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Abstract

Recent studies have shown the ability of large lan-
guage models to perform a variety of tasks, includ-
ing time series forecasting. The flexible nature of
these models allows them to be used for many ap-
plications. In this paper, we present a novel study
of large language models used for the challenging
task of time series anomaly detection. This prob-
lem entails two aspects novel for LLMs: the need
for the model to identify part of the input sequence
(or multiple parts) as anomalous; and the need for it
to work with time series data rather than the tradi-
tional text input. We introduce SIGLLM, a frame-
work for time series anomaly detection using large
language models. Our framework includes a time-
series-to-text conversion module, as well as end-to-
end pipelines that prompt language models to per-
form time series anomaly detection. We investigate
two paradigms for testing the abilities of large lan-
guage models to perform the detection task. First,
we present a prompt-based detection method that
directly asks a language model to indicate which
elements of the input are anomalies. Second, we
leverage the forecasting capability of a large lan-
guage model to guide the anomaly detection pro-
cess. We evaluated our framework on 11 datasets
spanning various sources and 10 pipelines. We
show that the forecasting method significantly out-
performed the prompting method in all 11 datasets
with respect to the F1 score. Moreover, while large
language models are capable of finding anomalies,
state-of-the-art deep learning models are still supe-
rior in performance, achieving results 30% better
than large language models.

1 Introduction
Large language models (LLMs) have demonstrated an out-
standing ability to learn natural language tasks implicitly,
whether performing reading comprehension, text summa-
rization, translation, or related tasks. Radford et al. [2019];
Brown et al. [2020]; Sanh et al. [2022]; Chowdhery et al.
[2023]; Wei et al. [2022]. Moreover, LLMs have shown
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Figure 1: (left) F1 Score performances of different model types,
compared to a moving average baseline. Each category represents
a collection of models that fall under that group. For classic models,
we consider ARIMA and Matrix Profiling; for Deep Learning (DL),
we utilize AER and LSTM DT; for transformer anomaly detection
models, we look at Anomaly Transformer; lastly, for the commercial
category, we compare to MS Azure. (right) Illustration of MISTRAL
forecasts on E-2 signal from the SMAP dataset. The deviation be-
tween the signals can help identify anomalous regions.

tremendous promise for formal language generation, includ-
ing code generation and synthesis Xu et al. [2022a]; Austin
et al. [2021]; Chen et al. [2021], and in production beyond
textual output, such as generating images and videos from
natural language descriptions Saharia et al. [2022]; Koh et al.
[2023]. Testing these models on new tasks and data modali-
ties allows us to push the boundaries of LLMs and discover
their value. In this paper, we present a thorough study of
LLMs used for the challenging task of anomaly detection
from time series data, asking the question Can LLMs become
anomaly detectors for time series data? Here, LLMs are ex-
posed to a new data type – time series – and are tasked with
a detection task – different from the classification tasks in
which they are known to excel at Howard and Ruder [2018].

Recently, Gruver et al. [2023] posited that large language
models have an inherent auto-regressive feature which allows
them to be effective forecasters. In the study, the authors
fed a string representation of a time series sequence to a pre-
trained LLM. The LLM then generated the next expected val-
ues, treating time series forecasting as a next-token prediction
task. A follow-up question ari QWERT]śes: Does LLMs’
auto-regressive nature allow them to take on more complex
tasks, such as anomaly detection? State-of-the-art time se-
ries anomaly detection models using deep learning typically
include a forecasting model as one of the steps in their pro-
cess Hundman et al. [2018].



Time series anomaly detection is a regular part of day-to-
day industry operations. Identifying unusual patterns can be
a cumbersome and difficult task, especially when massive
amounts of signal must be analyzed. If LLMs are genuine
anomaly detectors, and can be employed directly in zero-
shot (without any additional training), they could serve as
off-the-shelf anomaly detectors for users, lifting a consider-
able amount of this burden. Considering that training deep
learning models is time-consuming, skipping this phase could
make anomaly detection more efficent overall.

In this paper, we present SIGLLM, a framework for using
LLMs to detect anomalies in time series data, with current
interaction support for models hosted by OpenAI 1 and Hug-
gingFace 2. Our framework includes a signal-to-text repre-
sentation component to convert time series data into LLM-
ready input. Moreover, we present two distinct approaches to
investigating our main question. First, PROMPTER is a sim-
ple and direct prompting method, which elicits LLMs to iden-
tify the parts of a sequence it thinks are anomalous. Second,
DETECTOR leverages LLMs’ ability to forecast time series
to find anomalies, by using the residual between the original
signal and the forecasted one.

Our findings, captured in Figure 1(left), show that LLMs
improve on a simple moving average baseline. Moreover,
they outperform transformer-based models such as Anomaly
Transformer Xu et al. [2022b]. However, there is still a gap
between classic and deep learning approaches and LLMs.
Furthermore, between our two approaches, DETECTOR is su-
perior to PROMPTER, with an improvement of 135% in F1
Score, as the latter suffers from false positives. We highlight
the potential of the DETECTOR approach in Figure 1(right),
which showcases an example of an LLM forecast. We can
clearly see that the LLM forecast is substantially different
from the original signal; this difference is attributed to the
presence of anomalies.

We summarize our contributions as follows:

• Propose a new application for LLMs–anomaly
detection–and study their efficacy and efficiency for
this task. We formalize a new task to present to LLMs;
namely, time series anomaly detection in zero-shot.

