
The Association for Computing Machinery, Inc.

1515 Broadway

New York, NY 10036

U.S.A.

Copyright c© 2005 by the Association for Computing Machinery, Inc (ACM). Permission to make digital
or hard copies of portions of this work for personal or classroom use is granted without fee provided that
the copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice
and the full citation on the �rst page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permission to republish from: Publications Dept. ACM, Inc. Fax +1-212-869-0481
or E-mail permissions@acm.org.

For other copying of articles that carry a code at the bottom of the �rst or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923.

ACM ISBN: 1-59593-160-0

Printed by AT&T Labs-Research, USA.

Preface

The problem of poor data quality stored in database-backed information systems is widespread in the gov-
ernmental, commercial and industrial environments. Alarming situations with various information quality
problems can not be ignored anymore and theoretical as well as pragmatic approaches are urgently needed
to be proposed and validated. As a consequence, information quality is now becoming one of the hot topics
of emerging interest in the academic and industrial communities.

Many processes and applications (such as information system integration, information retrieval, and
knowledge discovery from databases) require various forms of data preparation or repair with several data
processing techniques, because the data input to the application-dedicated algorithms is assumed to confor-
m to nice data distributions, containing no missing, inconsistent or incorrect values. This leaves a large gap
between the available �dirty� data and the available machinery to process the data for application purposes.

The Second Edition of the International Workshop IQIS 2005 (Information Quality in Information Sys-
tems) is held in Baltimore, MD, USA, on June 17, 2005. The workshop is sponsored by ACM and in
conjunction with the Symposium on Principles of Database System (PODS) and the ACM SIGMOD In-
ternational Conference on Management of Data. IQIS workshop focuses on database-centric issues in data
quality (scalability, quality-aware query processing, applications like data integration). It intends to address
methods, techniques of massive data processing and analysis, methodologies, new algorithmic approaches
or frameworks for designing data quality metrics in order to understand and to explore data quality, to �nd
data glitches (as data quality problems such as duplicates, errors, outliers, contradictions, inconsistencies,
etc.) and to ensure both data and information quality of database-backed information systems.

The program and the organization of the workshop are the result of a huge e�ort by many people who
contributed to IQIS 2005 and we want to warmly thank them all. First, we would like to thank the authors
of all submitted papers, both accepted and rejected ones.

The 11 papers collected in this volume, out of 26 papers that were submitted (with 10 short papers and
16 research papers), are a signi�cant sample of recent achievements in the various areas of information and
data quality, ranging from quality models to record linkage and statistical techniques.

Then, we wish to thank the program committee members for the reviewing work they did to ensure
high quality papers.

iii

We wish to thank our distinguished keynote speakers Hector Garcia-Molina, from Stanford University, US-
A, who described entity resolution process and algorithms, and William E. Winkler, from U.S. Bureau of
the Census, USA, who described methods and techniques for massive data clean-up.

We would like also to warmly thank Felix Naumann, from Humboldt-Universität zu Berlin, Germany,
and Monica Scannapieco, from Università di Roma �La Sapienza�, Italy, for the organization of the very
�rst edition of the IQIS workshop, last year in Paris, in conjunction with ACM SIGMOD/PODS 2004
conference. Without their initiative, enthousiasm and motivation, the second edition of IQIS would not
exist.

In addition, we would like to thank all the people who volunteered their time to help us organize the
workshop. In particular, we would like to thank Laurent Amsaleg for his precious recommendations, Élis-
abeth Lebret, Philippe Lecler and, of course, Marianne Winslett and Lisa Singh for taking care of overall
and local workshop organization and all the related issues.

Finally, we thank you for attending the IQIS 2005 workshop. We sincerely hope that you �nd the
program very exciting and enjoy the workshop environment.

Laure Berti-Equille
Carlo Batini

Divesh Srivastava
IQIS 2005 Workshop co-chairs

iv

Program Committee

Boualem Benattallah, Queensland University of Technology, Australia

Mokrane Bouzeghoub, Université de Versailles, France

Tiziana Catarci, Università di Roma �La Sapienza�, Italy

Tamraparni Dasu, AT&T Labs-Research, USA

Johann-Christoph Freytag, Humboldt-Universität zu Berlin, Germany

Helena Galhardas, INESC-Lisboa, Portugal

Michael Gertz, University of California, USA

Ahmed K. Elmagarmid, Purdue University, USA

Markus Helfert, Dublin City University, Ireland

Matthias Jarke, RWTH Aachen, Germany

Theodore Johnson, AT&T Labs-Research, USA

Vipul Kashyap, National Center for Biotechnology Information, USA

Yang Lee,Northeastern University, USA

Bing Liu, University of Illinois at Chicago, USA

Paolo Missier, University of Manchester, United Kingdom

Tamer Ozsu, University of Waterloo, Canada

Ronald Pearson, ProSanos Corporation, USA

Leo Pipino, University of Massachusetts Lowell, USA

Mario Piattini, University of Castilla - La Mancha, Spain

Louiqa Raschid, University of Maryland, USA

Giri Kumar Tayi, Albany University, USA

Panos Vassiliadis, University of Ioannina, Greece

Richard Wang, Massachussetts Intitute of Technology, Boston, USA

v

Table of Contents

Keynote Speech 1

Handling Data Quality in Entity Resolution . 1
Hector Garcia-Molina

Keynote Speech 2

Methods and Analyses for Determining Quality . 3
William E. Winkler

Paper Session I: Quality Models

Provider issues in quality-constrained data provisioning . 5
Paolo Missier, Suzanne Embury

Making Quality Count in Biological Data Sources . 16
Alexandra Martinez, Joachim Hammer

ETL Queues for Active Data Warehousing . 28
Alexandros Karakasidis, Panos Vassiliadis, Evaggelia Pitoura

An Event Based Framework for Improving Information Quality That Integrates Baseline Models,
Causal Models and Formal Reference Models . 40

Joseph Bugajski, Robert L. Grossman, Eric Sumner, Zhao Tang

Paper Session II: Record Linkage, Entity Resolution

Exploiting relationships for object consolidation . 47
Zhaoqi Chen, Dmitri V. Kalashnikov, Sharad Mehrotra

Blocking-Aware Private Record Linkage . 59
Ali Al-Lawati, Dongwon Lee, Patrick McDaniel

E�ective and Scalable Solutions for Mixed and Split Citation Problems in Digital Libraries 69
Dongwon Lee, Byung-Won On, Jaewoo Kang, Sanghyun Park

Paper Session III: Statistics, Clustering

Approximate Matching of Textual Domain Attributes for Information Source Integration 77
Andreas Koeller, Vinay Keelara

Clustering Mixed Numerical and Low Quality Categorical Data:
Signi�cance Metrics on a Yeast Example . 87

Bill Andreopoulos, Aijun An, Xiaogang Wang

vii

Data Cleaning Using Belief Propagation . 99
Fang Chu, Yizhou Wang, D. Stott Parker, Carlo Zaniolo

Data Quality Inference . 105
Raymond K. Pon, Alfonso F. Cardenas

Author Index . 113

viii

IQIS 2005 Keynote Speech 1
Handling Data Quality in Entity Resolution

Hector Garcia-Molina
Stanford University

California, USA

ABSTRACT

������ ����	
���� ���
 �� � ����	�� ���� ������ �� ����
����������� ����������� ���������� �� ���� ��� �� ����
��
���� ���������� ������� �� ��� ���� ��� �� ���	����	� ���
������ ������ �
�������
�

�������� ����� ��� ��
���
� ������ ��� ���� ��		
� ����
������� ���� ��� ��
��� ���������� �� ����� �� ��� �����
��
�����

!
���������� ��� ������� ������������ ��� ���� ������ ���
���� ��"����� ������������ ����� ��� ������ ��� ���� ��� ���
����� ������		��� ������� ������ ��� �� ������� ���� �	���

#� �� �	������� �������� �� �������� ��� �������� �������
� �����
	���	� ��
���� ������ ����� ������������� �� ��� ����
���	����	� ������
� ��� ������ ��� �������� ������� �� ����
�� ����

$� ���� �� ���	�������� ��� ���
� ���� ��� ���� �
�	���
��
���������� ��	
�� ���������� ���� ��� !
���������� ���
�� ������� ����	� ������
��� ���������	
������������� �����
�� ��� ��	� �� %&' ��� ���� ���� ��� ����� ������� ���
�
�		� ���������� �� ��� ���� ���	����	� �������

$� ���� ��	(������)������*�	��� ��		 ����
�� ��� ���		�����
�� ������������ �
�	���+
����������+��� ������ �� � ��� ����
��
���
	 ��� ��� �� ��������

�� ��		 �	�� ������� ���� ���	������� ����� �� ��� �� ����
���� �� ����
�������� ����� �,��� ���(�� -���� ���� .���
/��-�		�
�� 0���� *���������� 1� 2
� ��� 3������� �����
�

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06 ...$5.00.

ABOUT HECTOR GARCIA-MOLINA

������)������*�	��� �� ��� 4������ /����(��� 2�����
4����� 5�������� �� ��� 0���������� �� 6���
��� 2������
��� �	�������	 ����������� �� 2������� 7���������� 2��������
6�	�������� �� ��� ��� �������� �� ��� 6���
��� 2������
0��������� ���� 3��
��� 8&&9 �� 0������� 8&&:� !���
9%%; �� 8&&9 �� ��� � ������ ��� 5��������<� $����������
,�����	��� #������� 6�������� �5$,#6
�

!��� #
�
�� 9%%: �� 0������� 9%%; �� ��� ��� 0�����
��� �� ��� 6���
��� 2������ 4��������� �� 2�������� !���
9%;% �� 9%%9 �� ��� �� ��� ���
	�� �� ��� 6���
��� 2���
���� 0��������� �� 5�������� 7���������� 5��������� =��
3������ ��� �������� ��������� ���	
�� �������
��� ����
����
�������� ������	 	�������� ��� �������� ��������

�� �������� � /2 �� �	�������	 ����������� ���� ��� $�����
�
�� ,����	����� �� *��������� *�>���� �� 9%;:� !��� 2�
������� 7���������� 2�������� 6�	�������� �� �������� �� 9%;?
� *2 �� �	�������	 ����������� ��� � 5�0 �� ����
��� ����
���� �� 9%;%�

)������*�	��� �� � !�		�� �� ��� #���������� ��� 6���
��
��� *�������� ��� �� ��� #������� #������ �� #��� ���
2�������@ �� � ������ �� ��� =������	 #������ �� ���������
���@ �������� ��� 9%%% #6* 2$)*.0 $���������� #����@
�� � ������ �� ��� 6���
��� 2������ ��� ,�	�����
�����
����� /���� �=������	 �������� 6�
���	
@ �� �� ��� ,������
��	 #������� /���� �� 0�6�*� 4��� 72#� A������� *�����
*��(���� ,����,��� B������ C���� 2����� *��(���	���@ �� �
B���
�� #������ ��� 0���������� B���
���� ��� �� � ����
��� �� ��� /���� �� 0�������� �� .���	� ��� A�������

1

IQIS 2005 Keynote Speech 2
Methods and Analyses for Determining Quality

William E. Winkler
U.S. Bureau of the Census,

Statistical Research
USA

ABSTRACT

�� � �������	 �
��� ��
�
�
���

� �� �
������� ����
 ��
�������� ��
 ����
 ������� ���
� ������ ������ ���� ��
�

�����
 �� �� ��
�
�	���
�����	� �� ��
���
���� ����� �
�

��� ��

���������
�� ����
 �� �
����� ������� �	���
����
���� �

�
� �� ������ ���
 ����� �� �
��������	 ����� ���
�
��������� �� � ��
�� ������� ��
 ����
 ��� �� ��������
� ���� �� �������
� ����
 �� ��������� ��
��������
 ��

��

����

�� ���� �
��� ��
�
� �
������� ����
 �� ���
 ��
 ����
�� ��
�
����� ��
 ����
 �� �����
�
�
 �� ���� ���� ������	� � ���
��
�������� ����� �� �����
 ����� ����� �

���� ��
 ����

�����	 �
�����	��� ����
�������

�� ���� ����
� ��
���
��� ���������� ���
� �
���
�	 ������
���
��� ��	 ��
����� ����
��� ������	 �� ��� �� ������	 ����
��
 ������
��� �
�������� ��
 ��
������ ��
 ��

��� �������

!��� �� ��� ���
��� �
� �����������
	 �� ����� �� ��� �����
��	 ����
���
� �
 ����
�
��	 ���� ���
� �

��������	� ��

���
��� ����
���"�
 �����
� ��
 ������
� ����� ���� �����
� ������
 ��
���
��� �� ��
��
� ������� �������� �� ���� ��
���� �����������

#�� ��������� ����� �������	 ����������� ��
��
������ ��
�����
���
������ ������������	 ��
�� ������� �� ���
����
�����
��
 ����� ���	 ���� �� ��� �������
� �����

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06 ...$5.00.

ABOUT WILLIAM E. WINKLER

$��%� $
��������	 #���
	
$
������� &����
���
� '! (�����)�
���
*������ ���
���� !���������� �����������

3

Provider issues in quality-constrained data provisioning

Paolo Missier and Suzanne Embury
School of Computer Science

The University of Manchester, UK

{s.embury,pmissier}@cs.manchester.ac.uk

ABSTRACT
Formal frameworks exist that allow service providers and
users to negotiate the quality of a service. While these agree-
ments usually include non-functional service properties, the
quality of the information offered by a provider is neglected.
Yet, in important application scenarios, notably in those
based on the Service-Oriented computing paradigm, the out-
come of complex workflows is directly affected by the quality
of the data involved. In this paper, we propose a model for
formal data quality agreements between data providers and
data consumers, and analyze its feasibility by showing how
a provider may take data quality constraints into account
as part of its data provisioning process. Our analysis of
the technical issues involved suggests that this is a complex
problem in general, although satisfactory algorithmic and
architectural solutions can be found under certain assump-
tions. To support this claim, we describe an algorithm for
dealing with constraints on the completeness of a query re-
sult with respect to a reference data source, and outline an
initial provider architecture for managing more general data
quality constraints.

1. INTRODUCTION
An increasing number of information providers nowadays

offer query services on large data sets through internet-wide
published interfaces, using a variety of widely available tech-
nologies. Alongside the definition of a service interface, the
stipulation of agreements regarding the quality of the service
is also becoming commonplace, eg. in the form of Service
Level Agreements [12, 2, 20]. Such agreements, however,
only deal with performance issues, while the quality of the
information delivered to service users is generally neglected.
When compared to the more common experience of shop-
ping for any kind of product, this situation is akin to as-
suming that the customers’ only issue is with the opening
hours of the store or the service time at checkout, with no
concern for the quality of the goods – clearly an unrealistic
expectation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06 ...$5.00.

