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ML Revolutionizes Industry

Security and Surveillance

Facial and character recognition, automatic  Manufacturing

fraud detection, plagiarism detection, optimizing fab operations, automating
quality testing, inventory, asset, and supply
chain management, predictive
maintenance, etc.

eHealth

Automate screening tool for
medical imagery diagnostics,
bio-augmentation, etc.

Machine
Learning
lications

A

Smart eCommerce
Product recommendations,
demand forecasting, search,
classification, matching, etc.

Personal assistant
Predictive help, automatic
speech recoghnition, dialog
management, etc.

Digital Marketing
User conversion prediction,
Ad scoring, customer
targeting, brand tracking, viral
marketing analysis, etc.
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Machine Learning and Databases:
The Sound of Things to Come or a Cacophony of Hype?

@ ACM SIGMOD Blog
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2nd Workshop on Data Management
for End-to-End Machine Learning

To kick start the conversation on research at the cross hairs of ML and data, we
interviewed Luna Dong (Amazon Research), Alkis Polyzotis (Google), Jens Dittrich
(Saarland University), Arun Kumar (University of California, San Diego) and Peter
Bailis (Stanford University). Below you will find their bios. We selected this diverse set
of academic and industrial, systems and theoretical researchers to better understand
the quickly evolving research field of Machine Learning and Database Systems. We
asked them about their motivation for working in this field, their current work and
their view on the future. We summarize our interviews along the following four
questions.

[SIGMOD Blog, Feb. 2018]

[workshop@SIGMOD]
SIGMOD Record 2016]



Introduction

Many problems in data management need precise
knowledge and reasoning about information content
and linkage for tasks as:

— Information and structure extraction

(_ Data curation

— Data integration Our focus

L — Querying & DB administration

— Privacy preservation

— Data storage

Many DM tasks can be reformulated as a classification
or an optimization problem.



Tutorial Goals

* Offer a comprehensive review of ML applications to
specific areas of data management: data curation,
integration, querying, and DB tuning

* Analyze when and how ML might be leveraged for
developing new areas of data management

* Analyze how data management could help ML
workflows and data pipelines and contribute to ML

advances



Our Tutorial is NOT

A tutorial on ML pipelines, systems or techniques

=>» [Kumar, Boehm,Yang, Tutorial SIGMOD’17]
[Polyzotis et al., Tutorial SIGMOD’ 7]

Not trying to cover all domain-specific methods

Not specific to data integration or curation
= [Dong, Rekatsinas, coming Tutorial SIGMOD’18]

Not specific to Deep Learning

Not exhaustive for the sake of conciseness




Our Focus: ML applications to DM
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Main Takeaways

* Roadmap of existing ML-powered data
management solutions

* Overview of open research problems

* Directions for cross-fertilization in ML and DB



ML for Data Management:
A Round Trip

PART |

Laure Berti-Equille
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Outline

Introduction

* SWOT Analysis
Part |- ML-Powered Data Curation

* Record Linkage, Deduplication, Entity Resolution
* Error Repair and Pattern Enforcement
* Data and Knowledge Fusion

* Concluding Remarks and Open Issues
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Outline
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SWOT Analysis (1)

STRENGTHS

WEAKNESSES

OPPORTUNITIES

THREATS

13



SWOT Analysis (2)

STRENGTHS EXAMPLES

l. Leverage diverse signalsl To manage multimedia and cross-modal data:
data with semantically * Information extraction, Slot Filling, KB Construction
. . [Shin et al., 2015][Wu et al., SIGMOD’ [ 8]
rich representatlons * Cross-modal information retrieval

* Complex event summarization
* Cross-modal synthesis of medical images
* Automatic image/video labeling

Embeddings, multiple views, hierarchical

. . representations
2. Various technlques for * Large-scale networks representation

learning representations [Tang, KDD’ 17 tutorial]
* Text representation and classification

e Recommendation
* Link prediction
* Visualization
14



SWOT Analysis (3)

STRENGTHS

3. Optimization

4. Cost reduction

5. Good alternative to
heuristics

EXAMPLES

To deduplicate, repair, or fuse data:
* SCARE [Yakout et al., 201 3]

* HoloClean [Rekatsinas et al.,2017]
* SLiMFast [Jogleakr et al., 2017]

To build large-scale knowledge graph:
* ML-based relation extraction can automatically
generate large amount of annotated data and

extract features via distant supervision [Mintz
et al., 2009] reducing annotating cost

To optimize queries & tune DB: (cf. Part )

* Complicated heuristics for estimating
selectivity and query plan cost could be
replaced and learn dynamically

* Regression-based automatic profiling/tuning

(demo Dione [Zacheilas et al., ICDE’ 18] "



SWOT Analysis (4)

WEAKNESSES EXAMPLES

|I. Obtaining training data is costly « Data annotation and preprocessing
bottlenecks: For self-driving cars, 3 million

miles of driving data have to be annotated.

Assumptions Very Conservative estimate
Fleet size 100
Duration of data collection 1 working year / 8h
Volume of data generated by a single car 1TB/h
Data reduction due to preprocessing 0.0005
Research team size 30
Proportion of the team submitting jobs 20%
Target training time 7 days
Number of epochs required for convergence 50

Calculations

Total raw data volume 203.1 PB
Total data volume after preprocessing 104 TB
Training time on a single DGX-1 Volta system (8 GPUs) 166 days (Inception V3)
113 days (ResNet 50)21 days
(AlexNet)
Number of machines (DGX-1 with Volta GPUs) required to achieve target training time 142 (Inception V3)
for the team 97 (ResNet 50)
18 (AlexNet)

https://devblogs.nvidia.com/training-self-driving-vehicles-challenge-scale 16




SWOT Analysis (5)

WEAKNESSES

I. Obtaining training data is costly

2. Finding or coding evidences into
features is hard

Feature Space

Input Space

3. Scaling to Terabytes-size datasets
with millions of variables is not easy

4. Model interpretability is limited

EXAMPLES

Data annotation and preprocessing

bottlenecks
» Training data generation: Snorkel [Ratner et al.,

NIPS'17] (cf. PartIl)
» Crowdsourcing automation for labeling training data

suffers from inconsistent quality because expertise is
hard to get.
» Data integration and curation are required but
generally ad-hoc to get clean training data with well-
defined features relevant for the ML models.
Deep model training is computationally-
expensive. Techniques for “Learning to learn”,
and hyper-parameter optimization can multiply
training computation by 5-1000X. [Marcus, Arxiv,
2018]
Understand the decisions of Convolutional
Neural Network is not straightforward

Human beings usually cannot fully trust a network,

unless it can explain its logic for decisions (NIPS 2017
Interpretable ML Symposium: http://interpretable.ml/ ) 4




SWOT Analysis (6)

OPPORTUNITIES

I. Revisit DBMS design, techniques
and the whole “DBMS

abstraction’ [Dittrich, Keynote VLDB'17]

“ML hardware is at its infancy.”
[Dean, NIPS 2017]

http://learningsys.org/nips | 7/assets/slides/dean-nips | 7.pdf

What about ML DBMS!?

2. Apply core-DB technologies to
ML workloads

EXAMPLES

To improve components of a DB system:
* Learned Index structure [Kraska et al.,2017]
* NoDBA project [Sharma et al., 2018]
using reinforcement learning to tune a
database as a virtual database administrator

Automated testing of DB applications:
ETL regression testing [Dzakovic, XLDB’|8]
When releasing ETL upgrades, the stakes are high: a
single defect can spoil the data in the DB, and the
worst-case recovery from a backup would take days

Principled data curation and preprocessing for
ML

18



SWOT Analysis (7)

THREATS

|. Learning from dirty data is risky
2. Bad feature engineering

3. Minority class problem in unbalanced dataset

TRAINNG
[ seYv

Garbage
In

7
=»Principled data curation e w » Garbage
=>» Feature importance evaluation DATA Out

=» Good preprocessing : Under/over-sampling, SMOTE or boosting 19



SWOT Analysis (8)

Learning from noisy labels is a hot topic in ML
[Natarajan et al., NIPS’ | 3]
corrupted data p=.2 p=.4 rate par class
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SWOT Analysis (9)