• Present the SIGLLM framework with a time-series-
to-text representation module and two novel method-
ologies for solving this task. We present SIGLLM
with a module to convert time series data into language-
model-ready input through a series of reversible trans-
formations. Moreover, we propose two distinct ap-
proaches for solving the problem: the PROMPTER
pipeline and the DETECTOR pipeline. As of this writ-
ing, our framework integrates propriety models such as
GPT by OpenAI and open models provided on the Hug-
gingFace transformers package.

• Provide a comprehensive and thorough evaluation of
LLM performance on this task. We conduct our exper-
iments on two prominent LLM models – GPT-3.5-turbo
and MISTRAL-7B-Instruct-v0.2 – and 11 datasets. We

1https://platform.openai.com/docs/models
2https://huggingface.co/models
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Figure 2: General principle of how machine learning models find
anomalies in an unsupervised setting. Step 1: Apply a sequence of
preprocessing operations and train a machine learning model to learn
the pattern of the data. This is the most time-consuming step; Step
2: Use the trained model to generate another time series; Step 3:
Quantify the error between what the model expects and the original
time series value; Step 4: Use this discrepancy to extract anomalies.

show that LLMs are able to find anomalies with an aver-
age F1 score of 0.525. Moreover, we compare SIGLLM
methods to 10 other existing methods including state-of-
the-art models such as AER Wong et al. [2022].

• Publish an open source software. Our code and
datasets are publicly available on github: https://github.
com/sintel-dev/sigllm.

2 Background and Related Work
Anomaly Detection Pipelines. Unsupervised machine
learning-based anomaly detection pipelines generally fol-
low the same sequence of steps, which roughly consist of
pre-processing, modeling, and post-processing abstractions
as presented in Figure 2 Alnegheimish et al. [2022]. Pre-
processing operations include scaling the time series into a
specific range, while post-processing includes computing dis-
crepancies between two sequences. A wide variety of mod-
els can be trained to learn the features of input data, in-
cluding Long-Short-Term-Memory models (LSTMs) Hund-
man et al. [2018], AutoEncoders (AE) Malhotra et al. [2016],
Variational AutoEncoders (VAE) Park et al. [2018], Genera-
tive Adversarial Networks (GANs) Geiger et al. [2020], and
Transformers Xu et al. [2022b]; Tuli et al. [2022]. These
models perform well on existing benchmarks such as Al-
negheimish et al. [2024], surpassing the performance of sta-
tistical approaches such as ARIMA Box and Pierce [1970];
Pena et al. [2013].
Transformers for Time Series. Transformers can be used di-
rectly to reconstruct time series Tuli et al. [2022]. Moreover,
the attention mechanism can be leveraged to find anoma-
lous sequences Xu et al. [2022b]. Recently, more work has
emerged adopting transformer-based models for forecasting
purposes by pretraining large transformer models on a large
corpus of time series data. FORECASTPFN Dooley et al.
[2023] pre-trains a basic encoder-decoder transformer with
one multi-head attention layer and two feedforward layers
on a synthetically generated time series dataset. Similarly,

https://platform.openai.com/docs/models
https://huggingface.co/models
https://github.com/sintel-dev/sigllm
https://github.com/sintel-dev/sigllm


TIMEGPT was pretrained on a large collection of publicly
available time series datasets. LAG-LLAMA Rasul et al.
[2023] is a decoder-only LLAMA-2 model pretrained on a
large corpus of real time series data from diverse domains.
Moreover, CHRONOS Ansari et al. [2024] adopts a T5 archi-
tecture, and parses time series data into text to pretrain their
model. Most of these models were developed with the objec-
tive of creating a time series foundation model for time series
forecasting.
LLMs for Time Series. The past several months have seen
considerable efforts toward LLM utilization for time series
data. Given the parallels between predicting the next word
in a sentence and predicting the next value in a time series,
most of these efforts have focused on time series forecasting.
One notable effort is LLMTIME where Gruver et al. [2023]
employ GPT Brown et al. [2020], and LLAMA-2 Touvron
et al. [2023] models to forecast time series data. PROMPT-
CAST Xue and Salim [2023] is a related work that translates
a forecasting problem into a prompt, transforming forecasting
into a question-answering task.
Our Work. In this paper, we work strictly with LLMs
that have been pre-trained on text, particularly a proprietary
model using GPT-3.5 Brown et al. [2020] and an open source
model using MISTRAL Jiang et al. [2023]. Our main objec-
tive is to determine whether LLMs have the ability to directly
uncover anomalies in time series data. Referring back to Fig-
ure 2, our methodology focuses on Step 2 onwards – pri-
marily the inference phase. To our knowledge, there is no
other work that utilizes large language models as zero-shot
anomaly detectors for time series data. We explore two av-
enues for accomplishing this task: (a) Through the paradigm
of prompt engineering; (b) By leveraging LLMs’ ability to
forecast time series in zero-shot without any additional data
or fine-tuning.

3 Time Series Representation
Time series data can take many different forms. In this paper,
we define a univariate time series as X = (x1, x2, . . . , xT ),
where xt ∈ Z≥0 is the value at time step t, and T is the length
of the series. To make a time series LLM-ready, we trans-
form the univariate time series X into a sequence of values
that is tokenized. We follow a sequence of reversible steps,
beginning with scaling, quantization, and processing the time
series into segments using rolling windows, and ending with
tokenizing each window. We detail these steps below.
Scaling. Time series data includes values of varying numer-
ical magnitudes, and may include both positive and negative
values. To standardize the representation and optimize com-
putational efficiency, we subtract the minimum value from
the time series xst = xt − min(x1, x2, . . . , xT ), result-
ing in a new time series Xs = (xs1 , xs2 , . . . , xsT ), where
xst ∈ R≥0. In other words, we introduced a mapping func-
tion: E : R → R≥0. This eliminates the need to handle
negative values separately.

