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Abstract—In many biological studies, statistical and data
mining methods are extensively used to analyze the data and
discover actionable knowledge. But, bad data quality causing
incorrect analysis results and wrong interpretations may induce
misleading conclusions and inadequate decisions. To ensure
the validity of the results, avoid bias and data misuse, it is
necessary to control not only the whole analytical pipeline, but
most importantly the quality of the data with appropriate data
preprocessing choices. Since various preprocessing techniques
and alternative strategies may lead to dramatically different
outputs, it is crucial to rely on a principled and rigorous method
to select the optimal set of data preprocessing steps that depends
both on the input data distributional characteristics and on the
inherent characteristics of the targeted statistical or data mining
methods. In this paper, we propose a method that selects, given
a dataset, the optimal set of preprocessing tasks to apply to the
data such that the overall data preprocessing output maximizes
the quality of the analytical results for various techniques
of clustering, regression, and classification. We present some
promising results that validate our approach on biomonitoring
data preparation.

Index Terms— Biological Data Preprocessing, Data cleaning,
Biomonitoring Data.

I. INTRODUCTION

Through the use of data mining (DM) and statistical meth-

ods, data scientists and researchers can discover relevant pat-

terns from the data and gain crucial and actionable knowledge.

However, it is necessary to adapt the volume, format and

distributional characteristics of the input data to better suit

the underlying assumptions and constraints of the DM and

statistical methods to be applied. As data analysis input, it

is essential to ensure quality data because erroneous data

limit the performance of statistical methods induce misleading

analytics and data mining results [4], [21] and finally, lead

to faulty conclusions, costly decisions, and dramatic conse-

quences.Data evolving over time can be big, noisy, unreliable,

highly imbalanced, and heterogeneous. Biological data – both

human- or environment-centered– are not an exception to

this observation as shown in various studies in biomedical

and environmental domains [2], [3], [14]. In environmental

sciences, water pollution problems have boosted environmen-

tal research activities going from general to more detailed

Fig. 1: Principled Approach for Data Preprocessing

measurements such as the use of biological aquatic and marine

indicators. Biomonitoring metrics based on macroinvertebrates

are commonly used as indicators of pollution on aquatic

ecosystems. They are low-cost and easy-to-implement tools

that provide valuable information about the ecological state of

aquatic ecosystems [5]. Notwithstanding, data from biological

survey of aquatic ecosystems may have a wide range of data

anomalies such as missing values, inconsistencies, outlying

data, duplicates, etc. Analysis results from data preprocessed

inappropriately may lead to misleading conclusions and inad-

equate decision-making that can affect the survival of some

species and even endanger some environmental ecosystems.

To mitigate the impacts of data anomalies and thus provide

quality analytical results, a first necessary step is to preprocess

data appropriately [13].

Data preprocessing has been acknowledged as a primary

sequence of tasks to correct the negative effects and bias that

data anomalies may produce on analytical results.Common

data preprocessing tasks mainly include: selection of features,

data normalization, and treatment of missing values and out-

liers. Although there is a vast number of data preprocessing

methods available to accomplish these tasks, the selection of

an optimal strategy remains ad hoc difficult. To our knowledge,

no rigorous methodological framework exists yet to guide, in

a principled way, the orchestration of data preprocessing tasks

and the selection of the most adequate methods. This topic is

still an interesting, open research area. The focus of our work
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is precisely to study the impact on the analysis results of the

preprocessing methods used for selecting features, normalizing

data, and dealing with missing values and outliers since these

methods are the most frequently used in the analysis of

biomonitoring data, and even more generally, beyond this

particular application domain.

II. OVERVIEW OF OUR APPROACH FOR PRINCIPLED DATA

PREPROCESSING

Our overall approach can be summarized in Figure 1. Given

a dataset as input and a targeted analysis methods (e.g.,

clustering, regression, or classification), a clean dataset sample

is first generated with similar distributional characteristics and

the targeted statistical analysis is performed. Then, anomalies

are injected with the same proportion and distribution as in

the original input dataset; various data preprocessing tech-

niques are applied including: feature selection, normalization,

imputation of missing values, and outlier processing and the

same targeted statistical analysis is performed again over

the preprocessed data. Finally, the two sets of results are

compared based on various evaluation parameters and the

data preprocessing techniques that return the least difference

in accuracy with respect to the original clean dataset sample

is selected.The full pipeline is automated and was performed

using different packages from the R environment for statistical

computing;

A. Learning from Semi-Synthetic Data Samples

Semi-synthetic datasets are generated in order to learn

the latent characteristics that will lead the choice of the

preprocessing method that can optimize the quality of the final

result for a given analysis method.