THREATS

4. Adversarial Learning
[Xiao et al., Neurocomputing 2014][Biggio et al., ICML |2]

Poisoning Attacks on SVM

Linear kernel RBF kernel Linear kernel
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SWOT Analysis: A Summary (10)

oW

STRENGTHS

Leverage diverse signals/data with
semantically rich representations

WEAKNESSES

. Training data annotation and preprocessing is

costly

Various techniques for learning 2. Finding/coding evidences into features is hard
representations 3. Scaling to TB-size datasets with millions of
Good alternative to heuristics variables is Cha”enging
Optimization with objective functions 4. Model interpretability can be limited
Reduction of annotating cost

OPPORTUNITIES THREATS
Revisit design, techniques, and “DBMS |. Learning from dirty data is risky
abstraction” 2. Bad feature engineering
Apply core-DB technologies to ML 3. Minority class problem in unbalanced dataset

4. Adversarial Learning

workloads

22



Outline

Introduction

* Motivations
* SWOT Analysis

Part |- ML-Powered Data Curation

* Record Linkage, Entity Resolution, Deduplication
* Error Repair and Pattern Enforcement
* Data and Knowledge Fusion

* Concluding Remarks and Open Issues
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Record Linkage (RL): Generic Workflow

Database R
Will Forth 354-564-339 Ada Bd
Jacky Khan 435-232-129 Marple Street
Dom Hack 235-575-689 Main Street
Database S ﬁ
Jack Khan 435-223-129 Marple St
Hans Ford 354-564-339 Clover Bd
Tom Hack 235-557-689 Main St

{comparison vectors }@

[Fellegi, Sunter, 1969]
[Christen, 2012]

/‘ Cleaning \;
| . . '+ Hashing
( Abuesdecion ) < Sore s
* Sorted NN
* (Multiple) Windowing
* Clustering

{palrs} @

< Record pair \

Token-based : N-grams...

Distance-based: Jaro, Edit,
Levenshtein, Soundex

Domain-dependent

\

-

L
|

Linkage decision: RL(pair) =

P(vector | pair € Match)
P(vector | pair € Non Match)

U
|

~

l I
- [N porencaivateh [ Mach

—> RL(pair)

/
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ML for Entity Resolution (ER)

[Getoor, Machanavajjhala, Tutorial VLDB’ | 2]
[Christen, 2012]

\/

u—.—m—-—au—-&

25



ML-based ER approaches (1)

[Papadakis, Palpanas, Tutorial ICDE’| 6]
Blocking /

->\ Unsuper — Attribute-clustering blocking [Papadakis et al., TKDE 2013]
Block-clustering [Fisher et al, KDD’I5]

Niiend /— Learning blockers [Bilenko et al.,ICDM’06]

>\ A /— Crowdsourcing [Wang etal,VLDB'I2][Gokhale et al., SIGMOD'14]

26



ML-based ER approaches (2)

Decision Model ) ML Variants of the Fellegi-Sunter model

A

Unsuper-
vised

—>\ Supervised /—

N

Active

4

Clustering [Chaudhuri et al., ICDE’05][Hassanzadeh et al., PVLDB’09]
Collective ER [Battacharya, Getoor, TKDD’07]

Regression Classification [Hu et al, 2017]
SupportVector Machines  [Bilenko, Mooney, KDD'03]
Decision Trees [Chaudhuri et al.,VLDB07]

Conditional Random Fields [Singla, Domingos, PKDD’05]
[Gupta, Sarawagi,VLDB’09]

Committee of classifiers [Sarawagi, Bhamidipaty, KDD’02]

Ensemble of classifiers [Chen et al., SIGMOD’09]

[Bilenko, Mooney, KDD’03]
[Tejada et al. KDD’02] 27



Pioneer ML-based Deduplication

[Sarawagi, Bhamidipaty, KDD’02]
[Koudas, Srivastava, Sarawagi, Tutorial SIGMOD’06]

Training examples

Ji

£ ...

b

<—— Similarity distance functions

Customer 2

Customer 3

Customer 5

Customer1 D

Customer 1 N

Customer4 D

4

Unlabeled list

Customer 6
Customer 7
Customer 8
Customer 9
Customer 10

Customer 11

4

1.0 04 ...0.2| 1
0.0 0.1 ..0.3| 0
0304 .04 1
0.0 0.1 ..0.3| ?
1.0 0.4 ..0.2] ?
0.6 0.2 ..0.5| ?
0.7 0.1 ..0.6| ?
0.3 04 ..04| ?
0.0 0.1 ..0.1} ?

=

-

N

Classifier }

Learnt Rule: All-Ngrams*0.4
+ CustomerAddressNgrams*0.2
— 0.3EnrollYearDifference
+ 1.0*CustomerNameEditDist
+ 0.2*NumberOfAccountsMatch —3 >0

Learners:
SVMs: high accuracy with limited data [Christen, 2008]
Decision trees: interpretable, efficient to apply
Perceptrons: efficient incremental training

[Bilenko et al., 2005]
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ML-based ER approaches (3)

Decision Model ) Learning similarity functions and thresholds

N

\

Active

-

Sampling and labeling

- Active sampling/learning  [Qian et al,, CIKM’17]

[Arasu et al., SIGMOD’10]
[Bellare et al.,, KDD’ 2]

Crowdsourced ER

- Crowdsourcing algorithms for ER [Vesdapunt et al.,VLDB’14]
o CrowdER [Wang et al,VLDB’I2] [Wang et al., SIGMOD’|3’]

- Corleone [Gokhale, et al., SIGMOD’14]

29



Human-In-The Loop for Entity Matching

[Doan et al., HILDA@SIGMOD’17]

Magellan project: Lessons learnt for How-to Guide for EM

Development

stage —

Tables
A, B

/ Problem "
definition/

Data
profile

L

How-to ;il Power

~\_ profile

guide user
|
' |
—»| Stepl | —>| Step2 |—> - Stepn [—*
Pain point
£S5
ST

EM requirements
(accuracy, runtime, etc.)

|

f ‘ EM \
\ workflow /

30



Human-In-The Loop for Entity Matching

[Doan et al., HILDA@SIGMOD’17]

Magellan project: Lessons learnt for How-to Guide for EM

A

—_—

| sample ,
B / B

]

down - >blocker—

A\
/N
\

A!

X

>b|ocker-o C

A!

blocker— D
Y

S—

Select the best blocker: X, Y

|

matcher —

v+ o+

PN~ P P~
' ' '
- ' 1 - .
[ ' '

|

e
c
-
<

+

cross-validate
matcher U

0.89 F, (--) +
> (--) -
0.93 F, (=) +
cross-validate
matcher V

Select the best matcher: U, V 31




ERBlox with ML and Matching
Dependencies

[Bahmani et al., SUM’|5]

> -
ML- Based Trained
. ‘9[ Classification ] 10 [ Classifier ] MD- Based
(training) Mergmg
ﬁll Similarity
Files ‘. [ Computation 13 /

MD- Based 12 [ Similarity

— Computation

Matching dependency ¢ for R1 and R2 : Ajcpi k) (Ri[X1[j]] =5 Ro[Xa[j]]) — Ri[Z1] = Ra[Z3],

32



Deep learning for ER (1)

Match
Record — Relevant word Word H DNN H Siary <
pair extraction embedding classification UnMatch

FastText MLP. LSTM, CNN

) [Kooli et al., ACIIDS’ 18]

https://www.pagesjaunes.fr/

—Renseignements Téléphoniques PagesJaunes — )
204

Record 1 rd-pt Pont de Sévres
92100

— BOULOGNE BILLANCOURT

- PAGESJAUNES
204
DU PONT DE SEVRES
92100

Record 2

]| J | | | J

Word embedding Convolutional hidden layers Pooling layer Fully
using several filters + (max-pooling, connected
activation layer (ReLU) avg-pooling) layer

33



Deep learning for ER (2)

Match
Record Relevant Yvord Word. DNN Bl.n'ary.
pair extraction embedding classification UnMatch
GloVE LSTM-RNN
tuplet | Al..Ap..Am DeepER [Ebraheem et al.,Arxiv 2017]
l Embedding lookup
layer
Composition Similarity Dense Classification
wl '—"I i "' — (avg, LSTIM) layer layer layer
! layer
Words wi *»I -------- |—> -------
wi )] --------

— — @

Words vi )—»] ----:---- | —--------
vk —»l----'----/

tuple t’ Al ... Ap ... AIn

34




Recent Results

* Evaluation of ER with adaptive importance sampling
[Marchand, Rubinstein,VLDB’ | 7]

OASIS OASIS: a tool for efficient evaluation
Owatch 2 of classifiers

Navigation

Installation .