Other scaling methods, such as min-max scaling, can be
utilized to achieve the same goal. However, reducing the set
of possible values to a smaller range (e.g. [0, 1]), may cause
a loss of information in the quantization step. On the other

hand, increasing the range will mean there are more digits to
tokenize. With our approach, we simply shift the range of
the signal values, which allows us to reduce the number of
individual digits that need to be tokenized while maintaining
the original gaps between pairs of entries. Moreover, by pro-
jecting the values into a non-negative range, we eliminate the
need for sign indicator “-/+” and save an additional token.
Quantization. Unlike the finite set of vocabulary words used
to train LLMs (32k vocab tokens for MISTRAL) 3, the set of
scaled time series values xst is infinite, and cannot be pro-
cessed by language models. Therefore, time series that are
to be used with LLMs are generally quantized Ansari et al.
[2024]; Gruver et al. [2023]. We use the rounding method, as
proposed in in Gruver et al. [2023]. Because in some cases
the number of decimal digits are redundant given a fixed pre-
cision, we round each value up to a predetermined number of
decimals, and subsequently scale to an integer format to avoid
wasting tokens on the decimal point. Hence, the input time
series becomes Xq = (xq1 , xq2 , . . . , xqT ), where xqt ∈ Z≥0.
Below is an example of this operation :

0.2437, 0.3087, 0.002, 0.462 → “244,309,2,462”

Overall, we use 2 mapping functions: the scaling function
noted E : R → R≥0 and the quantization function noted Q :
R≥0 → Z≥0. Because both mapping functions are reversible
up to a certain number of precision digits, we can always re-
construct the input time series: E−1

(
Q−1 (xqt)

)
≈ xt

Rolling windows. Because there is an upper limit on the
context length input to LLMs (e.g., MISTRAL has an upper
limit of 32k tokens and GPT-3.5-turbo has a limit of 16k to-
kens), and there are constraints on GPU memory, a rolling
windows technique is employed to manage input data that
exceeds these thresholds. This method involves segmenting
each time series into rolling windows characterized by prede-
termined lengths and step sizes; i.e., a processed time series
Xq is segmented and turned into a set {

(
xi
q1...w

)
}Ni=1, where

w is the window size and N is the number of windows. For
a cleaner notation, we refer to the set as {

(
xi
1...w

)
}Ni=1. We

drop q in the notation from this point on, as all the input is
now quantized.
Tokenization. Different tokenization schemes vary in how
they treat numerical values. Several open-source LLMs, such
as LLAMA-2 Touvron et al. [2023] and MISTRAL Jiang et
al. [2023], utilize the SentencePiece Byte-Pair Encoding to-
kenizer Touvron et al. [2023], which segments numbers into
individual digits. However, the GPT tokenizer tends to seg-
ment numbers into chunks that may not correspond directly
with the individual digits Liu and Low [2023]. For instance,
the number 234595678 is segmented into chunks [234, 595,
678] and assigned token IDs [11727, 22754, 17458]. Em-
pirical evidence suggests that this segmentation impedes the
LLM’s ability to learn patterns in time series data Gruver et
al. [2023]. To make sure GPT tokenizes each digit separately,
we adopt the approach introduced by Gruver et al. [2023],
which inserts spaces between the digits in a number.

3The exact vocabulary size for GPT-3.5-turbo has not been re-
leased by OpenAI.
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Figure 3: Visualizing the output of large language models (GPT and MISTRAL) under different variations of the transformation process. Each
row depicts the exchange-2 cpm results signal from the AdEx dataset, where the x-axis shows the timestamp and the y-axis is the
signal value. The first row indicates the ground truth anomalies present in the time series (highlighted in green). The remaining rows indicate
whether scaling and inserting space between digits has occurred during the conversion from signal to text. The gray intervals highlight the
anomalies detected under these conditions; thus, we would like to maximize the overlap between the green and gray intervals. Overall we
find that “scaling + space” is the configuration that yields a better output for GPT; and “scaling + no space” is better for MISTRAL.
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Figure 4: Anomaly detection methods in the SIGLLM framework. (a) PROMPTER: a prompt engineering approach to elicit large language
models to identify parts of the input which are anomalies. (b) DETECTOR: a forecasting approach to use large language models as forecasting
methods. DETECTOR then finds discrepencies between the original and forecasted signal, which indicate the presence of anomalies.



Continuing with the running example:

“244,309,2,462” → “2 4 4 , 3 0 9 , 2 , 4 6 2”

Where each digit is now encoded separately.
Figure 3 shows how different preprocessing steps affect the
output of the model. Overall, we find that scaling reduces the
number of tokenized digits, and yields better results than not
scaling. Moreover, GPT performs better with added space
between digits, while MISTRAL does not. These results ac-
cord with the forecasting representation presented in Gruver
et al. [2023].