In our use case, the synthetic dataset generation is designed

to be the most similar to our biological aquatic data as in water

quality surveys in terms of distribution, correlation, etc. In our

approach, we created clean datasets that we named “original”;

then, we polluted each original dataset by injecting anomalies

(i.e., missing values and outliers) or by voluntarily deforming

the original characteristics of the datasets. This procedure

was replicated 10 times to obtain different polluted datasets

for a better control of the randomization of our experiments.

All generated semi-synthetic datasets were flagged for better

management on subsequent treatment. Statistical analysis were

then conducted both on the clean and the polluted versions of

the datasets and the results were compared. Typically, the most

adequate preprocessing strategy would lead to the most similar

analytical results that could be obtained from the original

dataset.

Four synthetic datasets have been used to assess the impact

of feature selection, normalization and imputation procedures

on regression, classification, and clustering analysis. Each

dataset follows a normal distribution with varying numbers of

observations (n “ 21, 600, 4000, and 20000) and numerical

non-correlated variables (p “ 8, 30, 53, 98), plus one categor-

ical variable uniformly distributed into five categories.

Missing data were introduced randomly (based on MCAR)

in the numerical variable domains, for each dataset either with

varying the rate from 5%, 10%, 15%, 20%, 25% to 30% of

missing values or in the same proportions as in the original

dataset. For each missing value rate, we replicated 10 times

the generation of the datasets.

Similarly, outlying values were introduced randomly in each

of the polluted version of the datasets with the following rates

(replicated 10 times): 1.5%, 2.5%, 5%, 10% and 15% or in

the same proportions of the original dataset.

B. Data preprocessing methods

The focus of our study was on four types of preprocessing

techniques including: (1) feature selection for data reduction,

(2) data normalization, (3) imputation methods to handle

missing, and (4) outlier detection and replacement. Concerning

feature selection, three methods were tested to select an op-

timal data subset, namely: correlation-based feature selection

(CFS; [15]), linear-based correlation (LC; [9]), and wrapper

subset evaluator (WR; [16]). One variable was randomly

chosen as independent variable. Then, using each feature

selection method, we identified the best data subset with

respect to the pre-selected independent variable; Concerning

normalization, three methods were applied to numerical data:

min-max (MM), Z-score (ZS) and decimal scale normaliza-

tion (DS); Four imputation methods were used to impute

missing values from the following categories: two distance-

based imputation methods: Hot-deck (HD [20]) and K-NN
( [1]), and two model-based imputation methods: Multiple

Imputation by Chained Equations (MICE [7]) and Iterative

Robust Model-based Imputation (IRMI [19]); Outliers were

detected using four methods including: an statistic-based ap-

proach (Inter Quartile Range, IQR), two multivariate outlier

detection approaches (Adjusted-Quantile [11]), an algorithm

using Principal Components decomposition (PCOUT [12]),

and a density-based approach (Local Outlier Factor, LOF

[6]). Finally, outliers were replaced using one of the previous

imputation methods Hot-Deck, k-NN, MICE or IRMI.

C. Statistical Analysis

Our goal is to study how the way data are preprocessed can

affect the results of statistical analysis. To assess the impact

of data preprocessing on statistical analysis, we studied:

‚ Three regression methods: LASSO (Least Absolute

Shrinkage and Selection Operator), OLSR (Ordinary

Least Squares Regression), and MARS (Multivariate

Adaptive Regression Splines);

‚ Three classification methods: LDA (Linear Discriminant

Analysis), NB (Nave Bayes), and CART (Classification

and Regression Trees); and

‚ Two clustering methods: HCA (Hierarchical Clustering)

and K-means.

