�1)). Exceeding pixels resulting from the

erosion are allocated to the closest neighbour R j ∈ NRi .
Note that if the application of an operator O implies modifying the topology of

resulting segments, then the segment is returned unmodified.
We set OL = {FN(Ri)}; UL = {Sh(Ri)}; and ML = {Gr(Ri),Sh(Ri),FN(Ri)}. In

this case the candidate segment modification strategy is equivalent to the following
rules:

• If Ra is over-segmented, it is merged with its most similar neighbour.
• If Ra is under-segmented, it is shrunk by an morphological erosion.
• Otherwise, three operations (merging, growing and shrinking) are tested ran-

domly and the first successful (i.e., actually modifying Ra) transformation is
kept.

3.2.4 Evaluation

CC evaluates the quality of the current solution Scurrent by using an objective function
based on classification criteria. Thus, under the assumption that the classifier is well
trained and capable of discriminating C class objects from other kind of objects, we
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Algorithm 2: ApplyModifications
Input : Segment: Ra,

List of O: L
Output: Segment: Rm

1 begin
2 Shu f f le(L)
3 while L.iterator.has_next() do
4 Rm← modi f y(Ra,L.iterator.next())
5 if Rm 6= Ra then
6 return Rm

7 return Ra

Algorithm 3: SegmentModification
Input : Segment: Ra,
Output: modified Segment: Rm,

1 begin
2 switch LocalSegmentEvaluation(Ra) do
3 case oversegmentation
4 Rm← ApplyModi f ications(Ra,OL)
5 case undersegmentation
6 Rm← ApplyModi f ications(Ra,UL)
7 otherwise
8 Rm← ApplyModi f ications(Ra,ML)

9 return Rm

can evaluate the solution by looking at how well the classifier separates objects of
interest from the rest. In other words, the goal is to reduce the number of ambiguous
segments (c.f., def 5). The evaluation function Qcs can be defined as follows:

Qcs =
1

W

 ∑
i|PC(Ri)>T∈

PC(Ri)+ ∑
i|PC(Ri)<T6∈

(1−PC(Ri))

 (5)

where W is the total number of segments in the current segmentation. The idea
behind this formula is to reward those segments for which the classifier has made
a decision proportionally to the confidence of the classifier. The more the classifier
is sure about the class of a given segment Ri, the more Ri is contributing to the
score. Plus, ambiguous segments are penalized as they do not contribute to the score,
but they are taken into account by the 1

W factor. Thus, in the ideal case where the
classifier has perfectly classified all of the segments with 100% confidence then
Qcs = 1.0; in the worst case in which all of the segment are ambiguous then Qcs =
0.0. At each iteration Sbest is updated if Scurrent has a higher Qcs score.
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3.2.5 Convergence

A simple strategy is to let the collaboration continue as long as it improves the Qcs
score, but it would probably lead to a premature convergence problem, thus to a
suboptimal result. To address this issue a variant of simulated annealing is used to
drive the optimization process.

3.3 Output

The output of each iteration of a modified segmentation Sbest as well as a proba-
bility image associated to Sbest in which each pixel (xi

k,y
i
k) ∈ Ri correspond to the

probability P(Ri).
It is then possible to evaluate these results in terms of classification, or in terms

of segmentation as we show in Section 4.2.

4 Case study

The performance of the classifier CC has a considerable impact on the results of
CoSC. To limit the bias induced by CC, we chose to apply CoSC for the extraction
of vegetation zones. Indeed, in this case we could easily define and train a well-
performing classifier, allowing us to better validate our proposition.

The studied image is a 9211× 11275 (108 pixels) VHSR image of Strasbourg.
It is a Pleiades pansharpened image at 50cm resolution, with 4 spectral bands: red
(R), green (G), blue (B), and near infra red (NIR). Figure 2a shows the studied im-
age in false colors (i.e., the red was replaced by the NIR, as vegetation is known to
have high radiometric responses in this region of the spectrum). For ease of com-
putation, the image was cropped into 1620 tiles of 256× 256 pixels. Each tile was
processed with the same parameters. In this paper we analyse in detail the results of
three tiles: the first one corresponds to a zone of industrial facilities; the second one
corresponds to an urban area; and the third one corresponds to a public park. They
are labelled A, B and C respectively on Figure 2a and shown in detail on Figures
3c–3b. The resulting probability images are compared to available reference-data
shown in Figure 2b.