We argue that data consumers are in a similar predica-
ment: the sizable and mature body of knowledge regarding
quality properties of data [18, 19, 24, 21, 9] does not trans-
late into actionable user requirements, and yet, in simple and
realistic scenarios, specific properties of data are important.
Suppose, for instance, that a provider acquires copyrighted
articles from publishers, and compiles independent digests
and reviews of those articles, offering them for sale. While
users are interested in purchasing the added-value reviews,
they also want to make sure that by doing so, they are not
missing the digest for any of the articles that would meet
their criteria if requested directly to the publishers. For ex-
ample, they want to purchase the digest for the ten most
recent papers on a particular topic.

The idea at the core of our work is that users may en-
force this and similar requirements by entering into a for-
mal agreement with the added-value provider, whereby the
digests produced in response to a query are guaranteed to
include a sufficiently large fraction of the articles that would
have been returned, had the same query been issued directly
to the publisher. We refer to this property of the data as
its completeness relative to a reference data source –in this
case, the original publisher.
Thus, a completeness constraint is intended to differentiate
between providers that only offer digests for a small subset
of the articles that are actually available, and those that
account for larger collections. Notice that, in this exam-
ple, the quality of the digest itself is not part of the agree-
ment, although it may be similarly formalized as a quality
constraint, of a different type: completeness is only one of
many possible properties of data for which constraints can
be defined.

This simple scenario is becoming increasingly relevant in
situations where (i) the data obtained from a provider has
a quantifiable value to the consumer, (ii) its worthiness de-
pends on one or more quality properties, and (ii) multiple
providers may offer similar information. The combination
of these factors contributes to the development of a data
marketplace, whereby consumers that are interested in qual-
ity data negotiate its quality/cost trade-offs with providers.
The value of quality as perceived by consumers is not nec-
essarily only monetary. Consider for instance the case, also
increasingly important, of a biologist who performs data-
intensive experiments using various algorithms that operate
on data obtained from public repositories (so-called in silico
experiments). For example, the success of a gene sequence
similarity analysis, consisting of matching a string sequence
against a large database of known sequences, depends on

5

the completeness of the reference data source. Although the
experiment’s success criteria are normally not expressed in
monetary terms, the value of using a complete reference data
set is unquestionable.

The missing element that would enable data marketplaces
is the ability for data providers and consumers to negotiate
formal and binding agreements regarding the quality of the
data. In this respect, providers seem to face the greatest
challenges, as they must determine which agreement levels
can be sustained, and the cost/benefit trade-offs involved.
To the best of our knowledge, these issues have not been
addressed, with the exception of a 1989 paper by Ballou
and Tayi [5], discussed later.

This paper attempts to fill this gap. Its core contribution
is a model for quality agreements, and an analysis of the is-
sues and possible strategies available to providers that com-
mit to such agreements. We begin by assuming that every
data transaction, consisting of a query-result pair, may be
subject to quality constraints. Before any such transaction
may occur, providers and consumers should agree on defin-
itions for the following elements:

• a pricing function, which associates a value to the re-
sult of any query issued by the consumer;

• a number of quality functions that formalize the no-
tions of quality properties, and that associate a quality
value to each result;

• a function of quality values for the result, that quanti-
fies their appropriateness to the consumer. This func-
tion, not necessarily linear, is expressed as a penalty
whose effect is to reduce the price paid for the result.

The negotiation process that leads to the specific definition
of each of these elements is not relevant for our purposes,
and is not considered in this paper. Before entering into
such an agreement, the provider must determine its feasi-
bility, by assessing (i) the actions required to provide data
with the required quality values, and (ii) whether its data
architecture supports those actions in a cost-effective way.
Specifically, for each incoming query, the provider faces two
problems:

1. Detection: it must determine to what extent a result
set would incur any penalty, due to insufficient quality
levels, for all the quality properties involved;

2. Repair: it must determine what actions are available
to repair its data in order to reduce or avoid the penal-
ties.

We base our model on the assumption that both detection
and repair have a cost, forcing the provider to solve an op-
timisation problem involving penalties, price, and costs.

As is common with any marketing scenarios, the provider
may adopt a number of different strategies for compliance.
For instance, it may invest resources to proactively ensure
that most of its data comply with the constraints, regard-
less of the specific user requests. More realistically, it may
conservatively adjust the quality levels of its data, by ob-
serving the consumer’s behaviour – for instance, by invest-
ing in quality only for the most popular data and accepting
penalties for less frequently requested items.

Rather than focusing on any specific model, in this paper
we define the provider’s problem space by enumerating the

factors that affect its strategies. This results in a general
framework that can be used to analyze complex scenarios.
The most critical factor concerns the amount of information
available to ensure that the penalties assessed are provably
fair : if we assume that the actual value of a quality function
is always available both to the provider and the consumer,
then (i) the fairness of the agreement can be verified, and (ii)
the provider may implement an optimal provisioning strat-
egy. For some quality properties, however, this assumption
may not be realistic. For instance, evaluating the complete-
ness of a data set relative to a reference set requires full
knowledge of the latter. We model the problem of partial
knowledge of quality by attaching a cost to the evaluation of
quality functions; in the case of completeness, this would be
the per-item cost of querying the reference source, in order
to obtain a partial view of its contents. This leads to the
formulation of quality estimates, which put the fairness of
the agreement into question, and compromise the optimality
of the provider’s strategy. We propose (Section 3.1) to deal
with fairness issues by introducing a third-party verification
role and using a spot-check approach for ensuring limited
but acceptable fairness.

As additional contribution, we present an algorithm for
dealing with the specific case of data completeness con-
straints, first using the most favorable assumptions, includ-
ing availability of quality values, and then in the more gen-
eral case of partial availability. This provides an insight into
the expected complexity of the general provisioning prob-
lem, and also shows a case of a property-specific algorithm
that cannot be easily reused for other properties; it suggests
that the generality of the solution may be limited to the
detection-maintenance pattern.

As a final contribution, we describe (Section 6) a general
data provider architecture that incorporates that pattern,
and show how it can be implemented alongside a standard
query processing engine.

Our initial investigation into the problem of provisioning
data with quality constraints shows that this is a difficult
one in general, although satisfactory algorithmic solutions
can be found under realistic assumptions.
In the rest of the paper, quality functions are introduced
in Section 2, followed by the agreement model in Section
3. The provider model is presented in Section 4, and the
specific handling for completeness in Section 5. The refer-
ence architecture is discussed in Section 6. We conclude in
Section 7 with our agenda for further work.

1.1 Related work
Although the specific topic of data quality agreements is

new, some authors address related problems, specifically in
the area of quality-aware data integration. Naumann et al.
[17] assume that scores can be assigned to the data offered by
multiple providers, to reflect its quality, and show that the
problem of data integration in the presence of such scores re-
sults in significant extensions to known algorithms for query-
ing data using views. We tackle a somewhat complementary
problem, namely how a provider can manage its data assets
in order to obtain desirable quality scores, which would then
be passed up to an integration mediator. Similarly, a recent
paper by Motro [3] shows how using utility functions may al-
leviate the problem of data fusion (i.e., combining different
versions of the same date) in the presence of inconsisten-
cies. Utility functions are based on quality features such

6

as recentness and accuracy. Using a similar perspective, the
“Quality Broker” architecture presented in [15] assumes that
quality features are available from several sources. The goal
of the architecture, in this case, is not quality constraint sat-
isfaction, but rather the broker-based selection of the most
appropriate answer to a query, among multiple available.

A related problem is also addressed in [4], where the no-
tion of a data quality certificate is presented. The purpose
of the certificate is to enable reasoning about quality within
the context of cooperative information systems, in order to
improve the overall quality of inter-system workflows. This
notion is also used, in a different form, in the quality profile
model described in [13].

Underlying all of these approaches are assumptions re-
garding (i) a shared underlying model for quality descrip-
tion, and (ii) the way quality values are actually computed.
While none of them seems concerned with their actual avail-
ability, in some cases, the granularity of the quality meta
data is so fine – at the level of a single attribute, that
the actual feasibility of computing the corresponding values
may be questioned. An important but overlooked problem
then becomes, to assess the robustness of these integration
processes when some of the quality data is missing.

Some authors define completeness by taking into account
both the size of a data source and the number of available
attributes with respect to the reference source, as well as the
fraction of attribute values that are non-null. Our definition
of completeness only considers the size of the relation, and
not the single attributes, and thus it is simpler than the re-
lational completeness found in [16]. It corresponds roughly
to the notion of coverage introduced in [11]; there, coverage
is defined with respect to a universal relation, whose exten-
sion includes all tuples obtained from a number of primary
data sources. Our single reference source corresponds to the
universal relation.

Ballou et al. [5, 6] presented an interesting and very perti-
nent early attempt at linking quality properties to the effort
required to provision them. There, the goal is to determine,
using an integer programming model, the most effective dis-
tribution of resources that a provider can use to maintain
or enhance data integrity, each with an associated cost and
effectiveness. While initially assuming precise knowledge of
the underlying cost, data error rate and other parameters,
the model also addresses the problem of estimating some of
those parameters using heuristics. How realistic the overall
model is in practice, however, remains to be seen.

Finally, following the intuition that information is but an-
other type of product, some authors have adapted estab-
lished results from the practice of quality control in product
manufacturing, resulting in the IP-MAP (Information Prod-
uct Map) framework [23, 22, 7]. For our purposes, the merit
of this work is to provide ways to predict quality values
based on the analysis of the processes that produce those
values. However, we believe that the barebone model for
completeness presented in the next section would defeat the
purpose of such machinery, which is best suited for complex
processes with well-identified “quality weak spots.”

2. QUALITY FUNCTIONS
We begin by providing functional definitions of quality

properties, which we illustrate for the case of completeness,
defined earlier, and of consistency, i.e., the property of a
data set to conform to some validation rule.

We only consider relational data sets, i.e., extensions of a
relational schema. Given two data sets D and Dr, we define
the completeness of D relative to Dr as:

compl(D, Dr) =
|D ∩ Dr|

|Dr|
∈ [0, 1] (1)

In particular, we are interested in the completeness of the
result Q(D) of a query:

complQ(D, Dr) =
|Q(D) ∩ Q(Dr)|

|Q(Dr)|
∈ [0, 1] (2)

Intuitively, complQ() counts the fraction of records from Dr

that the user obtains by querying D rather than Dr. Recall
that the reason for querying D in our examples is that it
contains added value versions of data from Dr.

This definition is illustrated in Figure 1. Note that compl(D, Dr)
may be very different from complQ(D, Dr) for some Q; even
when D contains only a small subset of Dr, its complete-
ness relative to a particular query may be high, as long
as D contains most of the items that the user is request-
ing. In fact, the heuristics for providing completeness, pre-
sented later, are based on the provider’s knowledge of the
user queries; their effectiveness depends on the predictability
of those queries.

Before we proceed, we must first give a precise meaning to
the expression Q(Dr), by clarifying the relationship between
D and Dr. Let SD and SDr be the relational schemas for D

and Dr, respectively. Following the well-known “Global-as-
View” pattern, described for instance by Lenzerini [14], we
assume that SD is defined as a view on SDr . Formally, this
requires the definition of a mapping query mq over SDr ,
written as SD mq(SDr), so that any query issued to
SD can be translated into a corresponding query to SDr ,
through a simple process of unfolding of the mapping query.
For example, suppose that SDr consists of two relations,
R1(a1, a2, a3) and R2(b1, b2, b3), and that SD consists of re-
lation R, defined by the mapping query:

R(c1, c2, c3) πa1,b2,b3 (σa3=c(R1 ./a2=b2 R2))

Then, for a query like

Q ≡ πc1(σc2=x(R)),

the corresponding query on SDr used in the completeness
definition would be

Q
′ ≡ πa1

(σb2=x∧a3=c(R1 ./a2=b2 R2))

To simplify the notation, in the rest of this paper we write
Q(Dr) instead of Q′(Dr).
It is also worth mentioning that Q(D)∩Q(Dr) = Q(D)∩Dr:
the use of Q(Dr) only really matters in the denominator of
expression (2).

As a second example of functional definition of quality
property, we also define the consistency of a data item rel-
ative to a conformance rule; for instance, a rule may state
that a street address in a database entry is consistent with a
reference street atlas, if it can be matched uniquely against
one of the reference streets in the atlas. The record match-
ing problem has been studied extensively in the data quality
literature [10, 8, 1] 1, and it is known that the evaluation of

1W.Winkler has made a rich collection of references
to this problem available at http://csaa.byu.edu/kdd03-
papers/winkler-refs.pdf.

7

D

Dr

Q(D)

Q(Dr)

A

B

complQ(D,Dr) = A \ (A+B)

Figure 1: Completeness of a query result

this rule may incur uncertainty, accounting for the chance
of false positives (an erroneus match). Thus, we assume
that the rule is a function of the data and of some para-
meters (i.e., the reference source), and that its evaluation
produces a “yes/no” result, along with a level of confidence.
This function does not perform any correction or issue rec-
ommendations. In this regard, it behaves like an integrity
constraint checker on a database schema.

The validation function for an item d ∈ D with respect to
Dr is

val(d, Dr) ∈ ({true, false}, [0, 1])

where the second component of the value is the confidence
in the outcome. Given a user-defined threshold c0 for the
confidence, let the set of acceptable items relative to val and
c0 be

acc(val, D, Dr, c0) = {d ∈ D|val(d, Dr) = (true, c)∧c ≥ c0)}

A simple definition for the consistency of D relative to Dr,
given c0, is the proportion of acceptable items in D. For
Q(D) this is written as:

consQ(val, D, Dr, c0) =
|acc(val, Q(D), Dr, c0)|

|Q(D)|
∈ [0, 1]

This simple definition illustrates the general idea of con-
sistently defining normalized quality functions, using user-
specified parameters such as the threshold c0.

3. AGREEMENT MODEL
Agreements are based on a simple penalty/reward model,

whereby the consumer and the provider agree on formally
defined quality constraints for the data provisioned on a
query-by-query basis, the provider may charge fees in re-
turn for data, and the consumer may assess penalties when
the quality constraints are violated.

Rather than defining discrete constraints, i.e., of the form
complQ(D, Dr) > complmin, we instead allow for a more
general formulation, by associating penalty functions of ar-
bitrary shapes to quality functions. When applied to a base
price for a query result, they reduce the actual fee paid, in a
way that is proportional to the perceived importance of the
specific property.

For query Q on D, the agreement includes the following
elements:

• a set of normalized quality functions of the form

qf(D′
,P) ∈ [0, 1]

for any D′ ⊆ D, where 1 is the best quality achievable.
P indicates a property-specific set of additional para-
meters, eg. Dr, c0. In particular, we are interested
in computing the quality associated to a query result,
qf(Q(D),P);

• a base pricing function priceb(D
′) for any D′ ⊆ D.

Again, in practice we are interested in computing
priceb(Q(D));

• a penalty function penqf (D′,P) ∈ [0, 1], which intro-
duces a bias on the base price, by mapping the values
of the normalized quality function qf applied to D′,
onto a penalty factor.

The actual price paid by the user for Q(D) is then

price(Q(D), qf(),P) = priceb(Q(D))×(1−penqf(Q(D),P))).