OASIS Ovetrview

Other samplers
API Reference

OASIS s a tool for evaluating binary classifiers when ground truth class labels are not

immediately available, but can be obtained at some cost (e.g. by asking human annotators).

Tuorial The tool takes an unlabelled test set as input and intelligently selects items to label so as to
. provide a precise estimate of the classifier’s performance, whilst minimising the amount of
Quick search . . ) ) . )
labelling required. The underlying strategy for selecting the items to label is based on a
technique called adaptive importance sampling, which is optimised for the classifier performance
Go measure of interest. Currently, OASIS supports estimation of the weighted F-measure, which

includes the Fl-score, precision and recall.

* Outside the DB sphere:

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

Machine Learning for Entity Coreference Resolution:
A Retrospective Look at Two Decades of Research

Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas
Richardson, TX 75083-0688
vince @ .hlt.utdallas.edu

35




Outline

Introduction

* Motivations
* SWOT Analysis

Part |- ML-Powered Data Curation

* Record Linkage, Entity Resolution, Deduplication,
* Error Repair and Pattern Enforcement
* Data and Knowledge Fusion

* Concluding Remarks and Open Issues

36



ML-Based Repairing

Semi-automatic techniques for:

Pattern enforcement
o Syntactic patterns (date formatting)

O Semantic patterns (name/address)

Value update to satisfy a set of rules, constraints, FDs,
CFDs, Denial Constraints (DCs), Matching Dependencies
(MDs) with minimal number of changes. [llyas, Chy,2015]
Value imputation with statistical methods to replace
outliers or missing values

Data fusion

37



Febrl: Data standardization with HMM

[Churches et al., 2002]
[Christen et al., 2002]

( R
HMM for Address Standardization Selection of representative training data
2 _ "17 Epping St Smithfield New South Wales 2987" |
0.9 Wa@ k ( ‘{vl;’ \
0.02‘”";.'35' Tokenization based on Look-up Tables
: ['17', 'epping’, 'street’, 'smithfield’, 'nsw', '2987" ]

008 |Wayfare
Name - JV|7 ~
- ; Tagging
[NU', LN, 'WT", ‘LN, 'TR’, 'PC']
Fromstate Sure Viayare | Woyae | Worwe  Jowly femeny besl 221 | number-locality name-wayfare type-locality name-territory-postal code
'umbe! ame Type ame Code k i )
Start 0 0.9 0.08 0 0.02 0 o o \lvl/
vower | | ’ ’ oo Frequency-based Maximum Likelihood Estimates )
Waylare |0 of s o) o o0 8¢ = 262,144 possible combinations of hidden states
‘Wayfare 0 0 0 0 0.95 0.03 0.02 0
z“’er * Start -> Wayfare Name (NU) -> Locality Name (LN) -> Postal Code (WT) ->
ocality . .
name s _ _ Territory (LN) -> Postal Code (TR) -> Territory (PC) ->End
b A | Pl il e Dol sl b B b 0.08 x 0.01 x 0.02 x 0.8 x 0.4 x 0.01 x 0.1 x 0.01 x 0.8 x 0.01 x 0.1 x 0.01 x 0.2 = 8.19 x 107
PO:al Code NU - 0.9 0.01 0.01 0.01 0.01 0.1 -
En
- . e e n e W e Start -> Wayfare Number (NU) -> Wayfare Name (LN) -> Wayfare Type (WT) -
N : oot 01 oo o8 oo oo - > Locality (LN) -> Territory (TR) -> Postal Code (PC) ->End
™ : oot 007/ 001  oor 0% oo - 0.9 x 0.9 x 0.95 x 0.1 x 0.95 x 0.92 x 0.95 x 0.8 x 0.4 x 0.94 x 0.8 x 0.85 x 0.9 = 1.18 x 102
PC - 0.04 0.01 0.01 0.01 0.01 0.85 - )
UN - 0.02 0.31 0.03 0.06 0.01 0.01 - }

http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc-0.3/node24.html#chapter:hmm-standard
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SCARE: SCalable Automatic Repair

[Yakout, Berti-Equille, Elmagarmid, SIGMOD’ | 3]

Goal: Find the repair that would maximize the sum of the probabilities
of the values co-occurrence (i.e., association strength between
predicted and reliable values) under a certain update cost budget.

Reliable Flexible
Database Table

Partitioning Functions

1. Modeling Dependency and L]
Predicting Updates ® @g ®

Machine Learning Models

i SR D
=
T

Predicted updates Predictéd updates

2. Data Partitioning

Candidate Tuple Repairs

3. Tuple Repair Selection o o
Value predictions for Flexible Attributes EI, E2, E3
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Continuous Data Cleaning

[Volkovs et al., ICDE’ 4]
Goal: Using a logistic classifier to
- learn from past user repair preferences to recommend next
more accurate repairs;
- predict the type of repair needed to resolve an inconsistency.

. repair type
learned (b) Repa.lr. predictions
classifier Type Classifier Cost
Model
44/' Violating
. Statistics patterns :
(a) Classifier (c) Repair
Training Search
Database
selected
repairs apply repairs recommended
repairs

(d) Userﬁ
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On-demand ETL with Lenses

[Yang et al.,VLDB'I 5]

Specification of Lens with classifiers from the massive online analysis
(MOA) framework for Domain Constraint Repair (DCR).

Legacy Application Lens Definition PC-Tables

id name brand category
P123 Apple 6s, White | Var("X’,R1) phone
CREATE LENS SaneProduct AS SELECT * FROM Product g}gg /S\Pple 5s, 1\]?1&01; Vg"‘ ('X',R2) Plﬁone
: amsung Note amsung phone

USING DOMAIN_REPAIR( category str}ng NOT NULL, PSS Sony 60 inches | Var( X" 82) | Var(Y" 54
brand string NOT NULL ) P34234 | Dell, Intel 4 core Dell laptop
P34235 | HP, AMD 2 core HP laptop
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HoloClean

[Rekatsinas et al.,VLDB 2017]
https://github.com/HoloClean/HoloClean

HoloClean generates a factor graph capturing co-occurrences,
correlations based on a set of constraints and external evidences. It
uses SGD to learn parameters and infer the marginal distribution of
unknown variables with Gibbs sampling.

Each cell is a random

O
—

: Unknown (to be inferred) RV

: Factor (encodes correlations)

Address | City |State| Zip / variable
3465 S : Value co-occurrences
t1 Morgan ST Chicago | IL 60608 - .
< — capture data statistics
3465 S .
t2 Ch IL 60609 . .
Morgan ST | “°399 Constraints introduce - i
3 Mg‘rg;:nSST Chicago | IL 60609 correlations Cl- 1p — lty
g | 34658 [cicago |1 [ 60608 |/ . .
Morgan ST ) t1.City t1.Zip
Address=
3465 S
Morgan St”

Denial constraints:
Vti,t2 € D :—(t1[Zip] = t2[Zip] A t1[City] # t2[City])

Vti,t2 € D :—(t1[Zip] = t2[Zip] A t1[State] # t2[State]) 42



BoostClean

[Krishnan et al., 2017]

BoostClean selects an ensemble of methods (statistical and logic
rules) for error detection and for repair combinations using
statistical boosting.

Test Training :
data data Algorithm 2: Boost-and-Clean Algorithm
| Data: (X, Y)
1 1 Initialize WV = L
E | ~lean 2 L generates a set of classifiers C{C’(O), C(l), ey C’(k)} where
| C© is the base classifier and C (1), ey C (%) are derived from

the cleaning operations.