4.1 Instantiation

The framework was instantiated as follows.
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(a) (b)

Fig. 2: Left: studied image. Right: available reference data.

(a) Tile A: industrial facilities (b) Tile B: urban area (c) Tile C: public park

(d) Init. segmentation of tile A (e) Init. segmentation of tile B (f) Init. segmentation of tile C

Fig. 3: Top: tiles A, B and C at a detailed scale. Bottom: the initial mean-shift seg-
mentations computed for those tiles.
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4.1.1 Specialized segmenter (Def. 1)

The UOAL2 metric [Troya-Galvis et al., 2015] was used as segmentation quality
metric; the homogeneity index used was the entropy [Zhang et al., 2003] and the
threshold value was learnt from some explicitly given examples of vegetation. The
local evaluation function of UOA is used as well to determine whether a segment is
over-, under- or well-segmented.

The mean-shift algorithm was applied to generate the initial segmentations (Fig-
ures 3d-3f). Its parameters were selected by evaluating 100 different parameter com-
binations with the UOAL2 metric. Remark that it is possible to apply any other
method to select the initial segmentation. Different initial segmentations would
surely lead to different results; however a complete sensitivity analysis on this aspect
is out of the scope of this article.

4.1.2 Class extractor (Def. 2)

A linear regression model was learnt using the Weka API [Hall et al., 2009]. The
training set is a subset of the fuzzy reference data containing both vegetation and
non-vegetation segments chosen randomly. The feature set employed was composed
of 32 features, including radiometrical attributes such as mean and standard devi-
ation values for each band [Rougier and Puissant, 2014], as well as geometrical
attributes such as the area, shape, orientation and solidity indexes among others.
When the predicted values are out of the accepted bounds, they are simply truncated
to 1.0 or 0.0 as needed.

Remark that the definition of the classification thresholds can be misleading. In-
deed, the classifier is a parameter of CoSC and it has to be trained offline. Thus,
the classification thresholds (def. 4) within CoSC are merely a tool to “push” the
algorithm to look for very confident classifications. Then, these thresholds should
have little or no impact on the final classification results. In order to verify this
fact, we conducted the experiment for T∈ = 0.9, T6∈ = 0.1; T∈ = 0.8,T6∈ = 0.2; and
T∈ = 0.7,T6∈ = 0.3, using the same initial segmentations. The results are summa-
rized in table 1, we can see that the choice of the classification thresholds has al-
most no impact on the classification results, however they have some influence on
the computation times. In Section 4.2 we study in detail the results for T∈ = 0.9 and
T6∈ = 0.1.

Table 1: Quality measures for different T∈ and T6∈ values

T∈ T6∈ Acc Pr Re F1 κ Am% Qcs
0.7 0.3 0.932 0.952 0.945 0.949 0.846 0.469 0.526
0.8 0.2 0.930 0.952 0.943 0.948 0.844 0.466 0.529
0.9 0.1 0.930 0.952 0.943 0.947 0.844 0.464 0.531
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The CoSC process takes in average 17 seconds per tile, and the computation time
for the whole image ranged from 5 to 10 hours depending on the parameters.

A badly chosen initial segmentation S leads to increased computation times and
aberrant cases may result in bad segmentation and classification results. Finally, our
first experiments suggest that the classification model CC have no significant influ-
ence on computation time, but is crucial to segmentation and classification results.
However this behaviour has to be verified by a more formal study which is out of
the scope of this article. The impact of these parameters is briefly summarized in
Table 2.

Table 2: Impact of CoSC parameters on CPU time, segmentation and classification
quality

Parameter CPU time segmentation classification
T∈ medium very low very low
T6∈ medium very low very low
S high medium medium
CC low medium high

4.2 Results

In order to validate the applicability of CoSC, we compare our results to a pixel-
based method, a classic OBIA approach and a hybrid segmentation-classification
approach.