Note that discrete quality constraints can be expressed sim-
ply by defining binary penalty functions. For example, the
following constraint makes the result set worthless if the
completeness falls below a threshold complmin:

pencompl(D
′
, Dr) =

�
0 if compl(D′, Dr) > complmin

1 otherwise

Normally, however, the penalty will be proportional to the
quality level, i.e., the function is monotone decreasing in
the value of qf(). Although no assumptions on the shape
of penalty and pricing functions need to be made, this ad-
ditional information helps in reducing the complexity of the
provider algorithms for managing quality compliance. The
baseline algorithm presented in Section 5.1, shows a worst
case scenario, in which no assumption is made regarding the
shapes of these functions.
Note also, that using normalized quality functions makes it
straightforward to extend this pricing scheme to multiple
quality properties, i.e., by combining multiple quality and
penalty functions:

price(Q(D), {qfi()}, {Pi}) = priceb(Q(D)) ��
i

(1 − penqfi
(Q(D),Pi)))

8

Functions {qf()i}, priceb() and {penqfi
()} are all defined

as part of a negotiation process, whose details are not rele-
vant for our purposes. Once the agreement is in place, it is
enforced as follows:

• for every incoming query Q, the provider computes
D′ = Q(D);

• for every qfi() that is subject to a penalty, compute
qi = qfi(D

′,Pi) and pi = penqfi
(qi);

• compute the final price priceb(D
′) � �

i
(1 − pi).

3.1 Fairness of penalty assessment
As anticipated, the fairness of the penalty assessment de-

pends upon the value of qf() being available. In our ex-
ample, this corresponds to having a catalog of all available
articles, which can be queried (this is Q(Dr)), regardless of
how many of those articles have received a review. Simi-
larly, in the biology database case, a public source for the
primary data may be available free of charge. While these
are reasonable assumptions, in general we also need to con-
sider the cost of computing qf(). When the provider incurs
this monitoring cost (see Section 4), it may need to compute

an estimator q̂f () of the actual qf(), balancing its precision
with the cost of limited monitoring.
The idea is then to let providers self-assess their penalties,
and to adopt the simple but widespread view that a third-
party verification authority is in charge of assessing the cor-
rectness of penalties. We assume that this authority also
incurs a monitoring cost. For completeness, this results in
the following scenario:

• the provider defines its own estimators q̂f() for qf(),
based on some probabilistic model and by sampling
using a limited number of Q(Dr) queries, determined
by its budget2;

• the authority has its own strategy for verification, which
relies on spot-checks performed at some time intervals,
again by querying Q(Dr);

• the provider may negotiate a tolerance δ ∈ [0, 1] as
part of the agreement, which limits its liability vs the
customer in case of imprecise estimates;

• whenever the authority determines the actual value

for qf(), the percentage estimation error ê = q̂f()−qf()
qf()

is computed, and the provider incurs a fine that is
proportional to ê − δ, whenever ê > δ.

As a result, the provider’s chance of getting away with an
incorrect estimate (and hence, a reduced penalty) depends
on the authority’s budget and ability to monitor effectively.

In this scheme, the consumer relies on the authority for
control. In case of dispute of past transactions, the authority
is obliged to perform a check on a past quality value, which
may require enabling infrastructure. For completeness, this
amounts to querying a past state of the Dr database – which
is feasible if Dr is a standard transactional DBMS with log-
ging capabilities.

2We are implicitly assuming, for the purpose of the example,
that the monitoring cost in this case is proportional to the
number of items retrieved from Dr.

4. PROVIDER COMPLIANCE MODEL
In this section we analyze the issues associated to en-

forcing an agreement, from the provider’s perspective. The
quality-constrained data provisioning problem can be de-
scribed according to a simple ”monitor-assess-repair” reac-
tive model:

monitor: Firstly, the provider must compute the value of
quality functions every time it receives a query. Since
some of the function parameters may not be available,
i.e., Q(Dr), they must be estimated;

assess: Secondly, the provider must estimate the penalty
associated with the result set for the query;

repair: Thirdly, it must determine the most cost-effective
repair actions to be executed in order to move the state
of its data set towards compliance.

With reference to completeness and consistency, the model
is instantiated as follows.

Detection. We denote with DQ the quantity we wish to
monitor. For completeness, this quantity is

DQ, compl = Q(Dr) \ Q(D)

This set contains all the items that the user would have
obtained by issuing Q to Dr, but are instead missing from
Q(D). These are therefore the items responsible for the
penalties incurred when returning Q(D). For consistency,
DQ is the set of items that were expected to be consistent,
but are not:

DQ, cons = Q(D) \ acc(val, Q(D), Dr, c0)

Repair. For completeness, the only repair procedure con-
sists in obtaining new data items from Dr. For consistency,
the procedure may perform validation on items whose con-
sistency is unknown, and apply algorithms to enforce con-
sistency (for instance, by correcting data or obtaining new
versions from a third party source).

Costing. The third step is the choice of a provider cost
model, which includes a monitoring component costm(Q,D),
a repair component costr(D), and the value-adding compo-
nent costva(d) of expending local resources in order to pre-
pare any d ∈ D for delivery.3 For completeness, the first
two correspond to the cost of computing DQ, compl and the
cost of obtaining a new item d from Dr, respectively.

Compliance strategies. Next, the provider must iden-
tify a strategy for activating repair procedures given the
price and penalty information from the agreement, the ob-
served violations, the cost model, and a goal. An obvious
general provider goal is to avoid penalties that erode profit,
by incurring the minimal repair cost. For completeness, this
translates into the strategy of obtaining the smallest set of
items from Dr, which restores the required completeness lev-
els. As noted, D may be a small subset of Dr, however if it
contains the items that are most likely to be requested in the
future, these may be sufficient to satisfy the constraints for
most of the user queries. Therefore, a sensible approach is
to use the history of past queries to estimate the likelihood
of any item in Dr being requested in the future. Estimating
future request probability is clearly more effective than a
simpler greedy strategy, which would acquire only the items

3This could for example be the cost of producing a review
for a new article.

9

that are missing from the current query, some of which will
not be requested again.
Regardless on the specific choice of estimator, the precision
(i.e., confidence level) associated to the estimate depends on
the length of query history: for a new agreement or a new
user, the provider will be able to do little more than repair-
ing based on the current query. Various statistical models
can be developed to estimate such probability, and it is not
the purpose of this work to survey them. Simple estimators
include the frequency of past requests, which assume that
the past popularity of an item is an indicator of future in-
terest; a mobile average on a limited time window, which
attempts to track the changes in interest; or an estimator
based on the hypothesis that the occurrence of a request
has a known distribution. We note in passing the similar-
ity between the problem of predicting the request of items
that are obtained from reference sources, and the problem
of defining cache replacement algorithms: for properties like
completeness, similar estimators may be applicable.

4.1 Factors that affect compliance strategies
A number of factors complicate the choice and implemen-

tation of a strategy:

• Instant repair: is it feasible for the provider to ob-
tain new items from Dr, and use them to repair the
current result set? When this is not possible, current
penalties are inevitable, and the repair strategy may
only focus on avoiding future penalties.

• Completeness of detection: has the provider com-
plete knowledge of the quality indicators? The provider
must balance the precision of the DQ estimate, with
the monitoring cost costm() of computing it, and the
chance that the verification authority will claim irreg-
ularities.

• Number of quality properties that appear in a sin-
gle agreement, or in multiple agreements: the potential
interaction between constraints on different properties
may complicate the strategy. Consider for instance
currency, the property of a data value of being correct
at a given time4. Currency and completeness are not
independent, because if we assume that all items in
Dr are current, then obtaining a new item from Dr in
order to restore completeness, has also the effect of im-
proving currency. On the other hand, given a budget
for acquiring new items, there may be a contention
between different quality constraints that depend on
those items for their satisfaction, breaking the isola-
tion of single-property strategies.

• Options available for detection and repair: while
for completeness the only repair option is to obtain
items from a reference source, multiple such sources
may be available, possibly at different costs. Also,
other properties may present richer options: validat-
ing an item for consistency may involve requesting a
correction from a reference source, or performing man-
ual inspection on the item.

4The data for an address that changed recently may have
been correct before the change occurred, but it has since
become obsolete, or non-current, until it is updated.

• Notification of updates to a reference source:

for properties whose repair actions depend on a refer-
ence source, it matters whether the provider is notified
of any update to the source. For instance, if complete-
ness is estimated by periodically sampling Dr, then
the estimate is affected by the frequency of updates to
Dr.

• Shape of cost and price functions: the various
cost and price functions listed earlier may depend on
the particular choice of item, or may be defined as a
function of the size of the result.

5. PROVISIONING WITH COMPLETENESS
In order to provide a concrete example of provisioning

with quality, we now illustrate an algorithm for complete-
ness, based on the detection-repair model. With respect
to the complicating factors listed above, the assumptions
for the algorithm are as follows: instant repair is possible;
only one quality property appears (completeness), and the
only repair option is to obtain new items from the reference
source; there is no notification of updates to the reference;
and finally, the price function depends only on the size of
the query result.

We first present a baseline algorithm that assumes that
the provider has complete and free knowledge of the quality
indicators, and then propose a generalization that does not
require this assumption.

5.1 Baseline algorithm
The approach is based on the definition of a utility func-

tion for a set D′ ⊆ Dr \ D of currently missing items, and
the formulation of a corresponding optimization problem,
that can be solved using heuristics. For completeness, the
function takes into account the provider cost model and the
penalty functions:

U(D′
, Q, D,P) = priceb(Q(D) ∪ (D′ ∩ Q(Dr)))

×(1 − pencompl(Q(D) ∪ (D′ ∩ Q(Dr)),P))

−costr(D
′) − costav(D′)

In practice, U describes the effect of purchasing set D′:

• the base price is increased due to the new items in
D′. Notice that there is no guarantee that the algo-
rithm will only purchase items that are missing from
the current result. In fact, the heuristic presented later
makes a less greedy selection, hoping to improve future
compliance. Hence, only the items in D′ ∩Q(Dr) con-
tribute to the immediate extra reward.

• The penalty is reduced correspondingly (the same ob-
servation applies).

• The cost incurred is due to purchasing and adding
value to D′.

The optimization problem is designed to limit the risk of
purchasing items that may not be needed in the future: we
are seeking the subset of Dr \D that maximizes the ratio of
utility-to-size:

max
D′∈Dr\D

U(D′, Q,D,P)

|D′|

10

Normalizing by size avoids the effect of an indefinitely in-
creasing utility, which would result in purchasing the largest
possible D′. Note that the problem is defined on the entire
set of missing items, rather than only on DQ, and that it
must be solved when Q is computed.

Since we are not making any assumptions on the shape
of function U , or of any of its components, a brute-force
algorithm that enumerates all possible D′ has exponential
complexity in |Dr \D|. To reduce the complexity, we apply
the strategy mentioned in Section 4, using the history of past
user queries to estimate the likelihood of a missing item to
be requested in the future.

Algorithm 1. For each Q, the provider maintains a count
of the frequency of requests of each item di ∈ DQ, and
requires an estimate of the likelihood of a future request
for each d. Since this involves updating the frequency of the
items that are actually requested, complete knowledge of Dr

is not required. The algorithm starts from an empty set D′,
and incrementally adds to it in order of estimated likelihood,
recording the value of U at each step. In this way, at step
i only the most promising of the � |Dr\D|

i � potential sets is
considered. 2

Some comments are in order:

• From the definition of the utility function, we note
that its components depend not only on the number
of items, but also on their choice. This is because we
allow the selection of D′ to range on the entire set
Dr \ D, rather than only on DQ, hence some of the
selected items may not reduce the immediate penalty.

• The order defined on the missing items is partial. For
instance, after the first query, the best set contains a
random selection (of optimal size) of items from DQ,
because all such items have the same frequency of oc-
currence. We assume that the items in DQ are pre-
ferred over others of the same rank.

• It is worth considering the effect of a locality principle
on this heuristic, which states that the history of past
queries is indeed a good predictor for future queries.
Consider what happens when queries are highly local-
ized and an occasional odd query arrives, requesting
items never mentioned before. Since these items have
a low frequency, they are ranked low relative to others
that have been requested in the past multiple times,
but are still missing. In this case, the algorithm does
not try to repair the current query (which will there-
fore result in a penalty), but rather it will purchase
additional popular items, increasing the expected re-
ward for future queries.

• As noted earlier, initially the limited history of past re-
quests makes the estimators unreliable, yielding items
that may in fact never be used again in the future.
This confirms the intuition that this agreement model
makes frequent and regular consumers more appealing
than occasional ones, and suggests that quality agree-
ments are best suited for long-term consumer-provider
relationships.

We conclude by noting the effect of updates and inserts into
Dr. In this version of the algorithm, even if the provider

is not informed of these events (for instance, through some
event notification infrastructure), they do not pose prob-
lems.
When an update comes to Dr, then D clearly holds a stale
copy, of which it is not aware. However, unless there is
an explicit currency constraint, this has no consequences on
completeness! – this is in fact a case for handling complete-
ness and currency together. When a new insert occurs in Dr,
according to our algorithm it may be revealed only through
queries of the form Q(Dr). Items that appear in Dr but are
never requested, are simply ignored. Items that start being
requested after they have been inserted, are handled in the
same way as all others.

5.2 Ranking of missing data using query pred-
icates

Given a query of the form Q = σp(R), our baseline algo-
rithm relies on the extension Dr for computing completeness
(detection), and for selecting the most promising items to
purchase (repair), assuming Q(Dr) known, by simply enu-
merating the missing items. The algorithm described in this
section addresses the problem of performing detection and
repair when Q(Dr) is not available.
The idea is to consider only the conditions stated in the user
queries, and those used by the provider to obtain new items
from Dr. We rely on two observations: firstly, that the most
popular data are represented at the intensional level by the
history of user queries; and secondly, that although Q(Dr)
is not immediately available, within the limited scope of a
specific user query we may still provide a good estimate for
the completeness complQ(D, Dr), and also determine the
conditions corresponding to the most popular items in Dr,
for repair.

The algorithm is based on the definitions of request pro-
files and completeness maps. Similar in spirit to ordinary
database profiles used by relational query optimizers, a re-
quest profile records the level of interest for specific data
items, and is computed progressively from a history of user
queries. The main difference is that, while in ordinary pro-
files the data points in the histograms are attribute values,
in this case they are query predicates.

Whereas a request profile records the demand for data,
a completeness map represents the available data set, as
described by the set of queries issued by the provider to Dr.
Intuitively, knowledge of the user requests to the provider
and of the provider requests to its suppliers is sufficient to
rank the data that the provider is missing, according to the
user preferences.

Let Q = Q1, Q2, . . . , Qm and Q′ = Q′
1, Q

′
2, . . . , Q

′
n be

the history of user and provider queries, respectively. We
may restrict our attention to select-queries only, of the form
Q = σp(R), ignoring projections; having defined complete-
ness at the granularity of the entire data item, a distinction
based on projected attributes is unnecessary. Furthermore,
we make the simplifying assumption that selection pred-
icates are conjunctions of elementary conditions that are
either (i) expressions involving relational operators relop

(=,≤,≥) on ordered domains, of the form x relop c, or
(ii) set membership expressions on enumerated sets, i.e.,
x ∈ {c1, . . . , cn}.