3 fort € [1,7] do

4 Ct¢ = Find C; € C that maximizes the weighted accuracy
L’ on the test set. €; = Calculate weighted classification
error on the test set o = In( 1;—:t)

Wi(tH) X Wi(t)e_atyict(mi): down-weight correct
| predictions, up-weight incorrectly predictions.

s return C(z) = sign(>"; a:Ci(z))

|
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A Condensed View

Repair ML Goal
System Approach oa
Febrl HMM and MLE Standardizing loosely structured texts (e.g., name/

[Churches et al., 2002]

address) based on the probabilistic model learnt
from training data

SCARE Multiple ML models used | Find the candidate repair that maximizes the
[Yakout, Berti-Equille, to capture data likelihood repair benefit under a cost threshold of
Elmagarmid, .
SIGMOD’ 13] dependencies across the update
multiple data partitions

Continuous Logistic classifiers Learning from past user repair preferences to
Cleaning recommend next more accurate repairs
[Volkovs et al.,

ICDE’14]
Lens Various ML models Declarative on-Demand ETL with prioritized

[Yang et al.,VLDPB’I5]

encoded in Domain
Constraints

curation tasks based on probabilistic query
processing and PC-Tables

HoloClean | Probabilistic inference on | Mixing statistical and logical rules, DCs, MDs, etc. to
[Rekatsinas et al, factor graphs with SGD | infer candidate repairs in a scalable way with
VLDB 2017] . : , , \ :
and Gibbs sampling domain pruning and constraint relaxation
BoostClean AdaBoost Mixing statistical and logical rules, domain

[Krishnan et al., 2017]

constraints for detection and repair combinations
to maximize the predictive accuracy over test data
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Shortcomings of ML-based cleaning

Problem

- No knowledge of ground truth (the “minimal” change may not be the
correct one)

- When data is missing (what data should be added?)

Solution:
- Use the crowd (of experts) to assist
- But... since data is large, focus of “hot” spots

QOCO [Bergman, Milo, Novgorodoy, SIGMOD’| 5]
Uses the crowd to identify wrong query answers, and corrects the cause

DANCE [Assadi, Milo, Novgorodov ICDE’ | 7,WebDB’| 8]
When identifying integrity constraints violation, uses the crowd to

correct the cause
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Optimizing crowd usage

Goal: minimize the number of questions to the crowd

General heuristic:
|dentify (and ask first about) data items whose update may potentially
eliminate the maximal number of violations.

Implementation of the heuristic in QOCO:
- Tracking the provenance of wrong query answers
- Asking about tuples that participate to maximal number of assighments

Implementation of the heuristic in DANCE:

- Tracking (recursively) the provenance of constraints violation

- Building a dependency graph for the tuples

- Running “page-rank” on the graph to identify potentially influential tuples
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Taxonomy of Data Fusion Techniques

(Not limited to what data fusion means for DB community)  [Hall, 1992]

Data fusion

: Feature-based Cognitive-based
Physical models .
inference models models
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Taxonomy of Data Fusion Techniques

Data fusion

[Hall, 1992]

Physical models

» Simulation

» Estimation
* Kalman filtering
« MLE
* Least Squares

Feature-based
inference models

Cognitive-based
models
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Taxonomy of Data Fusion Techniques

(Not limited to what data fusion means for DB community)  [Hall, 1992]

I Data fusion ]

Feature-based Cognitive-based

Physical models

inference models models
€ >
> Parametric » Non-Parametric
* | Statistical-based algorithms * Adaptive neural nets
o Classical inference _ SLiMFast o Binary input nets (Hopfield)
o Bayesian o Continuous valued input (perception)
o Dempster-Schafer * Entropic techniques
* Pattern matching / templating
* Cluster algorithms » Figure of merit
@ Hierarchical Agg!gmerative (k=Ward’s method) e Measure of correlation
o Hierarchical Divisive . .
o lIterative Partitioning (k=Hill climbing) . Thres.hc.>|d|ng logic . .
o Density search * Heuristic methods : voting, scoring,
o Factor analytic ranking, consensus methods for conflict
o Clumping resolution [Dong, Naumann, Tutorial VLDB’09]
o Graph theoretic

o0



Taxonomy of Data Fusion Techniques

(Not limited to what data fusion means for DB community) [Hall, 1992]

I Data fusion ]

Physical models

Feature-based

inference models

=
> Logical templates

—

Cognitive-based

models

» Knowledge-based systems

[

¢

[

¢

Knowledge representation

o Scripts, Rules

o Semantic frames, ontologies
Inference methods

o Production rules
o Blackboard
o Causal/neural nets

Search techniques
Uncertainty representation
o Dempster-Schafer

o Probability
o Confidence factor

» Fuzzy set theory

DCNN for
multi-sensored data fusion
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SLiMFast: Probabilistic Models for
Data Fusion

User-specified Input

[Joglekar et al., SIGMOD’17]

Source Accuracy Analysis

Source Observations Domain Features
Source Object ID Value Source Feature
A1l GIGYF2, Parkinson False A1l PubYear=2009
A1l GBA, Parkinson True A1l Citations=34
A2 GIGYF2, Parkinson True A2 PubYear=2008
A3 GIGYF2, Parkinson False A2 Citations=128
A3 GBA, Parkinson True A3 Study=GWAS
Ground Truth
Object ID Value
GBA, Parkinson True Output
Truth Discovery
Object ID True Value
GIGYF2, Parkinson False
GBA, Parkinson True

Source Accuracy

Feature Weight

Source Feature
A1l 0.94
A2 0.71
A3 0.85

500

L N pp——

-500

O‘O 012 0?4 076 0‘8 1'0

Regularization Penalty
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SLiMFast: Probabilistic Models for
Data FUSion [Joglekar et al., SIGMOD’17]

Reliability scores
(model parameters)

SLiMFast Framework 1
P(T, =d|Q2) = - exp Osly, ,=d
1. Compilation Normalizing constant (0,5) €
convert input to (valid distribution)
probabilistic model 3. Data Fusion se—lo Accuracy of Source S
Learning §=08 1-Accuracy of Source S
2. Optimizer E> Accuracy = Probability
Analyze ground truth, that a source is correct
observations, and Inference
select between EM & As =1/(1 + exp(— Z Wi fs. 1)

ERM for learning

To solve data fusion, SLiMFast :
learns the parameters w of the logistic regression model by optimizing the likelihood

l(w) = log P(T |Q); w) where T corresponds to the set of all variables 7o,
infer the maximum a posteriori (MAP) assignments to variables 7o using ERM (ground

truth) or EM (source observation overlap, avg accuracy of sources)
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Data fusion and truth finding evolution

[Berti-Equille, Encyclopedia 2018]

Global .
Machine

timization .
Source op atio [Ding et al., 2016] Learr"ng
Semi-Supervised Truth Finder [Yin & Tan, 2011] Density
Value Joint Matrix Factorization [Ge et al., 2012] estimation
Confidence KDEm [Wan et al., 2016]
estimates _
CATD [Li et al, 2014] Bootstrapping
CRH [Li et al, 2014] :
[Xiao et al., 2016] [ Neural
lict: Networks
Error Probabilistic Inference
. [Marshall et al., 2017]
Information [Li et al., 2016]
S Source reliability Extractor Error
Truth ource is multidimensional Knowledge Vault [Dong et al., 2015]
Dependence [Yu et al., COLING 2014]
and unknow :
Depen, AccuSim [Dong et al., 2009] Bias & Expertise of
[Blanco et al., CAISE 2010] LTM [Zhao et al., 2012] P
MLE [Wang et al., 2012] Crowd sources
. [Ma et al., KDD 2014]
. [ Evolving Truth [Ouyang et al., 2015]
Weighted _ .
Voti [Dong et al., VLDB 2009] [Jia et al., WAIM 2013] [Li et al., KDD 2015] GacimUllosietaly 2010
arcla- oa et al.,
(o} |ng [Huang et al., 2015] [Li et al., 2017]
L Hardness of Value
Value Similarity lai U rtaint i
claims ncertain Multi-Truth
TruthFinder [Yin et al., 2008] Cosine LCA [Pasternack & Roth, 2013]
2-Estimates [Galland et al., 2010] [Ma et al., 2015]
3-Estimates [Wang et al., CIKM 2015b] SmartTD [Fang et al., 2017]
. . -
[ Iterative Voting ] Truth
Sum, Investment [Pasternack & Roth, 2010] A roximation
/’ngl’_eofg”"e“me’” [Wang et al., CIKM 2015a]

-
SOUTC(.E SourceRank No Truth
Reputation [Balakrishnan, Kambhampati, 2009]

[Zhi et al., KDD 2015]
PageRank [Brin and Page, 1998]
Hubs and Authorities (HITS) [Kleinberg, 1999]

| | | | | | | | | T
e i i | | | | | | | — time
g? oéo § 0'9 § S 6? o’y 6‘9 6“0 é‘\ 55
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Multi-Sensor Data Fusion for Fault
DiagnOSiS USing DCNN [Luyang et al., Sensors’17]

Deep convolutional neural networks
based feature learning and data fusion

Multi-sensor Data preprocessing Data level fusion Diagnosis result

A

Accelerometer Divide signals into segments Combine four segments
into one data sample  15,,,¢ data

Convolutional and Fully connected
W samples pooling layer layer
r L) ! ! L PR I i 1

-
E

Microphone

L -

|

|

|
-+
|
N
y
|
N
J

!