The pixel-based method consists in computing the normalized difference vege-
tation index (NDVI) [Rouse et al., 1974] which is a well-known radiometric index
for the extraction of vegetation zones. The NDVI image is then normalized in [0,1]
so that we can see each pixel value as the probability of belonging to the vegetation
class. In the rest of the article we denote this NDVI-based approach simply as NDVI.
The classic OBIA method consists in classifying the initial segmentations with the
same linear regression model that we used for CoSC. The hybrid segmentation-
classification approach is a variant of the Spectral-Spatial Classification (SSC) ap-
proach described in Section 2. We evaluate the results in terms of classification and
segmentation separately.

Classification

We computed both crisp and fuzzy quality metrics against the reference data (Fig-
ure 2b). A threshold of 0.5 was used to defuzzify these data to compute the follow-
ing crisp measures : accuracy (Acc), Precision (Pr), Recall (Re), F-measure (F1),
and Cohen’s kappa (κ). Table 3 shows the crisp results. We observe that the NDVI
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achieves great accuracy but the percentage of rejected or ambiguous pixels is 89%.
The OBIA classic approach as well as the proposed CoSC reach acceptable Acc,
Pr, Re, F1 and κ values. We remark that they reduced the percentage of ambigu-
ous pixels to 52% and 46% respectively which is a good trade-off. SSC achieves
high accuracy results without reporting ambiguous segments as the SVM model has
binary output.

Table 3: Crisp quality measures

Image Acc Pr Re F1 κ Am% Qcs

NDVI 0.997 0.999 0.988 0.994 0.992 0.894 0.103
OBIA 0.931 0.953 0.948 0.950 0.834 0.516 0.479
SSC 0.894 0.872 0.912 0.892 0.787 0.000 1.000

CoSC 0.930 0.952 0.943 0.947 0.844 0.464 0.531

We also computed the fuzzy error matrix [Binaghi et al., 1999] and derived from
it the fuzzy Ãcc, P̃r, R̃e, and F̃1. Fuzzy metrics allows to take into account the
intrinsic uncertainty of the reference data and have a more accurate quality assess-
ment. Table 4 shows the fuzzy results for the compared methods. We observe that
the NDVI method is globally outperformed by the other methods, and SSC achieves
better classification results. There is no significant difference between the OBIA and
CoSC methods, and they still have an acceptable performance.

Table 4: Fuzzy quality measures

Image Ãcc P̃r R̃e F̃1

NDVI 0.774 0.791 0.720 0.754
OBIA 0.809 0.745 0.915 0.830
SSC 0.869 0.849 0.886 0.867

CoSC 0.825 0.768 0.912 0.834

Segmentation

Let’s take a closer look at segmentation results. Figure 4, 5, 6 and 7 illustrate in detail
the results of the NDVI method, OBIA, SSC, and CoSC respectively for the three
tiles highlighted in Figure 2a. The first row shows the probability images resulting
from each method. The second row shows the boundaries of the segmentation cor-
responding to the flat regions (i.e., adjacent pixels having the same values) in the
probability image.
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(a) Final probability for tile A (b) Final probability for tile B (c) Final probability for tile C

(d) Final segmentation for tile A (e) Final segmentation for tile B (f) Final segmentation for tile C

Fig. 4: Detailed view of the results obtained with the NDVI.

We observe that the NDVI method is able to highlight vegetation zones quite ac-
curately. However, the probability image is noisy so the flat-region based segmen-
tation is extremely over-segmented; this shows one of the disadvantages of purely
pixel-based approaches. Indeed, almost each pixel has a different NDVI value which
results in the extreme over-segmentation observed in Figure 4. More sophisticated
post-processing techniques involving thresholds or clustering for example are re-
quired in order to obtain a good quality segmentation based on the NDVI approach.

The classic OBIA method achieves also a good discrimination of vegetation ar-
eas. However the associated segmentation is still over-segmented at many places.
Indeed, in tile A, we observe that the different buildings are as over-segmented as
in the initial segmentation (Fig 3d); in tile B we observe many elongated and irreg-
ular segments at the boundaries of some vegetation objects, also, the houses are still
divided in many different segments; finally in tile C, we observe a lot of very small
segments which could be merged to form medium sized trees.
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(a) Final probability for tile A (b) Final probability for tile B (c) Final probability for tile C

(d) Final segmentation for tile A(e) Final segmentation for tile B (f) Final segmentation for tile C

Fig. 5: Detailed view of the results obtained with Classic OBIA.