D. Evaluation Parameters

Next, in order to estimate preprocessing bias, we have com-

pared the statistical results obtained from each preprocessed

dataset variants by computing different parameters such as
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statistical errors as follows. For regression methods, the ob-

servations were split into a training and test set where 66% of

data was used for training and 34% for testing. The regression

model was fit to the training set, and the fitted model was used

to predict the responses for the observations in the testing

set. The resulting validation was assessed using differences

in RMSE (Root Mean Square deviation). We estimated the

preprocessing error rate by comparing the RMSE value of the

original non-polluted dataset and the preprocessed dataset.

Similarly, for classification methods, the observations were

randomly split into a training and test sets with data amounts

of 66% and 34% respectively. Classification models were

fit to the training set, and the fitted model was used to

predict the responses for the observations in the testing set.

Resulting validation of the previous step was assessed through

computation of accuracy, and Cohen’s Kappa coefficient.

Clustering analysis was performed using K-means (KM)

and Hierarchical clustering (HC) methods. To perform K-

means clustering, we first specified a number of clusters K
using the Elbow method. The Elbow method was applied

first to the original dataset and, the K number of clusters

found was then used on the processed dataset. Then, we

performed K-means algorithm with the previously specified

number of clusters. Hierarchical clustering was computed

using the Ward’s agglomeration method. Clustering results

of K-means on preprocessed data were compared against the

clustering results of the original non-deformed datasets using

the Adjusted Rand Index (AR) and Jaccard Index (JI).

III. RESULTS

A. Results for regression analysis

Results obtained on the synthetic datasets processed by

feature selection showed that in general for semi-synthetic

biomonitoring data, Linear correlation-based feature selection

has the lowest RMSE values for LASSO and OLSR regression

methods. For MARS regression, none of the three feature

selection methods stand up as the best.

With respect to datasets processed by imputation of missing

values, we observed that in general, for a high number of

missing values (25% and 30%), Hot-deck and MICE im-

putation methods give the lowest error values. LASSO and

OLSR methods are the least impacted by imputation methods

when the dataset size is greater than 100 observations and the

percentage of missing values is lower than 20%.

For outlier preprocessing, we observed that for a small

number of outlying value (1.5% and 2.5%) and small dataset

(e.g., n ă 100 observations), the combined methods PCOUT-

Hot-Deck and PCOUT-IRMI give the lowest preprocessing

bias. While for large number of outliers (5%, 10%, or 15%)

and large datasets (e.g., n ą 100 observations), PCOUT

and LOF outlier detection methods combined with imputation

methods MICE and IRMI give the lowest preprocessing bias.

We noticed that, in general, for large number of outliers

(10% and 15%) preprocessing biases were significantly higher.

For the specific characteristics of our synthetic datasets, we

observed that, in general, multivariate methods give the best

results, particularly on large datasets (i.e., n ą 400, p ą 53)

with large number of missing values and outliers. We also

observed that, simple methods (e.g., K-NN imputation method

or Inter Quartile Range) provide the best results on our small

datasets with small numbers of data anomalies. Tables I and

II show respectively the preprocessing RMSE after imputation

of missing values. The imputation method with the lowest

preprocessing error values was considered as the method that

impacted the least the statistical analysis results.

TABLE I: Data preprocessing study results on regression.

Missing LASSO OLSR MARS
rate (%) Method RMSE Method RMSE Method RMSE

5 HD 21.235 HD 42.840 HD 0
5 IR 1.601 IR 0.358 IR 0
5 KN 16.384 KN 0.274 KN 2.186
5 MI 1.052 MI 1.380 MI 0
10 HD 92.128 HD 0.460 HD 3.501
10 IR 3.798 IR 0.503 IR 1.098
10 KN 25.354 KN 0.617 KN 0.290
10 MI 82.562 MI 0.794 MI 8.417

B. Results for classification

Accuracy results on our synthetic datasets showed that the

filtering method Correlation-based feature selection can give

the most accurate results on all datasets for the three classifiers.

Concerning Kappa, the best results for LDA were observed

for the Correlation-based feature selector, whereas for NB

classification, the Linear Correlation-based feature selection

show the best results. For CART classifier, none of the feature

selection methods stand-up as the best one. CART is known to

be highly non-robust, this explains its behavior. We consider

that the correlation-based feature selection methods show the

best results on our synthetic dataset due to the characteristics

of our datasets (e.g., variables with a correlation ą 0.7,

multivariate distribution).