4 SIGLLM: Detecting Anomalies in Signals
using Large Language Models

Given a univariate time series X = (x1, x2, . . . , xT ), and
assuming there exists a set of anomalies of varied length
A = {(ts, te)i | 1 ≤ ts < te ≤ T}mi=1 that is unknown a pri-
ori, our goal is to find a set of m anomalous time segments,
where ts and te represent the start and end time points of
an anomalous interval. We introduce two fundamentally dif-
ferent methods that can be used for anomaly detection with
LLMs: PROMPTER and DETECTOR, as visualized in Fig-
ure 4.

4.1 PROMPTER: Finding Anomalies through
Prompting

As depicted in Figure 4, this pipeline involves querying
the LLMs directly for time series anomalies through a text
prompt (as shown below) concatenated with the processed
time series window ui

1...k := prompt⊕(xi
1...w), where k is the

total length of the input after concatenation. LLMs will out-
put the next token uk+1 sampled from an autoregressive dis-
tribution conditioned on the previous tokens pθ(uk+1|u1...k).

Following a series of experiments, as shown in Table 1, we
iterated over trial #5 and arrived at the following prompt for
our study:

“You are an exceptionally intelligent assistant that detects
anomalies in time series data by listing all the anomalies.
Below is a sequence, please return the anomalies in that se-
quence. Do not say anything like ‘the anomalous indices in
the sequence are’, just return the numbers. Sequence: {the
input sequence (x1...w)}.”

Under this prompt, the LLM generates a list of values
it delineates as point-wise anomalies. It is noteworthy that
the GPT-3.5-turbo model is capable of directly outputting
anomalous indices using the prompt presented in Table 1,
while MISTRAL lacks this ability, as shown in trial #5. To
maintain consistency across our experiments, we conducted
experiments on both models using the same prompt men-
tioned above.

As explained in Section III.A, we adopt the rolling win-
dows method, segmenting the time series into rolling win-
dows before inputting it into the LLMs. For each window,
we generate 10 samples from the output probability distribu-
tion. For each sample containing values deemed anomalous
by LLMs, we collect all indices of the window correspond-
ing to those values. Then, the 10 lists of indices are merged
together: if an index appears in at least α percent of the total

number of samples, it is considered an anomaly. Finally, the
lists of detected anomalies from each window are combined
to get the final prediction using a similar criterion: an index
is considered an anomaly if it appears in at least β percent
of the total number of overlapping windows, which are esti-
mated by dividing the window size by the step size. Here, α
and β are hyperparameters, which can be tuned to improve
performance.

4.2 DETECTOR: Finding Anomalies through
Forecasting

As depicted in Figure 2, the first step in a typical ML pipeline
involves training an ML model on a collection of time series.
From Gruver et al. [2023], pretrained LLMs are capable of
forecasting time series, allowing us to jump straight to the
inference phase.
Pre-processing. As detailed in Section 3, our first step in-
volves transforming a raw input into a textual representation,
and creating samples ready for the LLM from the rolling win-
dow sequences {

(
xi
1...w

)
}Ni=1.

Forecasting. For each given window
(
xi
1...w

)
, we aim to

predict the next values (xi
w+1...w+h) where h is the fore-

cast horizon. For ease of notation, the predicted sequence
for a window i is noted as xi

h, and the lack of i indication
means it is applied for all windows. This can be achieved
through the next token conditional probability distribution
noted pθ(xh |x1...w and x ∈ Z≥0). With this approach,
we give the model the input window (x1...w), and sample
multiple sequences from the distribution to estimate x̂h ≈
E−1(G−1(xh)). This yields multiple overlapping sequences
{
(
x̂i
1...h

)
}Ni=1 at each point in time when h > 1.

Post-processing. For each time point t, we now have multiple
forecasted values x̂t in different windows when the horizon is
larger than 1, concretely {(x̂i+h

t )}. We take the median from
the collection as the final predicted value for x̂t. Further-
more, to increase the reliability of the prediction, we take n
samples from the distribution for each window i. Therefore,
each xt has n samples. To map this back to a univariate time
series, we explore the results by taking the mean, median,
5th-percentile, and 95th-percentile as values. For the purpose
of anomaly detection, an extreme forecast value could indi-
cate a precursor to an anomaly; therefore, acute values can
be informative (see Section 5.1). Now, we have reconstructed
the time series as X̂ = (x̂1, x̂2, . . . , x̂T ).

We next compute the discrepancy between X and X̂. A
large discrepancy indicates the presence of an anomaly. We
denote this discrepancy as an error signal e by computing
point-wise residuals, given their simplicity and ease of inter-
pretation. We explore the usage of absolute difference sug-
gested by Hundman et al. [2018] et = |xt − x̂t|. Moreover,
we explore how other functions, such as squared difference
et = (xt − x̂t)

2 will help reveal the location of anomalies.
More complex functions that capture the difference between

4https://numpy.org/doc/stable/reference/generated/numpy.
convolve.html

5https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.IsolationForest.html

https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html


Table 1: Examples of prompts used in PROMPTER with their respective observed output. {x1..w} is a placeholder of the actual signal values
in the given window.