Given a relation R(A1, . . . , Al), these definitions are for-
malized as follows.

Definition 1. (Request profile)

11

10 15 20 30

3

1
2

v1 v2

A1

A2

25

v1

v2

A2

10 15 20 30

4 5 3 3

3 4 2 2

(b) Score and missing

(a) histograms

2

1

A1

fr
eq

ue
nc

y

fr
eq

ue
nc

y

Figure 2: Construction of request profiles

Given set Pi = {pi1, . . . , pini
} of logically disjoint predicate

expressions pij on Ai, a request profile is a set of l histograms

freqi : Pi → N ,

one for each Ai. Each freqi maps Pi onto its frequency of
occurrence as observed in the query history Q.

For example, suppose that D is described by the single table
R(A1, A2), where A1 ranges over the positive integers, and
A2 ranges over the finite set {v1, . . . , vn}. Let the predicates
found in the history of queries be:
p1 = (A1 ∈ [10, 20])
p2 = (A1 ∈ [10, 20] ∧ A2 = v1)
p3 = (A1 ∈ [15, 30] ∧ A2 = v2)
p4 = (A2 ∈ {v1, v2})
We write [10, 20] as a shorthand for A1 ∈ [10, 20]. The
histograms are constructed as follows:

1. Q1 carries predicate [10, 20], so freq1([10, 20]) = 1.

2. After Q2, freq1([10, 20]) = 2 and freq2(v1) = 1.

3. Q3 causes the [10, 20] interval to be refined into the
adjacent disjoint intervals [10, 15], [15, 20] and [20, 30],
associating a frequency to each:
freq1([10, 15]) = 2,
freq1([15, 20]) = 3,
freq1([20, 30]) = 1
(partitioning two overlapping intervals into disjoint in-
tervals can be accomplished easily). Also, now freq2(v1) =
2 and freq2(v2) = 1.

The resulting histograms are illustrated in Figure 2 (a). No-
tice that these histograms are independent of each other: for
simplicity, we do not account for the co-occurence of some
of the predicates within the same query. Also, by construc-
tion the histograms only include the predicates that appear
in the queries, rather than all possible combinations for the
value set of each attribute.

Definition 2. (Space of predicates)
Given the sets {P1, . . . , Pl} of predicate expressions for a
request profile, the space of predicates P is the set of all
vectors of the form p = (x1, . . . , xl), with xk ∈ Pi.

In the example, P includes ([10, 15], v1), ([10, 15], v2), ([15, 20], v1)
and so forth. We describe the popularity of a combination

p ∈ P of predicates using a syntectic score value:

score(p) = �
i:1..l

freqi(p[i])

i.e., score([15, 20], v1) = 5, score([20, 30], v2) = 2, etc.
This score, however, is oblivious of the data from Dr that

has already been purchased. Thus, it is complemented by
the partial information on the completeness D relative to
Dr:

Definition 3. (Completeness map)
Given p = (x1, . . . , xl) ∈ P, let p = x1 ∧ · · · ∧ xl be a predi-
cate. A completeness map is described by boolean function

missing(p) ∈ {true, false}

defined on the space of predicates, such that

missing(p) = true iff Qp(Dr) ⊆ D.

Assuming missing(p) = true for all p initially, the map is
updated using the history Q′ of data purchases. For in-
stance, let p′

1 = (A1 ∈ [15, 25] ∧ A2 = v1) be the predicate
for Q′

1. As shown in Figure 2 (b), first p′
1 is used to further

refine the histogram for A1, adding the interval boundary
25. The corresponding score table is updated as a con-
sequence. Splitting [15, 25] into [15, 20] and [20, 25] aligns
this interval with the existing histograms. Then, we set
missing([15, 20], v1) = missing([20, 25], v1) = 0. In prac-
tice, we mark selected points in the space of predicates,
which represent conjunctions that have already been used
to purchase new data.

The rank of a point p representing missing data is simply
the product

rank(p) = score(p) � missing(p)

This ranking provides a preference only among the predi-
cates that describe popular items that are still missing (the
others have rank 0), and replaces the simpler repair crite-
rion used in the baseline version of our algorithm. In the
example, the combination ([10, 15], v1) is the most popular,
since ([15, 20], v1) is not missing.
It is worth mentioning that the operation of histogram re-
finement that may follow each user query, also requires re-
evaluating the missing function. This is simple, however,
since each new sub-interval inherits the missing values found
in the parent interval (this is left to intuition).

12

Algorithm Intensional data ranking

Given relation R(A1, . . . , Al):

For user query Q = σp(R):
begin

for each Ai do {
Let pi be the conjunction of terms from p on Ai;
affectedPoints = refine(Pi, pi);
updateHistogram(freqi(pi));

}
for each p ∈ affectedPoints do updateScore(p);
for each p ∈ P do rank(p) = score(p) × missing(p);

end

For provider query Q′ = σp′(R) issued to Dr:
begin

for each Ai do {
Let p′

i be the conjunction of terms from p′ on Ai;
affectedPoints = refine(Pi, p

′
i);

for each p ∈ affectedPoints do updateScore(p);
newPoints = computeNewPoints(p′

i);
for each p ∈ newPoints do missing(p) = false;

end

Figure 3: Ranking algorithm

The ranking algorithm is summarized in Figure 3. Func-
tion refine() increases the number of intervals in the his-
togram, and returns the points in the space of predicates
that are affected by this operation. For these points, the
score is updated prior to computing their rank. Upon issu-
ing Q′ to Dr, the provider must additionally compute the
new points in the space of predicates corresponding to the
query predicate, as shown earlier in the example, and reset
their missing flag.

Tables score and missing can also be used as a basis to
provide various estimates of completeness for a query Q =
σp:

complσp(D, Dr) =
|σp(D) ∩ σp(Dr)|

|σp(Dr)|

For example, given predicate p = [10, 20] with the situation
illustrated in Figure 2, one may view intervals as discrete
elements, regardless of their width, and observe that p cor-
responds to the “slice” of the score table that includes 4
predicate combinations. Since only one of these is not miss-
ing, one may estimate complp(D, Dr) = 0.25. Alternatively,
the width of each of the intervals involved or other weight
factors can be taken into account, yielding different esti-
mates.

6. REFERENCE ARCHITECTURE
The architecture sketched in Figure 4 consists of a quality

management module that contains the key components de-
scribed in the previous sections. When a user query comes
through the client service interface, it is processed as usual;
before the result is returned, it is intercepted and passed to
the quality management module, and query post-processing
occurs. Using the interceptor pattern ensures that no changes
are required to the query processor.

With reference to completeness, query post-processing pro-

ceeds as follows. The detection component is in charge of
monitoring the completeness indicator and of computing the
quality value, estimating the penalty associated with the
query result. As explained in the previous section, this is
done by querying the profile manager, which controls the
completeness maps. The user query is also used by the pro-
file manager to update the request profiles.

The strategy manager then uses this information to com-
pute the utility function and to setup the optimization prob-
lem. Again, the profile manager is a critical component, in
that it provides the ranked predicates that correspond to
the most interesting new items. At this point, the repair
actions consist of one or more queries to Dr, issued by the
repair component using the pull interface of the gateway.

If the “instant repair” option is available, described in Sec-
tion 4.1, then the new data items are prepared for immediate
delivery and added to the original result set. Additionally,
the queries are passed to the profile manager, which updates
the completeness map.

If a push interface is active, then any update to Dr is prop-
agated not only to D, but also to the profile manager, which
may use it to update the completeness estimates. At the end
of post-processing the final price is computed, taking self-
assessed penalties into account, and the result is returned to
the user. In the figure, an agreement interface is also shown
as part of the quality management module, to indicate the
channel used for agreement negotiation, which results in the
configuration of the module components.

7. FURTHER WORK AND CONCLUSIONS
We have presented a simple model for the definition of for-

mal agreements between data providers and consumers re-
garding the quality levels of data, illustrating the provider’s
problem space and showing an algorithm for dealing with
the completeness property as a special case. Finally, we
have described a reference provider architecture for enforc-
ing quality agreements, that is respectful of the existing
query processing architecture.

This work is at its initial stages and can be extended in
many directions, adding elements that may affect our initial
assessment of the agreement model and of the providers’
strategies. Firstly, we believe that an experimental evalua-
tion of the presented approaches for completeness, and a pro-
totype implementation of the architecture, may provide an
insight into their practicality. Secondly, the overall frame-
work and architecture must be tested by considering addi-
tional properties: are there suitable architectural patterns
for dealing with constraints on multiple quality properties,
and how would the provider define strategies that involve in-
terplay between properties, i.e., between completeness and
currency? In the same vein, dealing with multiple agree-
ments with overlapping constraints may intuitively make the
provider’s strategy more cost-effective, in ways that need to
be investigated.

8. REFERENCES
[1] A.Borthwick, M.Buechi, and A.Goldberg. Key

concepts in the choicemaker 2 record matching system.
In Procs. First Workshop on Data Cleaning, Record
Linkage, and Object Consolidation, in conjunction
with KDD 2003, Washington, DC, July 2003.

[2] A.Dan, D.Davis, R.Kearney, A.Keller, R.King,
D.Klueber, H.Ludwig, M.Polan, M.Spreitzer, and

13

Detection

Strategy
manager

Repair

profiles
management

profiles

Gateway to external resources

Push interface
Notification from Dr

Dr

Quality management module

Query
Processor

D

Dr

Agreement
interfaceClient Service

interface

intercept

Q Q(D’) - quality definitions
- cost and penalty models

External Data
Request and responsePull interface

Request to Dr

Updates to D

Q

Q(D)

Q(D’)

Component configuration

Data flow

Q

Q(Dr)

Figure 4: Reference architecture

A.Youssef. Web services on demand: WSLA-driven
automated management. IBM Systems Journal, 43(1),
2004.

[3] A.Motro, P.Anokhin, and A.C. Acar. Utility-based
resolution of data inconsistencies. In Felix Naumann
and Monica Scannapieco, editors, International
Workshop on Information Quality in Information
Systems 2004 (IQIS’04), Paris, France, June 2004.
ACM.

[4] C. Cappiello, C. Francalanci, P. Missier, B. Pernici,
P. Plebani, M. Scannapieco, and A. Virgillito.
Presentation of metadata and of the quality certificate.
Deliverable dl2, The DaQuinCis project, 2003.

[5] D.Ballou and G.K.Tayi. Methodology for allocating
resources for data quality enhancement. In
Communications of the ACM, volume 32. ACM,
March 1989.

[6] D.Ballou and H.Pazer. Designing information systems
to optimize the accuracy-timeliness tradeoff.
Information Systems research, 6(1), 1995.

[7] D.Ballou, R.Wang, H.Pazer, and G.K.Tayi. Modelling
information manufacturing systems to determine
information product quality. Journal of Management
Sciences, 44(4), April 1998.

[8] M.G. Elfeky, A.K. Elmagarmid, and V.S. Verykios.
Tailor: a record linkage tool box. In Proceedings of the
18th International Conference on Data Engineering
(ICDE 2002), San Jose, CA, Feb. 2002. IEEE
Computer Society.

[9] L. P. English. Improving data warehouse and business
information quality: methods for reducing costs and
increasing profits. John Wiley & Sons, 1 edition,
March 1999. ISBN: 0471253839.

[10] I.P. Fellegi and A.B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64, 1969.

[11] F.Naumann, J.C.Freytag, and U.Leser. Completeness
of integrated information sources. Information

Systems, 29(7):583–615, 2004.

[12] S. Kalepu, S. Krishnaswarmy, and S.W. Loke. Verity:
a qos metric for selecting web services and providers.
In Proceedings of 4th International Conference on
Web Information Systems Engineering Workshops
(WISEW’03). IEEE Computer Society Press, 2004.

[13] P. Missier and C. Batini. A multidimensional model
for information quality in cooperative information
systems. In M. Helfert M. Eppler, editor, Proceedings
of the Eight International Conference on Information
Quality (ICIQ-03), 2003.

[14] M.Lenzerini. Data integration: A theoretical
perspective. In Principles Of Database Systems, pages
233–246, 2002.

[15] M.Scannapieco, A.Virgillito, C.Marchetti, M.Mecella,
and R.Baldoni. The architecture: a platform for
exchanging and improving data quality in cooperative
information systems. Inf. Syst., 29(7):551–582, 2004.

[16] M.Scannapieco and C.Batini. Completeness in the
relational model: a comprehensive framework. In
Procs. 9th International Conference on Information
Quality, ICIQ 2004, Cambridge, Ma, 2004.

[17] F. Naumann, U.Leser, and J.C.Freytag.
Quality-driven integration of heterogenous
information systems. In VLDB’99, Proceedings of 25th
International Conference on Very Large Data Bases,
pages 447–458, Edinburgh, Scotland, UK, September
1999. Morgan Kaufmann.

[18] T.C. Redman. Data quality for the information age.
Artech House, 1996.

[19] R.Y.Wang, M.Ziad, and Y.W.Lee. Data quality.
Advances in Database Systems. Kluwer Academic
Publishers, 2001.

[20] J. Skene, D. D.Lamanna, and W. Emmerich. Precise
service level agreements. In Proceedings of 26th
International Conference on Software Engineering
(ICSE’04). IEEE Computer Society Press, 2004.

[21] Y. Wand and R.Wang. Anchoring data quality

14

dimensions in ontological foundations.
Communications of the ACM, 39(11), 1996.

[22] R. Wang. A product perspective on total data quality
management. Communications of the ACM, 41(2),
February 1998.

[23] R. Y. Wang, M. Ziad, and G. Shankaranarayanan.
IP-MAP: representing the manufacture of an
information product. In Proceedings of the Eight
International Conference on Information Quality
(ICIQ-00), Cambridge, MA., November 2000.

[24] R.Y. Wang and D.M. Strong. Beyond accuracy: what
data quality means to data consumers. Journal of
Management Information Systems, 12(4), 1996.

15

Making Quality Count in Biological Data Sources
Alexandra Martinez

Dept of Computer & Information Science & Engineering
University of Florida

Gainesville, FL 32611 USA
+1 (352) 392-1200

amartine@cise.ufl.edu

Joachim Hammer
Dept of Computer & Information Science & Engineering

University of Florida
Gainesville, FL 32611 USA

+1 (352) 392-1200

jhammer@cise.ufl.edu

ABSTRACT
We propose an extension to the semistructured data model that
captures and integrates information about the quality of the stored
data. Specifically, we describe the main challenges involved in
measuring and representing data quality, and how we addressed
them. These challenges include extending an existing data model
to include quality metadata, identifying useful quality measures,
and devising a way to compute and update the value of the quality
measures as data is queried and updated. Although our approach
can be generalized to various other domains, it is currently aimed
at describing the quality of biological data sources. We illustrate
the benefits of our model using several examples from biological
databases.