The SSC method results in very under-segmented results. Indeed, the binary na-
ture of this method as well as the post-processing filtering result in a very rough
distinction between vegetation and non-vegetation objects losing all of the spatial
information concerning higher level objects such as individual trees or buildings for
instance.

By contrast, CoSC is able to give high probabilities to vegetation objects while
giving very low probabilities to non-vegetation objects. Moreover, we observe that
the associated segmentation is remarkably good. Indeed, there are almost no evident
over- or under-segmented regions. Another surprising result is that the segmentation
of non-vegetation objects was also improved as a side-effect. This can be explained
by the fact that over-segmentation is mainly related to radiometrical homogeneity
and the segmenter takes this into account to modify candidate segments, thus im-
proving segmentation quality globally.
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(a) Final probability for tile A (b) Final probability for tile B (c) Final probability for tile C

(d) Final segmentation for tile A (e) Final segmentation for tile B (f) Final segmentation for tile C

Fig. 6: Detailed view of the results obtained with Spectral-Spatial Classification.

In order to objectively evaluate the segmentation results we employed the UOAL2
metric. Recall that this metric is defined by:

Ψ = ∑
Ri|φδ (Ri)=−1

ω(Ri)

Θ = ∑
Ri|φδ (Ri)=1

ω(Ri)

UOAL2 =
√

Ψ 2 +Θ 2 (6)

where Ψ and Θ represent the under- and over-segmentation rates respectively; and
φδ (Ri) is a local evaluation function which estimates if a segment is over-segmented,
under-segmented or well segmented in in function of a given homogeneity index H
and a threshold δ .

For each tile we evaluated the results of the 4 tested approaches with UOAL2 . We
used the segment entropy as the homogeneity index and δ varying from 0 to 1 by
0.01 steps.
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(a) Final probability for tile A (b) Final probability for tile B (c) Final probability for tile C

(d) Final segmentation for tile A (e) Final segmentation for tile B (f) Final segmentation for tile C

Fig. 7: Detailed view of the results obtained with CoSC.

Figure 8 reports the results of these computations. Remark that UOAL2 ranges
from 0 (best) to 1 (worse); thus the lower the area under the UOAL2 curve, the
better the segmentation. For tile A and B, we observe that as expected the NDVI
has the greatest area under the UOAL2 , followed by SSC; CoSC and OBIA have
very similar curves the area under the curve of OBIA is slightly lower than that
of CoSC for tile A while for tile B we observe the inverse result. For tile C, the
SSC method has the worst result, followed by the NDVI, the OBIA method and
finally by CoSC which has a clearly lower area under the curve for this tile. These
results confirm our previous observations, CoSC has indeed globally improved the
segmentation, which is a very interesting result since the produced segmentation
could be re-used for further processing and analysis in multi-class or multi-scale
applications for example.
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(a) UOAL2 for the segmentation of tile A
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(b) UOAL2 for the segmentation of tile B
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(c) UOAL2 for the segmentation of tile C

Fig. 8: Plots 8c, 8a, and 8b show the variation of the UOAL2 metric over threshold
values in [0,1] for the three tiles.

5 Conclusion

In this article we presented CoSC, a collaborative framework for joint segmentation
and classification. It aims at the extraction of a given thematic class of objects from
a remote sensing image, and allows the exchange of implicit information between
these different but closely related paradigms in order to simultaneously improve
both segmentation and classification results. We presented the extraction of vegeta-
tion areas from a large image of Strasbourg as case-study to demonstrate the appli-
cability and pertinence of the CoSC framework. Experiments show that the CoSC
is able to give accurate classification results while remarkably improving the seg-
mentation of the whole image, not only for the objects of interest but for all types of
objects. In short-term we will study different strategies for choosing the candidate
segment as well as different classification models and their influence on the re-
sults. The CoSC framework is designed for the extraction of a single thematic class;
our future research will be focused on the study of collaborative strategies between
many of such CoSC processes in order to achieve automatic and full (multi-class)
interpretation of remote sensing images.
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