Trial Prompt Observed Output

1 {x1..w}. Find the anomalies of the time series above. (1) generating code with generic stack overflow code for anomaly detection
in python with numpy’s convolve 4 or sklearn’s IsolationForest 5.
(2) could not find anomalies
(3) produced a vague answer about common approaches to finding anomalies

2 Find the range of indices that are anomalous in this series {x1..w} or (1) producing a list of indices
Given this series {x1..w}. Find the range of indices that are anomalous (2) generating code similar to trial #1

(3) could not find anomalies
(4) produced a vague answer about common approaches to finding anomalies
(5) asked ‘do you have any criteria or specific method in mind’
(6) confirmed that anomalies are values deviating significantly from the mean.
After confirming, the model digressed from the topic

3 Find the anomalous indices in this series {xts−100..te+100}. (1) producing a list of indices
where ts and te is the index of where the anomalies starts and ends, respectively. (2) could not find anomalies

4 The anomaly indices in timeseries 1 = {x1..w}1 is: {t1..k}1 (1) producing a list of indices
The anomaly indices in timeseries 2 = {x1..w}2 is: {t1..k}2 (2) claimed anomalies of timeseries 3 had been given
The anomaly indices in timeseries 3 = {x1..w}3 is: (3) could not find anomalies

(4) outputted ‘Whoa, that’s quite a lengthy time series!
What can I help you with regarding this data’

5 You are a helpful assitant that performs time series anomaly detection. GPT-3.5-turbo:
(1) producing a list of indices

The user will provide a sequence and you will give a list of indices that are (2) occasionally, words like ‘Index:’ were included
anomalous in the sequence. The sequence is represented by decimal strings (3) sometimes, the output indices exceeded sequence length
separated by commas. Please give a list of indices that are anomalous in the MISTRAL:
following sequence without producing any additional text. Do not say anything (1) produced a list of values.
like ‘the anomalous indices in the sequence are’, just return the numbers.
Sequence: {x1..w}

two signals, such as dynamic time warping Müller [2007] can
be used. However, Geiger et al. [2020] shows that discrepan-
cies found with point-wise errors are sufficient for this pur-
pose. Moreover, we apply an exponentially weighted mov-
ing average to reduce the sensitivity of the detection algo-
rithm Hundman et al. [2018]. Error values that surpass the
threshold are considered anomalous. We use a sliding win-
dow approach to compute the threshold to help reveal contex-
tual anomalies that are abnormal compared to the local neigh-
borhood. As such, we assign the window size and step size
to T/3 and T/10 respectively. We set a static threshold for
each sliding window as four standard deviations away from
the mean. These hyperparameters were chosen based on pre-
liminary empirical results that agree with previous settings in
other approaches Hundman et al. [2018]; Geiger et al. [2020];
Wong et al. [2022].

5 Evaluation
In this section, we assess our framework and seek to answer
the following research questions:

• RQ1 Are large language models effective anomaly de-
tectors for univariate time series?

• RQ2 How does the SIGLLM framework compare to ex-
isting approaches?

• RQ3 What are the success and failure cases and why?

Datasets. We examined SIGLLM on 11 datasets with known
ground truth anomalies. These datasets were gathered from
a wide range of sources, including a satellite telemetry signal
corpus from NASA 6 that includes two sub-datasets: SMAP

6https://github.com/khundman/telemanom

and MSL; Yahoo S5 7, which contains four sub-datasets:
A1, which is based on real production traffic to Yahoo sys-
tems, and three others (A2, A3, and A4) which have been
synthetically generated; and NAB 8, which includes multiple
types of time series data from various application domains.
We consider five sub-datasets: Art, AWS, AdEx, Traf, and
Tweets. In total, these datasets contain 492 univariate time
series and 2,349 anomalies. The properties of each dataset,
including the number of signals and anomalies, the average
signal length, and the average length of anomalies, are pre-
sented in Table 2. The table makes clear how properties differ
between datasets; for instance, the NASA and NAB datasets
contain anomalies that are longer than those in Yahoo S5, and
the majority of anomalies in Yahoo S5’s A3 & A4 datasets are
point anomalies.
Models. We used Mistral-7B-Instruct-v0.2
for PROMPTER and DETECTOR. Moreover, we used
gpt-3.5-turbo-instruct for PROMPTER alone. Due
to cost constraints, we explored the usage of GPT for DE-
TECTOR on a 5% sample of all datasets, which produced sim-
ilar results to using MISTRAL. We compared SIGLLM to
state-of-the-art models in unsupervised time series anomaly
detection. This includes a variety of models similar to the
ones considered in Wong et al. [2022]; Alnegheimish et al.
[2022]:

• Classic statistical methods including ARIMA, Matrix
Profiling (MP), and a simple Moving Average
(MAvg).

7https://webscope.sandbox.yahoo.com/catalog.php?datatype=
s&did=70

8https://github.com/numenta/NAB

https://github.com/khundman/telemanom
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://github.com/numenta/NAB


Table 2: Dataset Summary: 492 signals and 2349 anomalies.

Dataset # Sub-datasets # Signals # Anomalies Avg. Length

NASA 2 80 103 8686 ± 5376
Yahoo S5 4 367 2152 1561 ± 140
NAB 5 45 94 6088 ± 3150

Total 11 492 2349

• Deep learning models currently considered state-of-
the-art, including LSTM DT which is a forecasting-
based model, LSTM AE, VAE, and TadGAN which are
reconstruction-based models, and AER which is a hybrid
between forecasting and reconstruction.

• AnomalyTransformer (AT), a transformer archi-
tecture model for anomaly detection.