1. INTRODUCTION
The rapid and continuous increase in the amount of biological
information available (both experimental and derived) has
brought concern over the perceived quality of existing data.
Analysis and processing of faulty data produces misleading
results and could hamper scientific progress. At the same time,
most research efforts in the area of data quality assessment have
been geared towards data quality problems in enterprise data
warehousing, and less work has been aimed at analyzing and
recording the data quality of biological databases. Hence there is
a need for quality assessment measures in biological data sources
and we propose a model for assessing and recording quality
information in biological data sources.

We define data quality as a measure of the trustworthiness of the
data. Data that is trustworthy conforms to reality, and therefore
can be relied upon for any decision-making, analysis, or to derive
new knowledge. Our definition of data quality is consistent with
those that regard data quality as the degree of agreement between
data views presented by an information system and that same data
in the real-world [21]. However, the trustworthiness of the data is
still a very abstract and broad concept, which is difficult to
measure. In our approach we decided to decompose the notion of
trustworthiness into different metrics each of which is a
quantifiable value. In this sense, we also agree with the notion of

data quality as a multi-dimensional concept [22, 26].

There has also been a growing interest from the database
community in a special type of data known as semistructured data
(or unstructured data), which is commonly defined as
“schemaless” or “self-describing” data [1,5]. Semistructured data
differs from the kind of data handled by relational databases in
that it does not have a rigid structure; hence the interest in finding
new ways of modeling and managing this type of data. The use of
semistructured-like models in the biological context started off
with the ACeDB system (which still requires a schema, but
imposes only weak constraints) [1,5], and has recently gained
popularity with the development of XML-based languages for
biology such as BioML [25], BSML [4], AGAVE [2], and
XEMBL [28], just to mention some. Currently, most biological
repositories (including GenBank [10], EMBL [9], and DDBJ [8])
can export their data in XML format, using some of the existing
XML languages. This trend suggests that semistructured data
models (XML being one of them) are expressive and flexible
enough to adequately represent biological data, which
characterizes by having large variability and missing data.

The main contributions of our work are: 1) The definition of six
quality measures that are meaningful in the biological domain; 2)
the conceptual integration of these measures into a data model
suitable for representing both biological data and quality
measures; and 3) the description of how these quality measures
change as data is queried or updated (according to the operations
of our data model), and how they also affect the query result.

The rest of the paper is organized as follows. Section 2 presents
some related work. Section 3 presents our approach, particularly
how we measure the quality of biological data, and how we
integrate the quality information into a data model fitting both
data and quality metadata. It also describes how the operations in
the data model will change to encompass our quality metadata.
Section 4 illustrates the use of our quality measures with several
examples taken from RefSeq [20], a popular genomic data source.
In Section 5 we outline our conclusions and suggestions for future
work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06 ...$5.00.

2. RELATED WORK
Research related to our work can roughly be divided into three
areas: Information Quality research aimed at defining, measuring
and evaluating the quality of data, Data Quality research in
cooperative information systems, and research on semistructured
data models. We briefly summarize the state-of-the-art in each
area below.

16

Information Quality (IQ) is commonly defined as “fitness for use”
(i.e., achieving a level of data quality that is sufficient from the
perspective of its users) [3]. Numerous models, evaluation
methodologies, and improvement techniques have been developed
in the area of Information Quality [12,13,16,24,27]. Wang et al.
[27] proposed an attribute-based model to tag data with quality
indicators, which characterize the data and its manufacturing
process. They suggest a hierarchy of data quality dimensions with
four major dimensions: accessibility, interpretability, usefulness,
and believability. Each of these dimensions is split into other
factors such as availability, relevancy, accuracy, credibility,
consistency, completeness, timeliness, and volatility. Mihaila et
al. [16] identified four Quality of Data parameters: completeness,
recency, frequency of updates, and granularity. Lee et al. [12]
distinguished five dimensions of data quality: accessibility,
relevancy, timeliness, completeness, and accuracy; each
considered a performance goal of the data production process.
Lee et al. [13] developed a methodology for IQ assessments and
benchmarks called AIM quality. This methodology is based on a
set of intrinsic, contextual, representational, accessibility IQ
dimensions which are important to information consumers. These
dimensions were first devised by Strong et al. [24] as categories
for high-quality data. All these research efforts offer valuable
contributions for better understanding data quality problems and
challenges, but they often lack the pragmatic component which
will ultimately allow users to make decisions about the quality of
the data based on quantitative measures.

More recently, Data Quality has been studied in the context of
cooperative information systems [15,23,19,17], where more
practical approaches have emerged. Mecella et al. [15] describe a
service-based framework for managing data quality in cooperative
information systems, based on an XML model for representing
and exchanging data and data quality. Scannapieco et al. [23]
developed the DaQuinCIS architecture and the D2Q (Data and
Data Quality) model for managing data quality in cooperative
information systems. They defined four data quality dimensions:
accuracy, completeness, currency, and consistency. Naumann et
al. [19] presented a model for determining the completeness (i.e.,
a combination of density and coverage) of a source or
combination of sources. Missier et al. [17] defined the notions of
quality offer and quality demand within cooperative information
systems, and modeled quality profiles as multidimensional date
cubes. In spirit, these works are closely related to ours because
they seek concrete and systematic means of computing the quality
of data. However, our data quality model is not aimed for
cooperative information systems but rather for single biological
information systems. In the biological context, data quality has
been addressed by Müller et al. [18], who examined the
production process of genome data and identified common types
of data errors.

In the area of semistructured data, several models have been
proposed [7,5,1]. Most of them, however, use the same underlying
representation: a graph-like or tree-like structure [5]. For
example, Abiteboul et al. [1] use an edge-labeled graph to
represent semistructured data. UnQL and LORE are based on an
edge-labeled tree representation [6,14]. Calvanese et al. [7] use
the basic data model for semi-structured data (called BDFS) in
which both databases and schemas are represented as graphs. The
work by Scannapieco et al. [23] is also relevant here because they
provide a strong association between their D2Q schemas and

XML schemas, thus proving XML convenient for representing
both data and data quality.

3. APPROACH
Our work addresses the lack of a formal model for measuring and
representing quality information in biological data sources.
Several challenges must be overcome. The first one is to identify
a core set of quality measures which provides a framework for
assessing the quality of biological data. A second challenge is to
devise a data model for recording and maintaining biological data
that facilitates the integration of quality measures into the model.
A third challenge is to determine the effect of the operations
defined in the data model on the quality measures, and the
influence of the quality measures on the result of the operations.
We address our approach in response to each of these challenges
in the following subsections.

3.1 Measuring the Quality of Data
In order to identify useful quality measures, we define criteria that
the measures should satisfy: biologically-relevant, objective, and
easy-to-compute. Since our work is framed within a biological
context, our measures should be meaningful to biologists so they
can use these measures to discern among data of different quality
levels. Additionally, our measures should be objective, meaning
that there is no room for ambiguous interpretation (i.e., subjective
appraisal) when assessing the value of a measure. Last but not
least, our measures should be easy-to-compute in a real system
that efficiently handles quality-augmented data in a scenario
where data is constantly being updated.

Using the above constraints, we have identified the following six
quality measures: Stability, Density, Time since Last Update,
Redundancy, Correctness, and Usefulness. We have classified
them into two sets: primary measures, and derived measures.
Primary measures are independent of each other, while derived
measures depend on one or more primary measures. We provide
an intuitive description for each of them below. Formal
definitions will be given shortly.

3.1.1 Primary Measures
• Stability indicates whether the data is undergoing a period of

change. This measure is obtained by computing a weighted
average of the magnitude of changes applied to a data item
since its creation, where more weight is assigned to recent
changes. Changes that happened long time ago will have a
small weight and thus will not affect the current stability of
the data item significantly. On the other hand, a recent
change to the data item will have a large impact over its
current stability value. A value of 1 corresponds to maximum
stability while 0 corresponds to maximum instability.

• Density indicates the number of components (or attributes)
that describe a data item. For instance, a data item that
consists of a single value is less dense than a data item
involving several values. Note that density does not take into
account the number of bytes needed to store a data item,
since each data item is considered a data unit regardless of
the space it takes. The lowest density value a data item can
have is 1, but there is no upper limit. Our density measure is
comparable to the combination of density and coverage

17

described in [19] since we account for both the intension and
extension of a data source. However, our density measure is
formulated in a different way because we only consider the
density of data items within a single source, as opposed to
[19]’s mediator system which involves many sources and
uses them to build a normalizing factor based on a universal
relation.

• Time since Last Update (TsLU) measures the time elapsed
since a data item was last updated. Note that TsLU is not the
same as the age* of the data item. A TsLU value of 0 denotes
recently updated data, whereas higher values denote elder
data. Our TsLU measure differs from the currency quality
dimension defined in [23] in that we do not assume
knowledge about the time when a data value changes in the
real world. Actually, in our biological context, real world
data (such as DNA sequences) are supposed to remain
unchanged; so all changes are due to a human curation
process that aims to correct errors introduced during data
collection.

• Redundancy measures the fraction of redundant information
contained in a data item. A data item contains redundant
information if any of its components (sub-items) is
redundant. A data item is redundant if it represents the same
real world object as any other data item in the data source. A
redundancy value of 0 indicates the data item contains no
redundant information, whereas a value close to 1 indicates
that a large fraction of the information in the data item is
redundant. Redundancy is related to the consistency quality
dimension described in [23] in that redundant data items
usually are also inconsistent (i.e., their data values conflict
with each other). However, [23] only defines consistency for
attribute values within the same schema element (entity)
instance, but our redundancy measure is defined also across
instances. In the biological context, redundancy can arise due
to multiple submissions of the same “real world” data (e.g. a
DNA or protein sequence) by different authors, which
usually differ in their annotations.

3.1.2 Derived Measures
• Correctness is a measure of the accuracy of a data item. It

can also be regarded as the degree of confidence that the data
item represents true information. A correctness value of 1
means the data item is completely accurate (i.e., we are
100% confident that the data is true), while a correctness
value of 0 means the data is wrong (i.e., we cannot have any
confidence about the accuracy of the data). At an abstract
level, our correctness measure expresses the same notion as
the accuracy dimension described in [23], but it differs in the
way it is computed. In [23], it is proposed to use a distance
function between the value stored at the data source and the
value considered as ‘correct’. In biology, however, we
cannot make the assumption that such ‘correct’ value is
available, due to the uncertainty associated to the data
collection process and the lack of understanding about many
biological processes. Therefore, a different approach is
needed to estimate the correctness value of biological data.

* Age is the time elapsed since the data item was created.

The approach we propose is to use a combination of the
stability and age of the data item.

• Usefulness measures the utility of a data item as a function of
the density, correctness, and redundancy of its components.
Particularly, the usefulness of a data item is the ratio between
the amount of information provided by the data item and its
total amount of data. The amount of information conveyed
by a data item is the amount of non-redundant correct data
contained in the data item. The total amount of data
contained in a data item is the sum over the density of its
components. A usefulness value of 1 means the data item is
completely useful (i.e., all of its data is non-redundant and
correct), while a value of 0 means the data item is useless.

We believe that the proposed derived measures provide the means
for grasping important quality aspects of the data, while the
simple primary measures serve to construct more complex quality
features. Other measures can be obtained from different
combinations of the primary and/or derived quality measures
defined here. Therefore, our set of quality measures may be
enlarged and improved if other measures are considered to be
more meaningful in certain domains.

3.2 Integrating Quality Metadata and Data
By now we have a framework for measuring the quality of data
along various dimensions. Our next challenge is the conceptual
integration of these quality measures into a data model for
validation purposes.

3.2.1 Choosing the right Data Model
We start by selecting a model to represent semistructured data,
and we choose the graph model proposed by Abiteboul et al. [1].
The main reasons for choosing this data model are its flexibility
(it can represent data lacking a fixed schema), its simplicity
(syntactic constructions are simple and easy to understand), and
its fitness for representing biological data (can handle data with
missing values and high variability).

Roughly speaking, the model by Abiteboul et al. [1] is an edge-
labeled directed graph that represents semistructured data
expressions (called ssd-expressions). The following syntax taken
from [1] describes how ssd-expressions can be constructed:

<ssd-expr> ::= <value> | oid <value> | oid
<value> ::= atomicvalue | <complexvalue>
<complexvalue> ::= {label : <ssd-expr>, …, label : <ssd-expr>}

Here, atomic values are either numbers or strings, and labels are
strings of ASCII characters. Object identifiers (oid) are labels
bound to the <value> that follows them, and we denote them with
an ampersand prefix (e.g. &10 or &s1). We illustrate the use of
this syntax in Figure 1, where a fragment of the RefSeq record
NM_128079 is represented as an ssd-expression. Figure 2 shows
the equivalent graph representation of the ssd-expression in
Figure 1. The complete NM_128079 record in the original RefSeq
format is shown in Figure 3. Next, we extend this data model to
include our quality metadata.

18

Using the syntax of our data model (ssd-expressions), quality
metadata can be expressed as a special complex value having one
label per quality measure and atomic values (measures scores)
following the labels; i.e.,

{
 Locus : {
 accession : "NM_128079",
 length-bp : 1356,
 biomol : "mRNA",
 div : "PLN",
 update-date : "25-JAN-2005"
 },
 Definition : "Arabidopsis thaliana protein",
 Version : {
 id : "NM_128079.4",
 gi : 42569303
 },
 Source : {
 Taxname : "Arabidopsis thaliana",
 Organism : {
 Orgname : {
 genus : "Arabidopsis",
 species : "thaliana"
 },
 Lineage : "Eukaryota; Viridiplantae; Streptophyta…"
 }
 }
}

 {S : QS, D : QD, T : QT, R : QR, C : QC, U : QU }

where S, D, T, R, C, and U are labels that represent the Stability,
Density, TsLU, Redundancy, Correctness, and Usefulness quality
measures, respectively. QS, QD, QT, QR, QC, and QU are atomic
values that confer a score to each quality measures. This way of
representing the quality metadata is consistent with the data
model.

The next issue we need to address is where to place the quality
metadata associated to a data item. A data item denotes any of the
following syntactic constructions: <complexvalue>,
<atomicvalue>, or <value>; which would correspond to a node in
the graph representation of the data model. Hence we could place
a data item’s quality metadata either at the data node or at the
edge (i.e., label) coming into the data node. In what follows, we
assume that the quality metadata is part of the data item’s
incoming edge. Making the quality metadata part of the edge (or
label) entails some modifications to the original syntax from
Section 3.2.1. The following extended syntax incorporates quality
metadata into the data model for ssd-expressions:

Figure 1. Fragment of a RefSeq record represented with the

syntax for ssd-expressions.