Concerning normalization, we observed that decimal-scale

normalization provides the best results for dataset with n ă
100 on the LDA and NB classifiers, while for datasets with

600 ă n ă 4000 , the min-max and z-score normalizations

stand up as the best for LDA and NB. Except for the datasets

n ă 4000, the z-score normalization gives the best results

when combined with CART classifier.

From Kappa results, we observed that, for small datasets

decimal-scale and z-score give the best results. While for larger

datasets (e.g., n ą 1000), there is no clear winner. Our results

suggest that the selection of a normalization method may

provide dramatically different classification results. We assume

that the difference with our results is due to the characteristics

of our datasets (e.g., distribution, size) and on the differences

of the learning style of the three classifiers.

For missing values preprocessing results show that, in

general, for small datasets (n ă 21), imputation methods Hot-
deck and k-NN give low preprocessing error rates at small

amounts of missing values (5%, 10%, and 15%). For large

datasets (n ą 1000) imputation methods IRMI and MICE

show the lowest preprocessing error values in both, accuracy

and Kappa, for the six amounts of missing values. Concerning

the preprocessing error results for Kappa, we observed that

small datasets (n ă 21) and small amounts of missing values
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(5%, 10%, and 15%) the imputation method Hot-deck have the

lowest error values on the three classification methods for the

four datasets. From these results, we could conclude that for

datasets with similar characteristics as ours and small amounts

of missing values (5%, 10%, or 15%), the imputation by Hot-
Deck will have the lowest impact on CART, LDA, and NB

classification methods.

TABLE II: Data preprocessing study results on classification.

Missing CART LDA NB
rate (%) Method RMSE Method RMSE Method RMSE

5 HD 0 HD 0.200 HD 0
5 IR 0.200 IR 0.200 IR 0.200
5 KN 0 KN 0 KN 0.200
5 MI 0 MI 0.400 MI 0.200

10 HD 0.400 HD 0.200 HD 0.200
10 IR 0.200 IR 0 IR 0.200
10 KN 0.400 KN 0.200 KN 0.400
10 MI 0 MI 0 MI 0.200

C. Results for clustering

With respect to feature selection preprocessing applied

before clustering, we observed that the Linear Correlation-

based feature selection show the best result on both clustering

methods. Concerning missing values preprocessing, in general,

it was observed that the precision of the clustering methods

reduced with an increasing amount of missing data. Our results

show that the Hot-deck and MICE imputation methods give

the best results on both clustering methods on small datasets

(n ă 21) and low missing data rates (5% and 10%). K-

Nearest Neighbour imputation method shows, in general, the

best results on K-means clustering for the synthetic datasets

and the six amounts of missing data. We observed that the

multivariate imputation methods MICE and IRMI stand up as

the best since our datasets are multivariate.

For outlying data preprocessing, no universally best method

to detect and impute outliers was observed. The impact of

detection-imputation of outliers varies for the two clustering

methods and for the synthetic datasets.

Our comprehensive study corroborates previous works [10]

[18] such that the data characteristics (i.e., distribution, skew-

ness, kurtosis, etc.) along with the assumptions of the statis-

tical method at hand play a critical role in the selection of

the adequate preprocessing methods. For instance, in order

to make a prediction, – CART method may provide some

improvements over - LDA method because CART is a non-

parametric approach (i.e., no assumptions are made about data

distribution) while - LDA classification method assumes that

observations are drawn from a multivariate normal distribution.

IV. CASE STUDY: BIOLOGICAL INDICATORS OF WATER

POLLUTION

By applying our approach we aim at responding to a

concrete applicative need in the context of water quality as-

sessment. Precisely, our goal is to identify the most appropriate

biological indicators to assess water quality of rivers. To do

so, we have collected data that describe the physico-chemical,

chemical and biological characteristics of four Mexican rivers

(Tula, Humaya, Tamazula and Culiacan). The data include: 20
parameters (macro-pollutants) that are compounds naturally

present in the rivers, necessary for the aquatic ecosystem;

micro-pollutants that are compounds that do not occur nat-

urally in the rivers (e.g., pesticides, pharmaceutical products),

and biological data. Biological data are descriptions of the

biological organisms (flora and fauna) living in rivers. We have

selected macroinvertebrates in order to compute biological

indices to assess the quality of the aquatic ecosystems of the

Mexican rivers. Macroinvertebrates have been inventoried and

the obtained list of taxa has been used to compute different

indices that provide information about the diversity, fauna

richness, and quality characteristics of the aquatic ecosystem.