• MS Azure, an anomaly detection service.
These models use a wide range of underlying detection meth-
ods, which increases our anomaly detection coverage overall.
Metrics. We utilized anomaly detection-specific metrics for
time series data Tatbul et al. [2018]; Alnegheimish et al.
[2022]. Namely, we looked at the F1 score, under which
both partial and full anomaly detection are considered correct
identification.
Hyperparameters. For PROMPTER, GPU capacity means
that the maximum input window length of SMAP and MSL
is 500 values (for other datasets, it is 200 values). We chose
a step size such that, on average, a value was contained in
5 overlapping windows (i.e, 100 steps for SMAP and MSL,
and 40 for others). For DETECTOR, we set the window size
to 140 and the step size to 1. With a rolling window strategy
of step size 1, it is important to keep the windows as small
as possible while still ensuring that they are large enough to
make useful predictions, as more context tends to be useful
for LLMs. Our preliminary results suggested that a window
size of 140 was as performative as a window size of 200, and
was better than a window size of 100. We set the horizon to
5.
Computation. For GPT, we used GPT-3.5-turbo due to
its superior performance on time series data (demonstrated
by Gruver et al. [2023]) and its affordability. For MISTRAL,
we used the publicly available model hosted by Hugging-
Face 9 on an Intel i9-7920X 24 CPU core processor and
128GB RAM machine with 2 dedicated NVIDIA Titan RTX
24GB GPUs. For benchmarking, we use Intel Xeon proces-
sor of 10 CPU cores (9 GB RAM per core) and one NVIDIA
Volta V100 GPU with 32 GB memory.

5.1 Are large language models effective anomaly
detectors for univariate time series?

After running the models on the full datasets, we com-
puted the precision, recall, and F1 scores, shown in Ta-
ble 3. Overall, MISTRAL achieved better results than GPT
for the PROMPTER method, with a 2× improvement in F1
score. In addition, DETECTOR performed better overall than
PROMPTER. We investigate each approach below.

9https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

Table 3: Summary of Precision, Recall, and F1 Score

Precision Recall F1 Score

PROMPTER MISTRAL 0.219 ± 0.108 0.311 ± 0.213 0.223 ± 0.104
PROMPTER GPT 0.162 ± 0.133 0.245 ± 0.191 0.133 ± 0.076
DETECTOR 0.613 ± 0.184 0.514 ± 0.211 0.525 ± 0.167

Ablation Study
PROMPTER. The PROMPTER approach originally produced
an extremely high number of anomalies. We introduced the
α and β hyperparameters to filter the end result. We per-
formed an ablation study to test multiple combinations of α
and β values on the F1 score. For some windows, the LLMs
consistently outputted more than half of the window values
as anomalous; thus, we discarded the predicted results of all
windows containing all 10 samples, which was more than
50% of the windows. Fig 5 shows detection F1 scores from
different combinations of α and β values. We observed that
on all datasets, for MISTRAL, α = 0.4 and β = 0.9 yielded
the best F1 score; for GPT, α = 0.2 and β = 0.9 yielded the
best F1 score as shown in Fig 5.
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Figure 5: Optimizing the choice α and β values based on the average
F1 scores on all datasets.

DETECTOR Since we sampled multiple instances from the
probability distribution (namely 10 samples in our experi-
ments), we obtained a possible range of values that could be
assigned to each particular point in time. We studied a multi-
ple aggregation function to recreate a one-dimensional signal.
Table 4 shows the detection F1 score when the signal is recre-
ated from mean, median, 5th-percentile, and 95th-percentile
values of the predicted distribution. Moreover, we consider
different error scores under smoothing operation and without.

We can see that, on average, squared error with smoothing
on the median signal produced the best score, even though it
was not the best performer on any individual dataset. The
best configuration proved to be different for almost every

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2


dataset, with squared error producing the best results on Ya-
hoo S5, and absolute error on NAB. One interesting obser-
vation is that the signal reconstructed from the 5th/95th-
percentile showcased higher potential in revealing the loca-
tion of anomalies.

5.2 How does the SIGLLM compare to existing
approaches?

Table 5 highlights the F1 score obtained for each of the 11
datasets.
LLM-based methods can outperform transformer-based
methods by 12.5%. Comparing DETECTOR to AT, which is
a transformer-based method, we see DETECTOR outperforms
AT in 7 out of the 11 datasets. However, this observation is
only relevant to DETECTOR.
LLM-based methods can perform surprisingly well. Our
methods achieved an F1 score 14.6% higher than that of
MAvg, and only 10.9% lower than that of ARIMA which
is a reasonable model. Moreover, the DETECTOR pipeline
alone surpasses MAvg performance in 6 out of 11 datasets,
and ARIMA in 4 out of 11 dataset. We can best see the po-
tential of DETECTOR in the Tweets dataset, where the gap
between the LLM’s result and the highest result (from MAvg)
is minimal, at only 1.8%.
AER, the current best deep learning model, is 30% bet-
ter than LLM-based approaches. Deep learning methods
still perform better than LLM-based methods by 18% on
average. Looking more closely at DETECTOR shows that it
does not perform as well as deep learning models, achieving
a 30% lower score than that of the highest performing model
(AER) and a 5% lower score than the that of least performa-
tive model (VAE). Moreover, LLMs do not hold the highest
score for any dataset. It is clear that there is a significant gap
here, and an opportunity for improvement.

In the following section, we aim to address where the
LLMs succeeded at this problem and where they fell short.