N AO—
|

1

(o 1]

a

Optical encoder

il

I
et s
T

——

o
A

Feature subsampling
maps
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Concluding Remarks — Part |

ML provides a principled framework and efficient tools
for optimizing many DM tasks

ML crucially needs principled data curation
However, some tasks require Humans in the loop
There are many opportunities for:

— Cool ML applications to data management
—Revisiting DB technology with and for ML

—Managing and orchestrating human/machine
resources
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Open Issues — Part |

* Usability:
— To consider Humans as resources
— To be understood, interpreted, and trusted by Humans

— To ease/self-adapt the design, tuning, and use

* Efficiency:
— Runtime

— Incremental
* Accuracy:
— Reduce impact of dirty data

— Augmenting the training set

— Ensembling
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Usability (1): Humans as Resources
Challenge |: Adjusting ‘“Human-in-the-Loop”

— Seamless integration of humans as resources for ML-
powered DM

— “Taskify” and minimize the amount of interactions with the
users while, at the same time, maximize the potential “ML
benefit” for selecting/cleaning/labeling training data and
other data management tasks

* Current efforts: Crowdsourcing and active learning
— Data cleaning with oracle crowds [Bergman et al., SSIGMOD’15]

— Entity resolution: CrowdER [Wang et al.,VLDB’12], Corleone
[Gokhale, et al., SIGMOD’ 1 4]

— Data fusion and truth inference [Zheng et al.,VLDB’ 7]
* Direction:

— Adaptive and quality-driven orchestration of Humans and
Tools for ML-powered DM

59



Usability (2): Building trust

Challenge 2: Open the “Black-Box’’ and customize it
— Improve the interpretability of ML-based decisions

— Build the trust: ML-based decisions should be interpretable, explainable,
reproducible to be trusted

— Adapt ML-based DM to on-demand, incremental, progressive tasks

 Current efforts:
— Trusted Machine Learning [Ghosh et al, AAAI'1 7]
— Model-Agnostic Explanations [Ribeiro et al., KDD’ | 6]
— On-demand ETL [Yang et al.,VLDB’|5]
— ActiveClean [Krishnan et al.,VLDB’| 6]

— Continuous cleaning for considering incremental changes
to the data and to the constraints [Volkovs et al., ICDE’14]

* Directions:
— Causality and explanations in ML-based DM and their effective representation
— Reversibility and repeatability
— Data privacy/security: What if adversarial learning is applied ?
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Usability (3) : Easy to build, tune, and test
Challenge 3: Engineering ML-based DM applications

— Model building and feature selection

— Model interoperability and model selection
* Current efforts: S

— Systematizing/optimizing model selection
[Kumar, Boehm,Yang, SIGMOD’ |7 Tutorial],
MSMS [Kumar et al., SIGMODRec’15], Zombie [Anderson et al.,2016]

— Declarative ML tasks
— Interactive model building: Ava [John et al., CIDR’17], Vizdom [Crotty et al.,VLDB’I 5]
— Meta-learning, bandit techniques
— PMML, ONNX, PFA for model interoperability
* Directions:
— Analysis of dependability of models
— Model debugging, versioning, and management (e.g., for large models)
— Managing ML model provenance and elicitation
— Transfer pre-trained models from task-/domain-agnostic to *-specific DM
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Efficiency

* Challenge 4:Incremental ML application to DM

— When we have more training data or refresh/delete some
data (obsolete), shall we retrain ML model

from scratch? Can we do incremental ‘

training/learning? For what cost/trade-off?

* Challenge 5: Runtime ML-based DM

— Could we orchestrate and optimize data

annotation and preprocessing tasks? Design

cost models, candidate plans?

— To what extent could we use transfer learning to
reduce training data collection/preprocessing cost ?
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Accuracy (1)

Challenge 6: Reduce the impact of dirty data

Glitch types and their distributions can be very different
in the datasets used for training, testing, and validation
and they affect accuracy of ML models in different ways:

* How could we capture the good, the bad and the
ugly combinations!?

* Should we robustify the ML algorithms or/and the
data curation?! Would both be inevitably better/
necessary!?
— Find optimal data cleaning strategies for a

given ML-based DM application

* Can we predict the tdelta in ML accuracy that a

given data curation strategy brings to the model?
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Accuracy (2)

* Challenge 7: Synthetic training data generation

Copy/Transform existing labeled data to augment the training set
[Ratner et al., NIPS’17]

* Challenge 8: Model/Feature recommendation and
ensembling

Many ML models can be parameterized, applied and combined in

different ways leading to various quality performance
* Could we define a predictive scoring of the ﬁ
models and their ensembles ? -

* Would ensembling be (inevitably) better? {C}
2 2
M
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Schema Matching and ML

* Schema matching is the process of identifying
semantic correspondences between schema elements
(a common problem to DB, Al, KR)

* Such correspondences can be arbitrarily complex
(I-1, I-m, n-m) and have a confidence value [0..1]

* Representative ML-based schema matching
approaches include:
— LSD [Doan et al. SigmodO1]
— GLUE [Doan et a. WWW02]
— Semlint [Li & Clifton, DKEOO]
— Automatch/Autoplex [Berlin et al. Caise02]



The LSD Approach

Training Phase

* Multi-strategy learning with

o i I f > W Mediated schema
ITferent base learners (one or ) Source schemas

schema elements, one for instances)
* Combines them in a Meta-

Learner f’\!

‘ o, Base-Learner1 Base-Learnerk
* Leverages ‘stacking’ to learn | |

Hypothesis, == Hypothesis,

Training data
for base learners

weights of the different learners
in the Meta-Learner

* Training involves
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Base Learners
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Stacking as a multi-learning technique

* Training
— uses training data to learn weights
— one weight for each (base-learner,mediated-schema element) pair

— E.g. weight (Name-Learner,address) = 0.2 (on schema-element
name)

— E.g. weight (Naive-Bayes,address) = 0.8 (on schema-element
value)

* Matching: combine predictions of base learners

area T~

Seattle. WA Name Learner — (address,0.4)
eattle T NN

’ Naive Bayes _
Kent, WA y (address,0.9)
Bend, OR

Meta-Learner — (address, 0.4*0.2 +0.9*%0.8 =0.8)




GLUE: Learning to find similar
ontological concepts

Glue applies ML technique to find, for each concept
node in a taxonomy, the most similar concept in the
other taxonomy

It leverages the joint probability distribution:
— P(A,B), P(A,not(B)),P(not(A),B), P(not(A),not(B))

ML is used to infer whether P(A,B) can be
approximated with P (A intersect B)

— By defining a classifier for instances containing concept A
(B) and using it to classify instances of B (A)

It applies the multi-learning approach of LSD



SEMINT

It leverages the DBMS specific parsers to extract
metadata (schema elements, constraints etc. )

Such metadata is given as input to neural networks in
order to feed the learning process

Matching is done during the training process

W.-S. Li, C. Clifton | Data & Knowledge Engineering 33 (2000) 49-84

Metadata
Stud_ID
Stud_Name :>

Stipend
Tel#

SEMINT:

SEMantic
INTegrator

Parsers

]

[

Classifier

|

Neural
Networks

r:> Attribute ¢
Correspondence

r (Faculty.SS#, Student.Stud_ID, similarity = 0.98)
(Faculty.Facu_Name, Student.Stud_Name, similarity = 0.91)
(Faculty.Salary, Student.Stipend, similarity = 0.85)

~—~ P
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AutoMatch

* |t leverages probabilistic knowledge from schema examples
“mapped” by domain experts into an attribute dictionary

(based on Bayesian learning)
* Given a pair of “client” schemas that need to be matched,

Automatch matches them “through” its dictionary and uses
the Minimum Cost Maximum Flow network algorithm to

find the optimal matching

* Automatch employs statistical feature selection techniques
to learn an efficient representation of the examples (as few
as 10% of the initial values are employed).