<ssd-expr> ::= <label> : <value> | <label> : oid <value> |
<label> : oid

<value> ::= <atomicvalue> | <complexvalue>
<atomicvalue> ::= number | string
<complexvalue> ::= {<ssd-expr>, …, <ssd-expr>}
<label> ::= (labelstring, <qmd>)
<qmd> ::= {labelstring : number, …, labelstring : number}

Note that we have added a general construction for quality
metadata (<qmd>), which resembles a complex value structure
but has simplified labels and values. We have also added a rule
for atomic values that allows us to distinguish between numbers
and strings; which is needed in the <qmd> definition. We
augmented the label’s syntax so that it can hold quality metadata,
and changed the placement of labels in the grammar so that every
ssd-expression is forced to have a label rather than only the ssd-
expressions within a complex value. Figure 4 shows how the
RefSeq record from Figure 3 is represented using our quality-
augmented syntax. Labels are merely illustrative: their names
were created from the original record’s field tags, and their
quality metadata is symbolized with a letter ‘q’ (the reader should
interpret this as the actual <qmd> structure {S : QS, D : QD,…, U :
QU }).

Figure 2. Edge-labeled graph representation of the RefSeq
record from Figure 1.

3.2.2 Augmenting the Data Model with Quality
Metadata
In order to incorporate our quality measures into the data model,
we regard the set of all quality measures of a data item as its
quality metadata. At a logical level, we represent quality
metadata as a vector that has one entry (or dimension) per quality
measure. Values stored in these entries are the scores associated
to each of the quality measures; i.e.,

The semantics of our quality-augmented labels is as follows. If l
is a label (or edge) with source node s(l) and target node t(l), then
the quality metadata of l, denoted by q(l), pertain to the data
represented by node t(l) and all its descendant nodes. If t(l) is a
leaf node (i.e., atomic value), then q(l) refers to the quality
metadata of the atomic value stored at that leaf. If t(l) is an
internal node (i.e., complex value), then q(l) comprises the quality
metadata of the complex value represented by the subtree rooted
at that node.

 VQ ≡ [QS, QD, QT, QR, QC, QU]

where QS, QC, QD, QT, QR, and QU are atomic objects that give a
score for the quality measures Stability, Density, TsLU,
Redundancy, Correctness, and Usefulness, respectively.

19

LOCUS NM_128079 1356 bp mRNA linear PLN 25-JAN-2005
DEFINITION Arabidopsis thaliana protein kinase family protein (At2g25220)
 mRNA, complete cds.
ACCESSION NM_128079
VERSION NM_128079.4 GI:42569303
KEYWORDS .
SOURCE Arabidopsis thaliana (thale cress)
 ORGANISM Arabidopsis thaliana
 Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
 Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
 rosids; eurosids II; Brassicales; Brassicaceae; Arabidopsis.
COMMENT PROVISIONAL REFSEQ: This record has not yet been subject to final
 NCBI review. This record is derived from an annotated genomic
 sequence (NC_003071). The reference sequence was derived from
 mrna.At2g25220.1.
 On Feb 17, 2004 this sequence version replaced gi:30682693.
FEATURES Location/Qualifiers
 source 1..1356
 /organism="Arabidopsis thaliana"
 /mol_type="mRNA"
 /db_xref="taxon:3702"
 /chromosome="2"
 /map="unknown"
 /clone="CHR2v01212004"
 /ecotype="Columbia"
 gene 1..1356
 /locus_tag="At2g25220"
 /note="synonym: T22F11.19; protein kinase family protein"
 /db_xref="GeneID:817060"
 CDS 1..1152
 /locus_tag="At2g25220"
 /note="contains protein kinase domain, Pfam:PF00069;
 go_function: kinase activity [goid 0016301]"
 /codon_start=1
 /product="protein kinase family protein"
 /protein_id="NP_180094.2"
 /db_xref="GI:42569304"
 /db_xref="GeneID:817060"
 /translation="MGSGEEDRFDAHKKLLIGLIISFSSLGLIILFCFGFWVYRKNQS
 PKSINNSDSESGNSFSLLMRRLGSIKTQRRTSIQKGYVQFFDIKTLEKATGGFKESSV
 IGQGGFGCVYKGCLDNNVKAAVKKIENVSQEAKREFQNEVDLLSKIHHSNVISLLGSA
 SEINSSFIVYELMEKGSLDEQLHGPSRGSALTWHMRMKIALDTARGLEYLHEHCRPPV
 IHRDLKSSNILLDSSFNAKISDFGLAVSLDEHGKNNIKLSGTLGYVAPEYLLDGKLTD
 KSDVYAFGVVLLELLLGRRPVEKLTPAQCQSLVTWAMPQLTDRSKLPNIVDAVIKDTM
 DLKHLYQVAAMAVLCVQPEPSYRPLITDVLHSLVPLVPVELGGTLRLTR"
ORIGIN
 1 atgggaagtg gtgaagaaga tagatttgat gctcataaga aacttctgat tggtctcata
 61 atcagtttct cttctcttgg ccttataatc ttgttctgtt ttggcttttg ggtttatcgc
 121 aagaaccaat ctccaaaatc catcaacaac tcagattctg agagtgggaa ttcattttcc
 181 ttgttaatga gacgacttgg ctcgattaaa actcagagaa gaacttctat ccaaaagggt
 241 tacgtgcaat ttttcgatat caagaccctc gagaaagcga caggcggttt taaagaaagt
 301 agtgtaatcg gacaaggcgg tttcggatgc gtttacaagg gttgtttgga caataacgtt
 361 aaagcagcgg tcaagaagat cgagaacgtt agccaagaag caaaacgaga atttcagaat
 421 gaagttgact tgttgagcaa gatccatcac tcgaacgtta tatcattgtt gggctctgca
 481 agcgaaatca actcgagttt catcgtttat gagcttatgg agaaaggatc attagatgaa
 541 cagttacatg ggccttctcg tggatcagct ctaacatggc acatgcgtat gaagattgct
 601 cttgatacag ctagaggact agagtatctc catgagcatt gtcgtccacc agttatccac
 661 agagatttga aatcttcgaa tattcttctt gattcttcct tcaacgccaa gatttcagat
 721 ttcggtcttg ctgtatcgct ggatgaacat ggcaagaaca acattaaact ctctgggaca
 781 cttggttatg ttgccccgga atacctcctt gacggaaaac tgacggataa gagtgatgtt
 841 tatgcatttg gggtagttct gcttgaactc ttgttgggta gacgaccagt tgaaaaatta
 901 actccagctc aatgccaatc tcttgtaact tgggcaatgc cacaacttac cgatagatcc
 961 aagcttccaa acattgtgga tgccgttata aaagatacaa tggatctcaa acacttatac
 1021 caggtagcag ccatggctgt gttgtgcgtg cagccagaac caagttaccg gccgttgata
 1081 accgatgttc ttcactcact tgttccactg gttccggtag agctaggagg gactctccgg
 1141 ttaacaagat gattcacaga aacacgccaa aagaaatcca aagccattta gatgattttc
 1201 ttttatcctt tgcctttata tttttttgta tagggttatg atccactcat ctgaaagttt
 1261 gggggtaaga atgtgagaat ataagttttc agggttgttg agttctatat aattatattt
 1321 gtttcttttt attgtcaaat ataattatat ttttgt
//

Figure 3. Record with Accession number NM_128079.4, taken from RefSeq.

20

(Seq-entry,q):{
 (LOCUS,q):{
 (accession,q):"NM_128079",
 (length-bp,q):1356,
 (biomol,q):"mRNA",
 (div,q):"PLN",
 (update-date,q):"25-JAN-2005"
 }
 (DEFINITION,q):"Arabidopsis thaliana protein kinase family protein (At2g25220) mRNA, complete cds."
 (ACCESSION,q):"NM_128079"
 (VERSION,q):{
 (id,q):"NM_128079.4",
 (gi,q):42569303
 }
 (KEYWORDS,q):"" .
 (SOURCE,q):{
 (taxname,q):"Arabidopsis thaliana (thale cress)",
 (organism,q):{
 (orgname,q):{
 (genus,q):"Arabidopsis",
 (species,q):"thaliana"
 }
 (lineage,q):"Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
 Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
 rosids; eurosids II; Brassicales; Brassicaceae; Arabidopsis."
 }
 }
 (COMMENT,q):"PROVISIONAL REFSEQ: This record has not yet been subject to final
 NCBI review. This record is derived from an annotated genomic
 sequence (NC_003071). The reference sequence was derived from
 mrna.At2g25220.1.
 On Feb 17, 2004 this sequence version replaced gi:30682693."
 (FEATURES,q):{
 (source,q):{
 (location,q):{
 (from,q):1,
 (to,q):1356
 }
 (qualifiers,q):{
 (organism,q):"Arabidopsis thaliana",
 (mol_type,q):"mRNA",
 (db_xref,q):"taxon:3702",
 (chromosome,q):"2",
 (map,q):"unknown",
 (clone,q):"CHR2v01212004",
 (ecotype,q):"Columbia"
 }
 }
 (gene,q):{
 (location,q):{
 (from,q):1,
 (to,q):1356
 }
 (qualifiers,q):{
 (locus_tag,q):"At2g25220",
 (note,q):"synonym: T22F11.19; protein kinase family protein",
 (db_xref,q):"GeneID:817060"
 }
 }
 (CDS,q):{
 (location,q):{
 (from,q):1,
 (to,q):1152
 }
 (qualifiers,q):{
 (locus_tag,q):"At2g25220",
 (note,q):"contains protein kinase domain, Pfam:PF00069; go_function: kinase activity [goid 0016301]",
 (codon_start,q):1
 (product,q):"protein kinase family protein",
 (protein_id,q):"NP_180094.2",
 (db_xref,q):"GI:42569304",
 (db_xref,q):"GeneID:817060",
 (translation,q):"MGSGEEDRFDAHKKLLIGLIISFSSLGLIILFCFGFWVYRKNQS
 PKSINNSDSESGNSFSLLMRRLGSIKTQRRTSIQKGYVQFFDIKTLEKATGGFKESSV
 IGQGGFGCVYKGCLDNNVKAAVKKIENVSQEAKREFQNEVDLLSKIHHSNVISLLGSA
 SEINSSFIVYELMEKGSLDEQLHGPSRGSALTWHMRMKIALDTARGLEYLHEHCRPPV
 IHRDLKSSNILLDSSFNAKISDFGLAVSLDEHGKNNIKLSGTLGYVAPEYLLDGKLTD
 KSDVYAFGVVLLELLLGRRPVEKLTPAQCQSLVTWAMPQLTDRSKLPNIVDAVIKDTM
 DLKHLYQVAAMAVLCVQPEPSYRPLITDVLHSLVPLVPVELGGTLRLTR"
 }
 }
 }
 (ORIGIN,q): "1 atgggaagtg gtgaagaaga tagatttgat gctcataaga aacttctgat tggtctcata
 ...
 1321 gtttcttttt attgtcaaat ataattatat ttttgt"
}

Figure 4. Representation of the RefSeq record NM_128079.4 (in Figure 3) using our quality-augmented

semistructured data model.
21

3.2.3 Computing the Score of the Quality Measures
We are left now with the issue of how to effectively compute the
score of each of our quality measures for a particular data item.
We propose a set of heuristic formulae, which are largely based
on historical information about the data (i.e., what was the value
of the data in previous versions, how much time elapsed between
versions, when was the last time it was updated, etc.). After
analyzing some records from RefSeq together with their “revision
history”, we recognized the potential application of this historical
data to the computation of our quality measures. Extracting the
appropriate information from the different versions that a data
item has undergone over time can reveal quality aspects such as
stability, correctness, and currency of the data item at hand. We
do not claim that our measure scores are optimal; in fact, there
may even be more effective ways of computing the scores, so
consider our formulae just as a starting point for future
discussions on this subject.

For simplicity, most of the formulae we present here assume that
the data graph is acyclic. However, they can be extended to
account for cycles in the graph. In particular, we will assign
scores to each of the quality measures in the quality metadata q(l)
of a label l as follows.

(i) If the label’s target node t(l) is an atomic value v, then:

• The Stability score QS in q(l) is defined as

∑ ∫
=

−−×−∆−=
n

i

t

tS
i

i
dteivivQ t

1

1]))(),1(([1 λλ (1)

where n is the number of versions v has undergone, ti is the
time elapsed since the ith version of v (t0 ≡ ∞), and v(i) is the
state2 of v at version i. ∆ is a function that measures the
proportion of change (if you want, the “distance”) between
two atomic values, which we will shortly define. The integral
in formula (1) weights the changes depending on when they
occur in time: recent changes have more weight than old
changes; here λ > 0 is a parameter to be determined
experimentally.

• The Density score QD in q(l) is defined as

1=DQ (2)

which means that each atomic value counts as one data unit.

• The TsLU score QT in q(l) is defined as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎥
⎢
⎣

⎢ −
+=

f
utQT 1log (3)

where t is the current time, u is the time when v was last
updated, and f is the frequency of update3 of the database.
We use a log-based scale for time because we consider that it
is fairer to convert time to a logarithmic scale when making
comparisons.

2 The state of an object is a given by its type and contents.
3 Frequency of update indicates how often the database gets

updated (e.g. daily, weekly).

• The Redundancy score QR in q(l) is defined as

v

v
R T

T
Q

1−
= (4)

where Tv is the set of ssd-expressions in the database that are
redundant with respect to v, and |Tv| is the cardinality of this
set. We assume that v itself is included in Tv so that if v is
unique then |Tv|=1 and QR=0, and if v is redundant then |Tv|>1
and QR>0. In order to determine which data items are
redundant one could use, for instance, the algorithms
described in [11].

• The Correctness score QC in q(l) is defined as

)1(21
age

SC ewQwQ ×−−×+×= β (5)

where β > 0, 0 ≤ w1 ≤ 1, and w2 = 1-w1, are parameters to be
determined experimentally. QS is the stability score, and age
is the time elapsed since the creation of v. In other words,
correctness is a weighted average of the stability and the age,
with age being first mapped to the interval [0,1) (0 meaning
that the data item is new, and a value close to 1 meaning that
the data item is very old).

• The Usefulness score QU in q(l) is defined as

[RlqClqDlqQU).(1).().(−×]×= (6)

where q(l).D, q(l).C, and q(l).R are path expressions for the
density, correctness, and redundancy scores associated to v.

We define the function ∆(v1,v2) for atomic values v1 and v2 as
follows:

If v1 and v2 are of different type, then

1),(21 =∆ vv

If v1, v2 are both strings, then

))(),(max(
),(

),(
21

21
21 vlengthvlength

vveditDist
vv =∆

If v1, v2 are both numbers, then

),max(
),(

21

12
21 vv

vv
vv

−
=∆

(This formula assumes that v1, v2 are positive numbers.)

In any other case,

1),(21 =∆ vv

Note that 0 ≤ ∆(v1, v2) ≤ 1 for any data pair (v1, v2). The aim of
the ∆ function is to assess the proportion of data that changed
from value v1 to value v2. It can also be interpreted as a
normalized distance between values v1 and v2. For example, if v1
and v2 are equal, then we need not change v1 to obtain v2, so
∆(v1,v2) = 0. On the other hand, if v1 and v2 are strings and they
differ in 50% of their content (i.e., 50% of v1 needs to change so
that v1 becomes v2), then ∆(v1,v2) = 0.5.