5.3 What are the success and failure cases and
why?

Figures 6 and 7 illustrate example outputs for both the
PROMPTER and DETECTOR methods, respectively. We fo-
cus on MISTRAL since it yielded better overall results than
GPT, as depicted in Table 3.
Success Cases. For both signals shown in Figure 7, DETEC-
TOR correctly identified all the anomalies, with only one false
alarm in the second signal. The PROMPTER approach is able
to detect outliers and locally extreme values a lot more ef-
fectively than anomalies that are buried within the signal. For
example, if the window is “244 , 309 , 2 , 462”, both GPT and
MISTRAL point to “2” as the observed anomaly. However,
this problem becomes more ambiguous when the context is
larger. As seen in Figure 6 on Twitter volume AMZN signal,
PROMPTER identified some locally extreme values as anoma-
lous. Oddly enough, it also missed some anomalies that were
global outliers.
Failure Cases. Even though DETECTOR correctly identified
all anomalies in the example shown in Figure 7, the forecast
itself struggled to capture the non-stationary aspects of the
signal, particularly its trend. This is due to the sensitivity of

LLMs to context length. A window size larger than 140 is
needed to capture this property. While it did not impact the
detection in this case, this may explain failure cases in other
signals.

PROMPTER raised a large number of false alarms, with an
average precision of 0.219. Using the filtering method de-
scribed in Section 4.1 does not eliminate false positives. An
alternative strategy could be to use log probabilities as a mea-
sure of confidence for filtering. We recommend exploring this
avenue in future work.

6 Discussion
Prompting Challenges. Over a three-month experimental
period, various prompts were employed, as laid out in Ta-
ble 1. It is evident that both GPT and MISTRAL fail to pro-
duce the desired responses unless a chat template is applied
that attributes roles to the user and the system. Furthermore,
to ensure the exclusivity of numerical values in the generated
responses, in addition to specifying in the prompt to “just re-
turn numbers,” we adjusted the likelihood of non-numerical
tokens appearing in the output generated by the LLMs.

Under the ‘find indices’ prompt, GPT may generate lists
of indices; however, these indices frequently surpass the se-
quence length. Conversely, MISTRAL yields values instead
of indices when utilizing the same prompt. Therefore, for our
experiment, we altered the prompt to include ”find values”
rather than ”find indices.”

Unlike MISTRAL, GPT outputs a “repetitive prompt” error
when presented with a series of identical values within a win-
dow. This happened particularly for NASA datasets (there are
23 signals in SMAP and 13 in MSL with this error, affecting
up to 85% of the windows). In this experiment, we deemed
such windows as having no detectable anomalies, obtaining a
true positive of zero.
Addressing Memorization. Large language models are
trained on a vast amount of data. The training data for most
models – for instance, those provided by OpenAI – is com-
pletely unknown to the general public, which makes evaluat-
ing these models a nuanced problem. Given that large lan-
guage models, especially GPT models Chang et al., are no-
torious for memorizing training data Biderman et al. [2023],
how do we ensure that there was no data and label leakage
for the benchmark datasets used? We posit that our transfor-
mation of the time series data into its string representation
is unique, essentially making the input time series different
from its original form and reducing the chances of blatant
memorization. Moreover, unlike with the forecasting task,
the task of anomaly detection is not inherent to the training
convention used, which is next token prediction.
Practicality of Usage. The appeal of using LLMs for this
task lies in their ability to be used in zero-shot, without ne-
cessitating any fine-tuning. However, this property is bot-
tlenecked by the latency time. Figure 8 illustrates the av-
erage time it takes to use LLMs for each of the suggested
approaches. It is unreasonable to wait half an hour to two
hours for the model to produce a response, especially when
deep learning models take less than an hour to train. Since
these experiments were run in an offline setting, we can ex-



Table 4: F1 Score of all variations of DETECTOR

NASA Yahoo S5 NAB

Variation MSL SMAP A1 A2 A3 A4 Art AWS AdEx Traf Tweets µ± σ

AE

with smoothing

mean 0.277 0.384 0.537 0.387 0.000 0.000 0.400 0.329 0.640 0.444 0.586 0.362 ± 0.199
median 0.269 0.384 0.538 0.387 0.000 0.000 0.400 0.312 0.696 0.480 0.593 0.369 ± 0.210
5% 0.294 0.400 0.542 0.387 0.000 0.000 0.400 0.308 0.727 0.417 0.615 0.372 ± 0.214
95% 0.254 0.396 0.532 0.387 0.004 0.005 0.400 0.289 0.696 0.348 0.655 0.361 ± 0.214

w/o smoothing

mean 0.412 0.350 0.563 0.762 0.060 0.129 0.235 0.282 0.625 0.368 0.325 0.374 ± 0.200
median 0.412 0.337 0.572 0.762 0.060 0.127 0.235 0.286 0.625 0.359 0.333 0.373 ± 0.201
5% 0.429 0.353 0.564 0.759 0.040 0.123 0.235 0.284 0.621 0.400 0.350 0.378 ± 0.203
95% 0.406 0.337 0.608 0.765 0.114 0.167 0.235 0.288 0.600 0.387 0.342 0.386 ± 0.190

SE

with smoothing

mean 0.316 0.414 0.551 0.673 0.004 0.016 0.364 0.344 0.643 0.424 0.719 0.406 ± 0.228
median 0.316 0.414 0.560 0.671 0.008 0.016 0.364 0.352 0.667 0.412 0.730 0.410 ± 0.232
5% 0.333 0.400 0.552 0.662 0.000 0.014 0.364 0.362 0.621 0.400 0.730 0.403 ± 0.227
95% 0.306 0.431 0.577 0.688 0.023 0.064 0.364 0.318 0.593 0.345 0.762 0.406 ± 0.225

w/o smoothing

mean 0.344 0.257 0.567 0.828 0.324 0.315 0.333 0.279 0.541 0.280 0.220 0.390 ± 0.174
median 0.344 0.247 0.583 0.824 0.323 0.315 0.333 0.281 0.541 0.259 0.220 0.388 ± 0.176
5% 0.358 0.241 0.563 0.828 0.294 0.290 0.333 0.279 0.556 0.286 0.220 0.386 ± 0.178
95% 0.390 0.238 0.615 0.796 0.376 0.363 0.235 0.287 0.588 0.293 0.246 0.402 ± 0.176

Table 5: Benchmark Summary Results depicting F1 Score.