Motro et al.“Automatch Revisited”. Seminal Contributions to Information Systems Engineering 201 3:
Domingos et al.“ Conditions for the optimality of the simple bayesian classifier”” ICDM96
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Schema Mapping and ML

* Schema mapping is the process of identifying schema
transformations expressed in fragments of FO logics and
to use them to compute the solution of the

transformation

* The transformations are expressed as source-to-target
dependencies (logical assertions with CQs on both sides
and existential variables in the RHY)

* Recent ML-based schema mapping approaches include:
— CMD [Kimmig et al., ICDFE’ 1 7]

— GAV Learn [ten Cate et al., PODS’18]

12



CMD: Probabilistic Schema Mapping

* Probabilistic approaches to schema mapping rely on
probabilistic modeling and statistical relational learning

(SRL) 2.
» Specifically, Collective Mapping Discovery' encodes the
mapping selection objective as a program in probabilistic

soft logic (PSL)

* |t uses as input metadata (under the form of a set of
candidate s-t tgds) and potentially imperfect evidence (in the
form of a data example) to select an optimal mapping

| Kimmig et al.“Collective, Probabilistic Approach to Schema Mapping”, ICDEI7
L. Getoor and B.Taskar, Eds., An Introduction to Statistical Relational Learning. MIT Press, 2007.
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CMD Obijective function

— The goal is to minimize a cost function containing the size
(#atoms of M, the # of unexplained atoms in the target, and the
# of erroneous tuples)

— Providing a discrete solution to the CMD optimization problem is
NP-hard, thus an approximate solution with theoretical
guarantees is proposed

argmin ( Z[l — explainsg, (M,
MEC ey

+ Z [errorfu”(./\/l,t)]

teKec—J

+ sizem(M))
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GAV Learn
(Active Learning for GAV Mappings)

* The goal is to derive a syntactic specification of a GAV
mapping from a given set of data examples and from a
“black-box" implementation (i.e. the oracle, a special type

of user).
* GAVLearn relies on the following fact:

— GAV mappings are polynomial-time learnable in Angluin’s model
of exact learning with membership/equivalence queries.

* GAVLearn is an active learning algorithm

— it accomplishes its task by “actively doing experiments (tests) on
the software"

15



A Condensed View

TOOL NAME | MLAPPROACH GOAL
LSD Multi-strategy Learning |Schema Matching
Glue Multi-strategy Learning | Ontology Matching
Automatch Bayesian networks Schema Matching
Semlint Neural networks Schema Matching
CMD Statistical Relational Schema Mapping

Learning
GAV Learn Active Learning Schema Mapping

16
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Constraint Discovery with ILP

* [Flach et al.,AIComm00] focus on the problem of using
Inductive Logic Programming to FD/MVD discovery in
relational databases

— Bottom-up ILP algorithms: take the instances for hypothesis
construction

— Top-down ILP algorithms: adhere to a generate-and-test approach

* They rely on generality ordering on the space of all possible
definitions:

— a predicate definition is more general than another if the least
Herbrand model of the first is a model of the second (i.e. the first
entails the second)

* Three dependency induction algorithms: TD, Bidirectional, BU

18



®

Top-Down Algorithm and pros of ILP

An agenda-based search algorithm

— Input: a relation r begin
DEPS := (;
— Output: a cover of DEP(r) Q := initialise(R);
o while Q # 0
— Initialise: set of do D := next item from Q; Q = Q — D;
if some witnesses t1, ... ,t, from r violate D
the most general then Q := Q U spec(R,D,t1, ... tn)
dependencies (from else DEPS := DEPS U {D}
fi
most general to od
output DEPS

most specific)

ILP leads to obtain:

— interpretable results

end.

— in-DBMS implementation and scalable execution (QuickFoil
[Zeng et Al,, PVLDB4])

19



A ML Approach to FK Discovery

* Underlying assumption [Rostin et al,VWWebDB'09]:

— choice of features is more influential on the achievable
performance than the choice of classification method

— extensive manual study to find meaningful features by
using common sense and by carefully studying positive
and negative examples.

— Feature derivation for INDs (10 different features

among which coverage, columnName, OutOfRange,
ValuelLengthDiff etc.)

20



Practical Study on FKs

* Given some real-world biological datasets (SCOP,
MSD, UniProt), two movie datasets and the TPC-H
benchmark

* Given four ML algorithms in the Weka ML tool
(Naive Bayes, SVM, J48 and DT)

— the study tackles the comparison of

* Results of different feature selection methods (Ranked
search, InfoGain, Randomized Search, X2-statistics)

21



F-measures of the classifiers

* J48 and DecisionTab

obtain the best results DS for learning / | Naive | SVM | J48 |DecisionTab| Avg

in the majority of the evaluation Bayes

cases

. D6 /D1 0.86 0.92 0.84 0.8 0.855
e For UniProt, SYM

works better than the D7 /D2 0.80 0.86 0.86 0.93 0.817

others
D8 /D3 0.71 0.71 1.0 0.8 0.805
D9 /D4 1.0 1.0 1.0 1.0 1.0
DA /D5 0.86 0.90 0.95 0.95 0.915
Average 0.846 0.78 0.930 0.896

Table 4. Results (F-Measure) of four different classifiers on five dif-
ferent datasets. Best results per row are in bold.



The Regex Learning Problem

* |t consists of learning a regex expression (on
arbitrary size of the alphabet and with no
restrictions on the use of Kleene-star and

disjunction)
— Input: a set of positive and negative examples + an
initial regular expression (from domain knowledge)

— Output: the regex with highest F-measure

23



The ReLlE Algorithm

ReLIE [Li et al., EMNLPO8] is a greedy hill climbing search
procedure that chooses, at every iteration, the regex with the
highest F-measure.

An iteration in ReLIE consists of:

— Applying every transformation on the current regex Rnew to obtain a
set of candidate regexes

— From the candidates, choosing the regex R’ whose F-measure over the
training dataset is maximum

To avoid overfitting, ReLIE terminates when either of the
following conditions is true: (i) there is no improvement in F-
measure over the training set; (ii) there is a drop in F-measure
when applying R’ on the validation set.

RelLIE compared with MinorThird (an implementation of CRF) is
proved to be superior in most of the cases except a few
exceptions (larger training dataset)

24



A Condensed View

Authors ML/AI APPROACH |GOAL

Flach et al. 99 | Inductive Logic Programming | FD/IND Discovery
Rostin et al. | Naive Bayes, SVM, J48 and FD Discovery

09 DT

Li et al. 08 Hill-Climbing Algorithm Regex Expressions

Discovery
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Foofah: Synthetising a Data
Transformation

* Given as user input a pair E=(ei, eo ) of sample raw data ei
and transformed view eo of e

— synthetize a program P that takes E as input

* Leverages program synthesis as a search problem [Jin et

al. SIGMOD 7] ?
. Q. ) IL@?J_—L\’ Machine
[E— _ \.___1\[_;- Learning
-
T Data Transfo:;r:ation Program % 3;?a|ization @
e e

i o
Data
Integration
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A* Search Algorithm

* A* search algorithm keeps exploring the most promising node -
smallest f(n)

* g(n) nr. of Potter’s Wheel operations [Hellerstein, 2001]

* h(n) estimate of the latter, or estimate of the nr. of columns or
table-edit distance heuristic

* f(n) =g(n) + h(n) - _ Estimated Part: estimated
distance to the goal state

L Toxe
L X ReXe

CoCe
Conreeeeeeee
Guuu:lt:lﬁﬂu.
pE+2 S 222 22 2 2 2 B
>’::u-----nc:
IR RRERREREER
TRBRBRBRREEN
 EE 2R 2 E)

Observed Part: traveled distance ——iA
for the current state &L

ves

(eReReRoReReRReRoR S

+Z+F 2222 2 2 X

ll

00

CoCRsseey '.

SRR 222

(eReR

rfEsssrsuneo Intermediate state ‘n’
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From raw tuples to complex mappings

(with the user in the loop)

* Mapping design: from data curators to ordinary users [Bonifati et
al. SIGMOD17]

* Allows a user to provide arbitrary exemplar tuples.

* (Minimally) Interacts with the user via simple boolean questions in
order to discover the mapping that the user has in mind.