22

(ii) If the label’s target node t(l) is a complex value v =
{l1 : e1, …, ln : en}, then:

• The Stability score QS in q(l) is defined as

∑
=

=
n

i
iS Slq

n
Q

1

).(1 (7)

where n is the number of labels contained in v (i.e., outgoing
edges from node t(l)), li is the i-th label in v, and q(li).S is a
path expression for the stability score associated to ei (where
ei is a child node of t(l)).

• The Density score QD in q(l) is defined as

∑
=

+=
n

i
iD DlqQ

1
).(1 (8)

where n and li are defined as in (7), and q(li).D is a path
expression for the density score of ei. QD is in fact the
number of nodes in the subtree whose root is v, i.e., the
number of descendants of node v. We add one to this
quantity to account for the node v itself. Formula (8) assumes
that our data graph is effectively a tree (i.e., every node has
only one parent node or incoming edge).

• The TsLU score QT in q(l) is defined as

∑
=

=
n

i
iT Tlq

n
Q

1
).(1 (9)

where n and li are defined as in (7), and q(li).T is a path
expression for the TsLU score of ei. Since the time for
atomic values is given in a logarithmic scale, QT will not be
too sensitive to extremely old data.

• The Redundancy score QR in q(l) is defined as

∑
=

=
n

i
iR Rlq

n
Q

1

).(1 (10)

where n and li are defined as in (7), and q(li).R is a path
expression for the redundancy score of ei.

• The Correctness score QC in q(l) is defined as

∑
=

=
n

i
iC Clq

n
Q

1

).(1 (11)

where n and li are defined as in (7), and q(li).C is a path
expression for the correctness score associated to ei.

• The Usefulness score QU in q(l) is defined as

[]

∑

∑

=

=

−××
= n

i
i

n

i
iii

U

Dlq

RlqClqDlq
Q

1

1

).(

).(1).().(
 (12)

where n and li are defined as in (7), and q(li).D, q(li).C, and
q(li).R are path expressions for the density, correctness, and
redundancy scores of ei, respectively.

At this point we can justify our formulae based on our initial
experience with biological data, but we are in the process of
validating this model with the development of a prototype and
through posterior feedback from biologists.

3.3 Updating the Quality Measures under the
Data Operations
Since we are primarily concerned about biological data, we
cannot make the assumption that our data is mainly static.
Conversely, we must consider a scenario where data is constantly
updated through the operations defined in the data model. Thus,
we need to address the issue of how our quality metadata is
affected by each of the operations in the data model. For this
purpose, we will consider a core set of operations on the graph
model, which includes navigation, insertion, update, and deletion.

3.3.1 Navigating to a node n and returning its
content
Let l be the last label (or edge) in the path through which we
reached n, i.e., t(l) = n. None of the scores of the quality measures
change under this operation. Together with the data represented
by node n, this operation will return q(l) as the quality metadata
of the result.

3.3.2 Inserting a new node n
Let l1, l2, …, lk be the path where n will be inserted, i.e. n will
become a child of t(lk). Then, when the node is inserted we will
assign initial scores to the quality measures of n. These initial
scores are given by the formulae from previous section.

If the node to insert is a leaf (atomic value),

(a) Compute the quality measures for this leaf node
according to formulas (1) through (6).

If the node to insert is an interior node (complex value),

(a) First, recursively compute the quality measures for its
children (direct descendants).

(b) Then, compute the quality measures for this interior
node according to formulas (7) through (12).

In either case, update the quality measures of all the nodes in the
path from the root to n i.e., t(l1), t(l2),…, t(lk) so that they
incorporate information about their new descendant. More
specifically, this can be done using the procedure of an Update
operation (see below).

Besides the path to the recently inserted node n, this operation
will return the quality metadata q(lk) assigned to this new node.

3.3.3 Updating a node n
Let l1, l2, …, lk be the path where n is located in the graph so that
n is a child of t(lk). Then, when the node is updated, the scores of
the quality measures will change according to the formulae from
previous section.

If the node to update is a leaf (atomic value),

(a) Recompute the quality measures of this leaf node as
specified by formulas (1) through (6).

23

If the node to update is an interior node (complex value),

(a) Recursively recompute the quality measures of those
children that were affected by the update operation.

(b) Recompute the quality measures of this node as
specified by formulas (7) through (12).

In either case, update the quality measures of all the nodes along
the path from the root to n, i.e., t(l1), t(l2),…, t(lk).

This operation will return the updated quality metadata q(lk) of the
just updated node n.

3.3.4 Deleting a node n
Let l1, l2, …, lk be the path where n is located in the graph so that
n is the child of t(lk). Then, when the node is deleted, the scores of
the quality measures will be updated according to the formulae
from previous section.

If the node to delete is a leaf (atomic value), then

(a) Delete label lk (which contains the quality metadata for
n).

(b) Recompute the quality measures of n’s parent node,
t(lk-1), as specified by formulas (7) through (12).

If the node to delete is an interior node (complex value), we need
to distinguish between two cases: (i) single node deletion, and (ii)
subtree deletion. Hence,

(i) Single node delete (in this case, re-structuring of the tree is
needed)

(a) Replace label lk with the set of labels directly reached
by lk so that n’s parent node becomes the parent of n’s
children nodes.

(b) Recompute the quality measures of n’s parent node,
t(lk-1), as specified by formulas (7) through (12).

(ii) Subtree delete (no re-structuring of the tree)

(a) Delete label lk (which contains the quality metadata for
n) and all labels reachable from lk in the subtree (which
contain the quality metadata for the descendants of n).

(b) Update the quality measures of all the nodes in the path
from the root to t(lk-1) i.e., t(e1), t(e2), …, t(ek-1)) to
account for the deletion of their descendants.

This operation will return the updated quality metadata q(lk-1) of
the just removed node’s parent.

4. EXAMPLES
In this section, we illustrate the benefits of our model using
several examples from biological databases.

Example 1. Suppose a biologist wants to have an estimate of the
quality of the atomic value whose path expression is
Locus.Length-bp (oid &9) in Figure 2. By using our quality-
augmented data model, she obtains the following quality metadata
for the atomic value 1356:

{S : 0.9810, D : 1, T : 2.5366, R : 0, C : 0.9248, U : 0.9248}

These scores were calculated using the twelve existing versions of
the RefSeq record NM_128079 (as of March 2005), with
parameters values λ= 0.007, β=0.002, w1 =0.4 and w2 =0.6. The
current time t in formula (4) was assumed to be date when the last
version of the record occurred (January 25th, 2005), and f, the
frequency of update of the database, was assumed to be 1 (daily
updated). Also, we use a redundancy score of 0 for all our
example values since RefSeq is by nature a non-redundant curated
database.

The quality metadata shown above would be located at the edge
(label) Length-bp in our model. Careful examination of these
quality scores can provide greater insights into different quality
aspects of the data at hand. For instance, we can immediately note
that the current value of our atomic data was last updated 2.5366
log-time units ago (see T score). We can also know that this value
is not redundant (see R score). Furthermore, we can deduce that
this atomic value has had minimal or no changes during the most
recent versions because its stability score is close to 1 (see S
score). We can also be 92.48% confident about the accuracy of
this atomic value (see C score). Based on the density score, we
can infer that this atomic value conveys just one unit of data. The
usefulness score suggests that 92.48% of the data in this atomic
value is non-redundant and correct.

Figure 5 shows the behavior of the stability and correctness
quality measures over time for the atomic value from Example 1.
Time 0 corresponds to the date when this value was first inserted
into the data source, and subsequent time markers correspond to
the time elapsed since then, in years. Along with the quality
scores, we also plot the magnitude of change from one version to
the next one, which is defined by the ∆ function. From Figure 5
we observe that whenever there is a change in the contents of our
atomic value, the stability score either decreases or does not
increase significantly with respect to its value on the previous
version. Similarly, the correctness score is affected by changes to
the value but it is not as sensitive to them as stability because it
considers also the age of the data value. To exemplify this,
observe how the scores for stability and correctness change from
the version at time 1.6 to the version at time 2.05. The stability
score drops from 0.91 to 0.79 due to a change of 27% in the
contents of the value, whereas the correctness score remains at
0.78. This happens because the age of the value became
significant, making correctness more robust to changes.

Evolution of Quality Measures over Time

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Time in years

M
et

ric
 S

co
re

Correctness
Stability
Magnitude of change

Figure 5. Evolution of Correctness and Stability scores over
time for the atomic value at path Locus.Length-bp.

24

Example 2. Suppose the same biologist from Example 1 wants to
have an estimate of the quality of the atomic value whose path

Thes
setti

expression is Locus.Biomol (oid &8) in Figure 2. By using our
quality-augmented data model, she obtains the following quality
metadata for the atomic value “mRNA”:

{S : 0.9995, D : 1, T : 3.0386, R : 0.5, C : 0.9322, U : 0.4661}

e scores were calculated using the same parameters and
ngs as in Example 1. The quality metadata shown above is

located at the edge (label) Biomol in our model. Let’s examine
these quality scores. We can see that the current contents of our
atomic value were last updated 3.0386 log-time units ago, which
suggest that this value has remained valid for longer time than the
value from Example 1. We also note that this value is as dense as
the value from Example 1 because each of them encloses one unit
of data. It is also observed that the stability score is very close to
1, which implies that there were probably no significant changes
to the contents of the value during the most recent versions. By
comparing the stability score in this example and in Example 1,
we deduce that this atomic value is currently more stable (i.e. has
suffered less recent changes) than the value from Example 1. The
usefulness score indicates that only 46.61% of the data in this
atomic value conveys information (non-redundant correct data);
thus assessing lower quality to this value than to the value in
Example 1.

Evolution of Quality Measures over Time

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

Time in years

M
et

ric
 S

co
re

Correctness
Stability
Magnitude of change

igur ility
uality measures over time for the atomic value Locus.Biomol. As

mples 1 and 2 wants
to have an estimate of the quality of the atomic value whose path

Thes the

igu ility

gist from Examples 1, 2, and 3

5, R : 0.35, C : 0.8882, U : 0.6871}

The

F
q

e 6 shows the behavior of the correctness and stab

before, time 0 corresponds to the date when this value was first
inserted into the data source. Together with the quality scores, we
plot the magnitude of change (defined by the ∆ function) from
one version to the next one. Note that the only change for this
atomic value occurred when it was inserted. The curves for
stability and correctness in Figure 6 show the typical convergence
of these measures to their maximum values.

Example 3. Suppose our biologist from Exa

expression is Locus.Update-date (oid &10) in Figure 2. By using
our quality-augmented data model, she obtains the following
quality metadata for the atomic value “25-JAN-2005”:

{S : 0.4676, D : 1, T : 0, R : 0.75, C : 0.7195, U : 0.1799}

e scores were calculated using the twelve versions of
record NM_128079, and the same parameters from Example 1.
The quality metadata shown above is located at the edge (label)
Update-date in our model. The update-date value is not a very
interesting data to analyze by itself since we know that it will
change in every version and will simply contain the date when the
last version took place. However, we use it here to illustrate the
behavior of a value that changes frequently (as opposed to the
data in Example 2, which does not change after insertion). Let’s
then examine the quality scores of this atomic value. The TsLU
score of our atomic value is 0, which means that this value was
updated during the last version and that the ‘current time’ is close
to the time when this last version occurred. Note that the stability
and correctness scores are significantly lower than the scores
obtained in previous examples. In particular, a low stability score
such as 0.4676 indicates the presence of large and recent changes
in this atomic value (see Figure 7). The low correctness score is
also an accumulated effect of the many changes experienced by
this value over time, but it is especially influenced by the most
recent changes. The correctness score of this atomic value is
larger than the stability score because the age of the value is also
considered. The usefulness score suggests that the fraction of non-
redundant correct data conveyed by this atomic value is just
17.99% (lower than in Examples 1 and 2).

F re 7 shows the behavior of the correctness and stab
quality measures over time for the atomic value Locus.Update-
date. Observe that the relative change for this atomic value at
each version is considerable (more than 0.3 or 30%). The stability
and correctness scores from Figure 7 are far from reaching the
maximum possible value (i.e., 1), and they will not increase much
if this rate of change continues.

Example 4. Suppose our biolo
needs to estimate the quality of the complex value whose path
expression is Locus (oid &2) in Figure 2. By using our quality-
augmented data model, she obtains the following quality metadata
for the complex data at hand:

{S : 0.8894, D : 6, T : 2.330

se scores were calculated using the same parameters as in
Example 1. The quality metadata shown above is located at the
edge (label) Locus in our model. We observe that the current

Evolution of Quality Measures over Time

0

1

0 0.5 1 1.5 2 2.5 3

Time in years

co
re

0

0.2

0.4

0.6

.8

M
et

ric
 S

Correctness

Stability

Magnitude of
change

Figure 6. Evolution of Correctness and Stability scores
over time for the atomic value at path Locus.Biomol.

Figure 7. Evolution o ss and Stability scores over f Correctne
time for the atomic value at path Locus.Update-date.

25

contents of our complex value were updated 2.3305 log-time units
ago. We also note that 35% of the data in this complex value is
redundant. The stability score of this complex value indicates that
the average stability of its components is reasonably high.
Likewise, the correctness score of this complex value suggests
that the accuracy of its components, in average, is relatively high.
A density score of 6 tells us that our complex value contain more
data units (i.e., it is more dense) than the single atomic values
from previous examples. We can infer from the usefulness score
that 68.71% of the data contained in this complex value is
accurate and non-redundant.

5. FUTURE WORK
We have proposed a quality-a

ware data model for representing

set of quality measures relevant in a

pment of a prototype of our

 useful discussions and

7. REFERENCES
 P., Suciu, D. Data on the Web:

n

[2] nomic Annotation,

and integrating quality metadata into a data source. Our model is
tailored to biological data sources where ongoing concern over
the low quality of rapidly growing experiment data has spurned
the desire for quality assessment measures. We approached this
problem in three steps.

First, we identified a
biological domain (but these measures could be easily extended to
other domains). We give a clear and formal definition for each of
the quality measures, specifying how to compute their score.
Second, we selected a suitable data model and augmented it by
incorporating the quality measures in a consistent manner. Third,
we described how the quality measures are affected by each of the
operations in the data model, and how the quality measures
extend the result of the operations.

We plan on continuing the develo
quality-aware model, which would allow us to validate the overall
approach and demonstrate that the proposed quality measures are
capable of providing meaningful and valuable information. An
important part of the prototype is to implement the data
operations in an efficient way so that updates are incremental. We
also plan to explore ways for automatically capturing the data
quality of existing data in biological repositories. This would
enable a smooth migration from current to quality-aware data
sources.