NASA Yahoo S5 NAB

Pipeline MSL SMAP A1 A2 A3 A4 Art AWS AdEx Traf Tweets µ± σ

AER 0.587 0.819 0.799 0.987 0.892 0.709 0.714 0.741 0.690 0.703 0.638 0.753 ± 0.109
LSTM DT 0.471 0.726 0.728 0.985 0.744 0.646 0.400 0.468 0.786 0.585 0.603 0.649 ± 0.161
ARIMA 0.525 0.411 0.728 0.856 0.797 0.686 0.308 0.382 0.727 0.467 0.514 0.582 ± 0.176
MP 0.474 0.423 0.507 0.897 0.793 0.825 0.571 0.440 0.692 0.305 0.343 0.570 ± 0.193
TadGAN 0.560 0.605 0.578 0.817 0.416 0.340 0.500 0.623 0.818 0.452 0.554 0.569 ± 0.142
LSTM AE 0.545 0.662 0.595 0.867 0.466 0.239 0.667 0.741 0.500 0.500 0.475 0.569 ± 0.158
VAE 0.494 0.613 0.592 0.803 0.438 0.230 0.667 0.689 0.583 0.483 0.533 0.557 ± 0.143
AT 0.400 0.266 0.571 0.565 0.760 0.576 0.414 0.430 0.500 0.371 0.287 0.467 ± 0.138
MAvg 0.171 0.092 0.713 0.356 0.647 0.615 0.222 0.408 0.880 0.157 0.776 0.458 ± 0.266
MS Azure 0.051 0.019 0.280 0.653 0.702 0.344 0.056 0.112 0.163 0.117 0.176 0.243 ± 0.225

PROMPTER MISTRAL 0.160 0.154 0.194 0.235 0.338 0.336 0.370 0.268 0.000 0.135 0.257 0.223 ± 0.104
PROMPTER GPT 0.049 0.110 0.143 0.078 0.157 0.195 0.154 0.194 0.133 0.133 0.197 0.133 ± 0.076
DETECTOR 0.429 0.431 0.615 0.828 0.376 0.363 0.400 0.362 0.727 0.480 0.762 0.525 ± 0.167

pect that real-time deployment would be more sensible, espe-
cially since the context size is much smaller, eliminating the
need for rolling windows. In other cases, a single window
would be sufficient, which takes approximately 5 seconds to
infer depending on the window size.

In total, running PROMPTER experiments using the
gpt-3.5-turbo-instruct version has cost us approx-
imately $834.11 – an average of $1.69 per signal. For DE-
TECTOR, we ran a small-scale experiment where we sampled
22 signals of the data, roughly 5%. The total reached $95.08
– an average of $4.3 per signal – making DETECTOR a more
expensive method than PROMPTER.

7 Conclusion
In this paper, we present large language models with a new
and challenging task: detecting anomalies in time series data
with no prior learning. To this end, we propose two meth-
ods, PROMPTER and DETECTOR, covering the prompting
and forecasting paradigms respectively. We demonstrate that
LLMs can find anomalies through the forecasting paradigm
(DETECTOR method) more accurately than they can through
the PROMPTER method. We present SIGLLM, a framework

for converting signals into text, enabling LLMs to work with
time series data. A major weakness of LLMs is their limited
context window size. In SIGLLM, we rely on rolling win-
dows to chop the time series up into smaller segments. This is
both inefficient and costly. Moreover, it seriously challenges
the possibility of expanding the framework to work with mul-
tivariate time series. As LLMs rapidly advance, more mod-
els can handle larger context sizes; however, they do not yet
have the capacity to handle time series data without segmen-
tation. Even with their limited capability, LLMs are able to
beat a well-known transformer method, and to approach the
performance of classical methods when tested against 492
signals. They fall short of deep learning models by a fac-
tor of ×1.2. In anomaly detection, post-processing strategies
are critical for revealing the locations of anomalies. In future
work, we plan to investigate post-processing functionalities
that can help PROMPTER filter false alarms. Similarly, we
plan to conduct a thorough exploration of error functions that
bring out anomalies for DETECTOR.
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Figure 6: Examples of anomalies identified through
PROMPTER. While the model was able to find anoma-
lies, the number of false positives was high, and there were
false negatives.
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Figure 7: Examples of anomalies successfully identified by DE-
TECTOR. Even though the model did not capture the trend
present in synthetic 58, it still managed to find the anoma-
lous intervals.
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Figure 8: Recorded time for PROMPTER and DETECTOR. (left) On
average, DETECTOR takes the longest to infer, almost double the
time of PROMPTER. (right) Distribution of signal length and execu-
tion time.
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