A total of 35 indices were computed as proposed in [17].

Our real-world dataset has a total of 78 numerical variables

that include 20 macro-pollutants, 23 micro-pollutants and 35

biological indices.

We have performed a set of preprocessing tasks and statisti-

cal analysis to the data including: z-score normalization, impu-

tation of missing values, and outlier processing. Our datasets

contained 9.70% of missing data which were processed using

MICE imputation method. Detection of outliers was performed

using IQR method. A total amount of 7.61% of outlying values

was detected. We decided to handle outliers by imputing them

using k-NN imputation method.

To distinguish relationships among the different variables,

we have partitioned the original dataset into three datasets

named macro, micro and metals. A correlation analysis and

a PCA analysis were performed on preprocessed and non-

preprocessed datasets. The best number of clusters for the pre-

processed dataset was 9 while for the non-preprocessed dataset

was 2. When comparing PCA results, we observed a better dis-

tribution on the preprocessed dataset. Indeed, within the anal-

ysis of the preprocessed dataset, we can differentiate 3 main

clusters that were classified as: very polluted (based on

the amount of pollutants in sampling site), moderately
polluted, and clean. While for the non-preprocessed

dataset, the observations were only differentiated as very
polluted and clean. Not surprisingly, the analysis of

environmental data indicates that sites near to anthropogenic

activities (i.e., agriculture, urbanity, industries) present higher

amount of pollutants and poor aquatic biodiversity.

From the correlation matrices, we observed that out of

the 35 biological indices, only 13 are positively correlated

to macro-pollutants, 8 to micro-pollutants, and 19 to metals.

From the PCA analysis, we obtained a visualization of the

correlation between the different variables. Figure 2 shows the

first two principal components for the macro-pollutants and

micro-pollutants. We observed that some biological indices

show a negative correlation with these pollutants. This obser-

vation indicates that at high concentrations of pollutants, low

values of biological indices is observed. Such an observation

is consistent with the biological indices: certain biological

indices (i.e., BMWP, EBI, Shannon or Simpson’s indices)

show low values when poor aquatic biodiversity is observed

and we can conclude that we have a polluted aquatic system.

The Family Biotic Index (FBI) show a similar behavior

compared to the other metrics. Actually, FBI has high values
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Fig. 3: PCA biplot for micro-pollutants (biomonitoring metrics

in blue).

at high concentration levels of pollutants. As we can observe

in Figures 2 and 3, this metric is positively correlated to

the macro- and micro-pollutants. For the case of metals,

our results do not provide enough information describing

the relationship between the metals and the biomonitoring

metrics. Interestingly, depending on the data preprocessing

strategy, we may not have made the same conclusions and

this demonstrates the need for a principled approach for data

preprocessing.

V. CONCLUSIONS AND FUTURE WORK

Our approach allowed us to identify the optimal data

preprocessing strategies for each statistical method applied to

our datasets. Although there is no universally adequate data

preprocessing procedure (as it depends on many characteristics

of the dataset in terms of size, distribution, Skewness, Kurto-

sis, correlation, etc.), we were able to learn hidden features

for selecting the optimal data preprocessing for a specific

dataset and analytical task. Our experimentations covered

the most frequent data anomalies using the most general

case (datasets with multivariate normal distribution). However,

other data anomalies may appear on data (e.g., censored data,

uncertainties) or may co-occur on datasets. Further study

covering a wide spectrum of data anomalies, preprocessing

procedures and types of data is part of our future agenda.

Our experimental results show that an instantiation of the

proposed framework can be effectively used to mine the hidden

and valuable knowledge from biomonitoring data and it is

extensible to address a wider spectrum of datasets in various

application domains and the whole range of data preprocessing

and data mining techniques.
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