Source

Company
IdCompany Name Town
'c1 '‘AA'  'Paris'
'C2' '‘EV'  'Lyon'

Flight

Departure Arrival IdCompany
'Lyon' 'Paris’ 'C1'
‘Paris’ ‘Lyon’ 'C2'

Travel Agency
IdAgency Name Town
‘Al TC' LA

Target

Carrier

Id Name Town
Id1' 'AA' ‘'Paris'
Id2' 'Ev' 'Lyon'

1d3' 'TC' 'LA!
Departure
Town IdCarrier
‘Lyon' ‘ld1'
'Paris'  'ld2'
Arrival
Town IdCarrier
'Paris'  'ld1'
‘Lyon'  'ld2’

Yes

Question or

No

Simple

> Boolean

Interactions

Final mapping

m; : Company(cl,aa, paris;)
A Flight(lyon, pariss, cl)
— Jid1, Firm(idl, aa, paris;)
A Departure(lyon,idl
A Arrival(pariss, idl)
my : Travel Agency(al, te,la)
— Jid3, Firm(id3, tc,la)

29



Interactive Lattice Exploration

* The user is interactively exploring a lattice of possibilities in which
the different reductions of the LHS of the mappings are reported:

{G; A1}

Generated mapping :
> = {Company(cl, aa, paris) A Flight(lyon, paris, cl)

= Jid1, Carrier(id1, aa, paris) A Departure(lyon,idl) A Arrival(paris,idl)}

30



Effectiveness of the Interactive Method

* All exploration strategies keep the number of questions (per tgd)
low along atom refinement.

Exploration strategy:

Bottom-up Breadth-first
Bottom-up Depth-first
Top-down Breadth-first

Top-down Depth-first

o [+2]
| 1

Number of questions per tgd

al-to-a2 amalgam2 dbip-amalgam GUS-to-BIOSQL SDB1-t10-SDB2 SDB1-10-SDB3 SDB2-10-SDB3

Scenario

31



A Condensed View

Tool Name/ ML/AI GOAL

Authors APPROACH

Foofah/Jin et al. A* Search Raw table

2017 transformation
discovery

Bonifati et al. 2017

Lattice-based
Exploration

Schema mapping
discovery

32
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Relational Query Inference

* Problem of interest: query
inference via simple tuple
labeling (positive or negative)

* Setting: large amount of denor-
malized data coming from dis-
parate data sources

* Informative tuples that
participate to the inference
are retained, non-informative

ones are pruned

Input: a set of tuples

Is there any

informative tuple left?
~_,~—
—
RS Yes No
©
a Take an Output:
':) informative inferred query gq
= tuple ¢
80
@
o,
o tuple ¢t
(o)

—| Ask label for ¢

label + or —
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Join Inference Machine (JIM)

* Tuples are labeled as positive or negative by the user [Bonifati et
al., ACM TODSI 6]

* Some strategies are better than others, and the system outputs a

comparison among strategies

* The benefit of using a strategy can be presented to the user

You labeled 12 tuples

6 tuples
with a
random
strategy

By using a strateqy of proposing
tuples, you would have labeled:

4 tuples

with a

local 3 tuples

strategy with a
lookahead
strategy

From To Airline City  Discount
Paris Lille AF NYC AA
Paris Lille AF Paris None
Paris Lille AF Lille AF
Lille NYC AA NYC AA
Lille NYC AA Paris None
Lille NYC AA Lille AF
NYC Paris AA NYC AA
NYC Paris AA Paris None
NYC Paris AA Lille AF
Paris NYC AF NYC AA
Paris NYC AF Paris None
Paris NYC AF Lille AF

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
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Learning Path Queries

* Input: Positive and Negative Examples
* Output: The path query that the user has ‘in mind’

 Compute consistent queries wrt.

the set of input examples
— (tram+bus)* cinema
— bus

* One can learn in PTIME
the query that the user has

in mind [Bonifati et al.,EDBT | 5] e e @

by using grammar induction on
Regular Path Queries - RPQs

restaurant

cinema
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Learning Algorithm! for Path Queries

* For each positive node, select its smallest consistent path (SCP).
Since the nr. of consistent paths can be infinite, bound by k.

* Generalize SCPs by state merge in the automaton corresponding
to the RPQ

* Assuming that k is fixed, the algorithm is polynomial:
— It returns a consistent query or it abstains from answering.

* Main proved result: For every path query q, there exists a graph
and a polynomial set of examples (characteristic sample) that
guarantees that the algorithm learns g in polynomial time.

'E. M. Gold. Complexity of automaton identification from given data. Information and Control, 1978.
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A Condensed View

Tool Name/ ML/AI GOAL

Authors APPROACH

JIM/Bonifati et al. | Lattice-based Join Query Inference
2016 Exploration

Bonifati et al. 2015

Grammar Induction
Techniques

Path Query Inference
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Recent line of work on DB systems/ML

Disclaimer (borrowed from C. Jermaine’s Keynote@EDBT | 8)

* The ML community has mainly focused on defining models and
on application-oriented ML tasks and not on the principles of
designing an ML system

* The Database community can provide insights in that direction
(given the experience in query optimization, tuning, distributed
query evaluation etc.)

40



Recent line of work on DB systems/ML

We wiill (non-exhaustively) focus on the following DB
contributions:

* ML techniques to improve Approximate Query Processing (AQP)
— relevant for data science/massive data analysis

* ML techniques for DB tuning
— Interesting problem in the DM stack

* DB techniques to improve feature extraction/labeling training data
— Relevant for ML

41



Learning From Past Queries (AQP)

* Intelli' is an AQP system that lets improve a raw
answer of a classic AQP by using a query synopsis and
a model

* When a new query arrives, it goes in the query
synopsis as a triple (g, ans, €)

* The learning module allows to improve the previous
triple by leveraging the history in the query synopsis,
thus leading to an improved triple (g, ans, € )

* Where €. is shown to be not larger than €
(Theorem proved in the paper)

| Park et al.“Database Learning:Toward a Database that Becomes Smarter Every Time
SIGMOD 17
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Intelli: Architecture

Runtime query processing

SQL query =% Runtime dataflow
D =» Post-query dataflow

Approximate
Query Processor Post—query
+ processing

uer
(raw ans, raw err) m = m = » Q Y - EmEmE ==y

J Synopsis >

INFERENCE é Model €= = = = = [,EARNING

) 2

(improved ans, improved err)
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Intelli: Underlying Principles

Queries may still benefit one another even if they access different columns of
the data.

Query answers mutually depend on the underlying distribution of the data

The more queries are processed, the closer is the estimated data distribution to
the true data (a-1 query; b- 2 queries; c- 5 queries etc.)

— True Data [[77] Ranges observed by past queries
m—— stimated data distribution with 95% confidence interval

2 I \
(a) = l-‘ >.\|—
2 l \
Jan 1 Mar 1 May 1
I \
8
- E \_{\r S
e ! 1l
Jan 1 Mar 1 May 1
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Intelli: Limitations

Bound by the underlying AQP engine’s error estimate

Can evaluate only AVG, COUNT, SUM (no MIN/
MAX, no arbitrary joins)

The rapidity of the inference depends on the
smoothness of the aggregated values’ pdf (probability
distribution function).

However, even for non-smooth pdfs, Intelli never
worsens the original raw answers (Theorem |).

Empirically tested on different data and query
distributions
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Otter Tune: Learning How to Tune a DBMS

* Manually tuning a DBMS is expensive and time-

consuming

— Several knobs need to be adjusted and they are not
standardized, not universal and not independent; moreover,

their default configuration is notoriously bad

« OtterTune? proposes to leverage supervised and
unsupervised learning to automatically tune a DBMS

* It empirically proves that the obtained configurations
are as good/better than the ones generated by DBAs

600

e MySQL
Postgres

H
o
o

2Van Aken et al.“Automatic Database Management
System Tuning Through Large-scale Machine Learning ”

Sigmod 2017
2

Number of knobs
S
e

00 2004 2008 2012 2016 46
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Otter Tune Architecture

The DBA chooses the metric (latency, throughput etc.) he wants to work on and
the controller connects to the DBMS and gets the knob configuration

Then, it enters an observation period in which one metric is observed and the
DBA can optionally choose to run a set of queries or a workload trace; the
result is given to the tuner manager

OtterTune then matches the target workload to a past workload of the same
kind

It then recommends a knob
configuration that is optimi-
zed to tune a given metric

=== e == -

It also provides the controller
with an estimate of how close
the obtained knob configuration

is to the best configuration seen so far
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Otter Tune Automatic Tuning

* Workload Characterization: model discovery starts by collecting DBMS statistics
and identifying the smallest set of metrics (with no redundancy)

* Knob Identification: uses a popular feature selection technique called Lasso to
expose the most influential knobs (on the system performances)

* Automatic Tuner: (1) Mapping the current workload to a previous one with

similar characteristics; (2) recommend configurations by using Gaussian Process
(GPs) regression

Workload Characterization Knob Identification Automatic Tuner
T

i i
: | S| | | Sonfee S _ U= _GPs ___ i
i @) e @R —| & [T ;
i i ,_D_ ()| B s L) |
i 2 | - \/: Observations R !




Zombie: Input Selection for Fast Feature
Engineering

* Feature Engineering and Extraction are the most time-
consuming operations in ML

* How can we leverage results in query optimization
and database indexing techniques in order to reduce
the amount of raw data for feature extraction and
minimize the size of the training set used to train a

model?

* In Zombie3, index groups are created out of raw data
with k-means clustering; then, it learns (with multi-
armed bandit strategy) which groups are more likely
to contain the most interesting features.

3 Anderson et al.“Runtime Support for Human-in-the-Loop Feature Engineering Systems” |IEEE Data
Engineering Bulletin 2016
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Zombie versus Bulk Scan

* Idea: you can stop earlier if you are satisfied
with the output of a quality function q thus
saving user time

* The dots indicate the ‘plateauing of the
learning curve’, where the processing can
be stopped at any time

NAIVE

EARLY

ZOMBIE

o

i

i Index Groups

User time saved

Y

— NAIVE scan

— Z,OMBIE scan

0 50 100 150 200 250 300
Runtime (s)
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Snorkel: speeding up ML training

Massive labeling datasets is oftentimes a bottleneck
and not always feasible for any real-world dataset

In Snorkel [Ratner et al.,, PYLDB17], labeling functions
are specified via the data programming paradigm:
accuracy of one function over the other is
automatically established and the selected functions
are then used to train an end model

Even low-accurate labeling functions defined by users
may turn to be apt to obtain high-quality models with
weak supervision
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Classification of the needs of ML
areas in terms of labeled training data

How to get more labeled training data?

“ “ T o

Traditional Supervision: Semi-supervised Learning: Weak Supervision: Get Transfer Learning: Use
Have subject matter Use structural assumption:s lower-quality labels more models already trained
experts (SMEs) hand-label to automatically leverage efficiently and/or at a on a different task
more training data unlabeled data higher abstraction level
Too expensive! |
o v Ta
Get cheaper, lower-quality Get higher-level supervision Use one or more (noisy /

labels from non-experts over unlabeled data from SMEs  biased) pre-trained models

T to provide supervision
u
* Distant , Expected *
Heuristics . Constraints 0 Invariances
Supervision distributions

https://hazyresearch.github.io/snorkel/blog/ws_blog_post.html 52



F: Linear Regression over Factorized
Databases

* F3:A unified framework to express and solve optimization
problems for in-database analytics

* Let Q be a feature extraction join query and D a database
that defines the training dataset Q(D) for an optimization
problem.

* Training dataset computed as join of database tables

/ y(1) x{l) coooox$Y \
y(2 x1(2) X
\ y(m) xl(m) o™ /
y() are labels, xl(i), - ,x,(,i) are features, all mapped to reals.

3

Schleich et al.“Learning Linear Regression Models over Factorized Joins” ACM Sigmod 2016
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F: Linear Regression over Factorized

Databases
* The goal is to learn the parameters O of the following

linear function (that approximates the label y of unseen
tuples (x,.....,X.))

h@(X) = 0O + O01x1 + ...+ 0,x,.

* The least squares regression model with a cost function is
considered

J©) = 5> (ho(x") =y’

* The Batch Gradient Descent (BGD) Algorithm is applied
to learn the ©
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F: Linear Regression over Factorized

Databases
The rough idea is to decouple the computation of O

from the computation of co-factors, the latter being

dependent on input data and executed on the factorized
(compressed) version of the database

U

/\

dish (burger)

| |
X X
/ \ U — T~ U U 7N U
/N PN | PN
day item (Monday) (Friday) (patty) (bun) (Friday)  (bun) (sausage)

| | I | | | | | |
X X X X X X X X X
| | | | | | | | |
U U U U U U U @) @)
| | | | | /7 N\ | | |
costumer  price (Elise)  (Elise) (6) (2) (Joe) (Steve) (2) (4)

Join tree Factorized representation of the join result
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A Condensed View*

TOOL NAME | MLAPPROACH GOAL
Intelli Statistical Inference Approximate Query
Processing(AQP)

Ottertune GP Regression DB Tuning

Zombie Multi-armed bandit Improve Feature
strategy Extraction

Snhorkel a new programming Accelerate ML
model for weakly- training
supervised ML

F Linear Regression In-database analytics

* not including open-source libraries
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Concluding Remarks — Part ||

ML provides a principled framework and efficient tools for
inferring database queries and complex transformation
abstractions, and for optimizing core system-oriented DM
tasks (tuning, join and query evaluation/optimization)

 There are many opportunities for:

— Studying the interplay and the fine-grained combination
of DM/ML tasks

— Using DBMS technology to generalize ML tasks (the latter
being data-dependent as opposed to the former)

— Thoroughly understanding the system requirements of ML
tools and their modeling/optimization tasks

— Orientating our attention to ML techniques that lead to

interpretable/explainable results
58



Open Issues (1) — Part

* Data Transformation and Constraint Discovery:

— Long-lasting wave of adoption of ML techniques over the last two
decades; do they evolve with evolution of ML?

— Understanding the ‘ML community’ needs for data/schema
transformation and constraint inference

— Transformation and constraints are ‘knowledge’ about the data and
they declarative; do ML tasks need declarativeness!?

* Transformation/Query Specification:

— Users have a principal role, as in labeling tasks for ML; user
supervision in ML can be a useful resource for us

— Looking at the cases in which no gold standard transformation is
given
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Open Issues (1) — Part

* System-oriented DM Tasks:

— Many tasks benefit from one particular ML techniques;
others have not been yet under scrutiny: which ML
techniques best suit (or not) a given DM task?

— Are computational costs, performances important for ML
tasks in DM?

— Are the ML tasks embeddable in a DBMS?

* Other DM tasks (not considered in this tutorial):
— Distributed/Parallel computation in DM/ML tasks

— Towards “online ML” in the spirit of “online querying”
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ML to Data Management:
A Round Trip

Thanks and Questions.

(a pdf of the tutorial will be soon available on our homepages
and ICDE |8 website)

RLeTESToXD
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Extra Slides

Not used in the tutorial



OtterTune: Possible Improvements

Input from the DBA still needed to guide the process

No means to automatically detect (learn?) the
hardware profile

Not all the costs are taken into account (for instance
restarting the DBMS and then identifying knobs that
can become bottlenecks in that case)

An initial assumption is that the DBA has followed the
guidelines for a well-specified physical design (indexes,
materialized views are already in place...)

Check the behavior with different regression models
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The MADLIb Library
http://madlib.apache.org/

Provides (open source)
methods for supervised/
unsupervised learning,
descriptive statistics and
support models

The methods are designed for
in-and out-of-core execution,
and for parallel DBMS as well
(uses SQL + Python)
Designed by GreenPlum/UC
Berkeley/Wisconsin/Florida
and published in PVLDBI 7;
now part of Apache software
suite

Category

Method

Supervised Learning

Linear Regression
Logistic Regression

Naive Bayes Classification
Decision Trees (C4.5)
Support Vector Machines

Unsupervised Learning

k-Means Clustering

SVD Matrix Factorization
Latent Dirichlet Allocation
Association Rules

Decriptive Statistics

Count-Min Sketch
Flajolet-Martin Sketch
Data Profiling
Quantiles

Support Modules

Sparse Vectors
Array Operations
Conjugate Gradient Optimization
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Google’s TensorFlow
https://github.com/tensorflow/tensorflow

* A distributed ML System

— providing an API for forward model (represented as a
function f(x, 8 ), where x is problem-specific input and 0 is
external knowledge)

* f can be any model (Linear Regression, Neural Networks etc.)
— an automatic differentiation engine

* Programmer specifies model and loss in a declarative manner; no
need to understand math

— a compute engine

* Intrinsic parallel execution and use of the ‘compute graph’ to be
replicated on several compute servers
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