6. ACKNOWLEDGMENTS
Special thanks to Arturo Camacho for his
reviews.

[1] Abiteboul, S., Buneman

From Relations to Semistructured Data and XML. Morga
Kaufmann Publishers, 2000.
AGAVE - Architecture for Ge
Visualization and Exchange. Available at
http://www.agavexml.org/
Ballou, D., Madnick, S., and[3] Wang, R. Assuring Information

[4] uence Markup Language. Available at

Quality. Journal of Management Information Systems, 20,
3(2004), 9-11.
BSML -Bio Seq
http://www.bsml.org/
Buneman, P. Semistruc[5] tured Data. Proc. PODS ’97. Tucson,
Arizona (May 1997).

timization techniques for unstructured

[7] eling

[8]

[6] Buneman, S., Davison, S., Hillebrand, G., and Suciu, D. A
query language and op
data. Proceedings of the ACM SIGMOD International
Conference on Management of Data. (1996), 505-516.
Calvanese, D., De Giacomo, G., and Lenzerini, M. Mod
and Querying Semi-Structured Data. Networking and
Information Systems Journal, 2, 2(1999), 253-273.
DDBJ -DNA Data Bank of Japan. Available at
http://www.ddbj.nig.ac.jp/

[9] EMBL Nucleotide Sequence Database. Available at
http://www.ebi.ac.uk/embl/

[10] GenBank. Available at
http://www.ncbi.nlm.nih.gov/Genbank/index.html

itiwiriyawej, C. Element matching

[12] ta
 Management

[13] .
sment.

[14]

[15] , R.,
perative

[16]
a. Proc. of the Third IEEE Meta-Data

[17]

[18]
the Eighth International

[19]
,

[20]
.nih.gov/RefSeq/

[11] Hammer, J. and Pluemp
across xml sources using a multi-strategy clustering
technique. Data and Knowledge Engineering (DKE),
Elsevier Science, 48 (2004), 297-333.

 Lee, Y.W. and Strong, D. M. Knowing-Why About Da
Processes and Data Quality. Journal of
Information Systems, 20, 3 (Winter 2003-4), 13-39.

 Lee, Y.W., Strong, D. M., Kahn, B.K., and Wang, R.Y
AIMQ: A methodology for information quality asses
Information & Management, 40, 2(2002), 133-146.

 McHug, J., Abiteboul, S., Goldman, R., Quass, D., and
Widom, J. Lore: A database management system for
semistructured data. SIGMOD Record, 26, 3(1997).

 Mecella, M., Scannapieco, M., Virgillito, A., Baldoni
Catarci, T., Batini, C. Managing Data Quality in Coo
Information Systems. Journal of Data Semantics, I (2003),
LNCS 2800.

 Mihaila, G., Raschid, L., Vidal, M. E. Querying “quality of
data” metadat
Conference. Bethesda, Maryland (April 1999), 526-531.

 Missier, P., Batini, C. A Multidimensional Model for
Information Quality in Cooperative Information Systems.
Proceedings of the Eighth International Conference on
Information Quality (2003), 25-40.

 Müller, H., Naumann, F., Freytag J.C. Data Quality in
Genome Databases. Proceedings of
Conference on Information Quality (2003), 269-284.

 Naumann, F., Freytag J.C., Leser, U. Completeness of
integrated information sources. Information Systems, 29
7(2004), 583-615.

 NCBI Reference Sequences. Available at
http://www.ncbi.nlm

Communications

he ACM, 45, 4(2002), 211-

[23]
i, R. The DaQuinCIS Architecture: a Platform for

[21] Orr, K. Data Quality and Systems Theory.
of the ACM, 41, 2(1998), 66-71.

[22] Pipino, L.L., Lee, Y. W., and Wang, R. Y. Data Quality
Assessment. Communications of t
218.

 Scannapieco, M., Virgillito, A., Marchetti, M., Mecella, M.,
Baldon
Exchanging and Improving Data Quality in Cooperative

26

http://www.agavexml.org/
http://www.bsml.org/
http://www.ddbj.nig.ac.jp/
http://www.ebi.ac.uk/embl/

Information Systems. Information Systems, 29, 7(2004), 5
582.
Strong

51-

[24] , D., Lee, Y., and Wang, R. Data quality in context.

[25] g Draft
Communications of the ACM, 40, 5(1997), 103-110.
The Biopolymer Markup Language –BIOML, Workin
Proposal. Available at http://www.proteome.ca/x-
bang/bioml/b_toc.htm

[26] Wand, Y. and Wang, R. Anchoring data quality dimensions
in ontological foundations. Communications of the ACM, 39,
11(1996), 86-95.

[27] Wang, R.Y., Reddy, M. P., and Kon, H.B. Toward quality
data: An attribute-based approach. Decision Support
Systems, 13 (1995), 349-372.

[28] XEMBL. Available at http://www.ebi.ac.uk/xembl/

27

http://www.proteome.ca/x-bang/bioml/b_toc.htm
http://www.proteome.ca/x-bang/bioml/b_toc.htm
http://www.ebi.ac.uk/xembl/

ETL Queues for Active Data Warehousing
Alexandros Karakasidis

Univ. of Ioannina
Ioannina, Hellas

alex@cs.uoi.gr

Panos Vassiliadis
Univ. of Ioannina
Ioannina, Hellas

pvassil@cs.uoi.gr

Evaggelia Pitoura
 Univ. of Ioannina
Ioannina, Hellas

pitoura@cs.uoi.gr

ABSTRACT
Traditionally, the refreshment of data warehouses has been
performed in an off-line fashion. Active Data Warehousing refers
to a new trend where data warehouses are updated as frequently as
possible, to accommodate the high demands of users for fresh
data. In this paper, we propose a framework for the
implementation of active data warehousing, with the following
goals: (a) minimal changes in the software configuration of the
source, (b) minimal overhead for the source due to the active
nature of data propagation, (c) the possibility of smoothly
regulating the overall configuration of the environment in a
principled way. In our framework, we have implemented ETL
activities over queue networks and employ queue theory for the
prediction of the performance and the tuning of the operation of
the overall refreshment process. Due to the performance
overheads incurred, we explore different architectural choices for
this task and discuss the issues that arise for each of them.

1. INTRODUCTION
The demand for fresh data in data warehouses has always been a
strong desideratum from the part of the users. Traditionally, the
refreshment of data warehouses has been performed in an off-line
fashion. In such a data warehouse setting, data are extracted from
the sources, transformed, cleaned and eventually loaded to the
warehouse. This set of activities takes place during a loading
window, usually during the night, to avoid overloading the source
production systems with the extra workload of this workflow.

Still, users are pushing for higher levels of freshness. Active Data
Warehousing refers to a new trend where data warehouses are
updated as frequently as possible, due to the high demands of
users for fresh data. The term is also encountered as ‘real time
warehousing’ for that reason [22]. To give an example, we
mention [3], where a case study for mobile network traffic data is
discussed, involving around 30 data flows, 10 sources, and around
2TB of data, with 3 billion rows. The throughput of the
(traditional) population system is 80M rows/hour, 100M
rows/day, with a loading window of only 4 hours. The authors
report that user requests indicated a need for data with freshness at
most 2 hours.

This kind of request is technically challenging for various reasons.
First, the source systems cannot be overloaded with the extra task
of propagating data towards the warehouse. Second, it is not

obvious how the active propagation of data can be implemented,
especially in the presence of legacy production systems. The
problem becomes worse since it is rather improbable that the
software configuration of the source systems can be significantly
modified to cope with the new task (both due to (a) the down-time
for deployment and testing and (b) the cost to administrate,
maintain and monitor the execution of the new environment).

So far, research has mostly dealt with the problem of maintaining
the warehouse in its traditional setup [10, 15, 16, 18, 21]. Related
literature presents tools and algorithms for the population of the
warehouse in an off-line fashion. In a different line of research,
data streams [1, 5, 17] could possibly appear as a potential
solution. Nevertheless, at least until now, research in data streams
has focused on topics concerning the front-end, such as on-the-fly
computation of queries, without a systematic treatment of the
issues raised at the back-end of a data warehouse. For example, to
our knowledge, there is no work related to how streaming data are
produced or extracted from data producers; not to mention the
extra problems incurred when the data producers are operational
systems.

To this end, in this paper we attempt to approach the problem
from a clean sheet of paper. We investigate the case where the
source of the warehouse is a legacy system. The specific problem
involves the identification of a software architecture along with
appropriate design guidelines for the implementation of active
warehousing. We are motivated by the following requirements in
achieving this goal.

1. Maximum freshness of data. We want to implement an active
data warehousing environment to obtain as fresh data as
possible in the warehouse.

2. Smooth upgrade of the software at the source. We wish to
implement a framework where the modification of the software
configuration at the source side is minimal.

3. Minimal overhead of the source system. It is imperative to
impose the minimum additional workload to the source.

4. Stable interface at the warehouse side. It would be convenient
if the warehouse would export a stable interface for its
refreshment to all its source sites.

The grand view of our environmental setup is depicted in Figure
1. A set of sources comprise source data and possibly source
applications that manage them (for the case of legacy sources) or
DBMS’s for the case of conventional environments. The changes
that take place at the sources have to be propagated towards the
warehouse. Due to reasons of semantic or structural
incompatibilities, an intermediate processing stage has to take
place, in order to transform and clean the data. We refer to this
part of the system as the Active Data Staging Area (ADSA). Once
ready for loading, the data from the intermediate layer are loaded
at the warehouse, through a set of on-line loaders.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06 ...$5.00.

28

Mapping this grand view to concrete technical choices requires
the tuning of several components of the architecture. Following,
we quickly summarize our findings that affected our architectural
choices.

Starting with the sources, in this paper, we have focused on legacy
systems. Apart from the requirement of minimal changes at the
source side, legacy sources pose the interesting problem of having
an application (instead of a DBMS) managing the data. We
modify a library of routines for the management of data to allow
the interception of the calls without affecting the applications. The
modification involves (a) inserting no more than 100 lines of code
to a library of routines for source management and (b)
recompiling the application (which was not affected), over this
library. Also, as far as the communication between stages is
concerned, we transmit blocks of records for reasons of
performance and minimal overhead of the source system.

The internal architecture of the intermediate layer (ADSA) is not
obvious, either. For each ETL activity, we employ a queue to
store incoming records before they are processed. Each activity
processes the incoming data on-line and then passes its output to
the next queue for further processing. Again, for reasons of
performance, the unit of exchange is blocks of records and not
individual records. We do not assume a fixed set of ETL
operators, but rather we provide a taxonomy of such operations,
based on their operational semantics. New operators can be added
to the taxonomy as they are defined. To predict the performance
of the system, we employ queue theory for networks of queues (cf.
section 2.1 for a reminder of queue theory). Our experimental
results indicate that the assumption of an M/M/1 queue for each
of the ETL activities provides a successful estimation.

Source

DW

Source
Application

Source

Source
Application

Source

Source
Application

Plain Data

Clean, reconciled,
possibly aggregated
data to be loaded in
the DW

γ σ

GROUP

SK

σ γ

ADSA

Fig. 1. Architecture Overview

To implement the requirement for stable interface at the side of
the warehouse, the data are further propagated towards the
warehouse through an interface involving web services [2]. The
need for web services as the technical solution for populating the
warehouse with fresh data is not self-evident and requires
justification. In fact, web services are known to be rather heavy
middleware in terms of resource consumption [9], which
potentially jeopardizes the requirement of fresh data and minimal
overhead. The main advantages of web services compared to other
middleware solutions (RPC, ORB’s, message queues, etc) are: (a)
interoperability, meaning that they can be deployed in all
platforms and configurations and (b) possibility of exporting them
outside the intranet of an organization. We emphasize the
interoperability property: in a large organization, there is a wide
variety of data sources, involving several platforms and

configurations. Web services are syntactically reliable, as they can
provide a common, stable interface for the warehouse to all these
sources without requiring major design and integration effort.
Also, this loose coupling of sources and the warehouse results in
minimal impact in the case of changes, either at the source or at
the warehouse. Obviously, performance has been a concern too.
Still, as we discuss in Section 4, our experiments indicate that the
overall delay, incurred by the adaptation of a solution based on
web services is rather small, especially if one is willing to trade
resources (mainly main memory) for freshness.

In a nutshell, our contributions can be listed as follows:

− We set up the architectural framework and the issues that arise
for the case of active data warehousing.

− We develop the theoretical framework for the problem, by
employing queue theory for the prediction of the performance
of the system. We provide a taxonomy for ETL tasks that
allows treating them as black-box tasks, without the need of
resorting to algebraic, white-box descriptions of their
functionality. Then, standard queue theory techniques can be
applied for the design of an ETL workflow.

− We provide technical solutions for the implementation of our
reference architecture, achieving (a) minimal source overhead,
(b) smooth evolution of the software configuration at the
source side and (c) fine-tuning guidelines for the technical
issues that appear.

− We validate our results through extensive experimentation.
Our implementation suggests that our theoretical formulation
successfully predicts the actual performance of the system.

The rest of this paper is organized as follows. In Section 2, we set
up the problem theoretically and in Section 3, we present the
different architectural choices and the technical challenges that
each of them incurs. In Section 4, we present the experimental
evaluation of the proposed framework. Finally, in Section 5, we
present related work and in Section 6, we conclude with our
results and present topics for future research.

2. QUEUE THEORY FOR ETL
ACTIVITIES

In our architecture, data flows from the sources towards the
warehouse, through an intermediate data processing stage. In this
stage, data sustain various types of filtering and transformations.
We employ queue theory as the cost model that predicts the data
delay and the system overhead at this intermediate stage. We
model each ETL activity as a queue in a queuing network. We
provide a simple taxonomy for ETL activities, showing how to
derive a simple queue model for them, without delving into their
internal semantics. In this section, we start with some
fundamentals of queue theory, then we move on to discuss a
taxonomy of ETL operations and, finally, we conclude with the
presentation of queue networks.

2.1. Preliminaries
Fundamentally, in a queuing model, a sequence of customers
arrives at a server. If a customer arriving at the server finds the
server occupied, it waits in the queue until its turn to be served
comes. After the customer is served, it leaves the system [11]. If λ
customers arrive at the system per time unit, then the mean inter-

29

arrival time is equal to 1/λ. Similarly, if µ customers leave the
system per time unit, then the mean service time is equal to 1/µ.
Based on these parameters, we also define ρ=λ/µ as the traffic
intensity which denotes the server utilization. We require that ρ<1
or the queue length can become unbounded.

The distribution of the arrival and the service rates can take
different values (Poisson, constant, etc). Depending on these
distributions, different equations hold for predicting the mean
length of the queue and the mean service time for each customer.
A full discussion of these properties falls outside the scope of this
paper; therefore we refer the interested reader to [11, 23] for a
detailed discussion.

A fundamental relation between the mean number of customers in
the system N, the customer mean arrival rate in the system λ, and
the mean time T that a customer remains in the system is given by
Little's law. This relation is formulated as N=λ*T and its
importance resides in the fact that this equation holds for every
type of queuing system irrespectively of the arrival and service
rate distributions. By applying Markov Theory and Little’s law to
a queue with Poisson arrivals and exponentially distributed
processing times, (also known as M/M/1 queue), we can estimate
the mean response time of the system W = 1/(µ—λ) and the mean
queue length L=ρ/(1-ρ).

2.2. A Taxonomy of ETL Activities
Each ETL queue can direct customers to more than one
subsequent queue, depending on the type of operation it performs.
In queue theory, the composition of queues is treated by queue
networks. The computation of the interesting properties of such
networks depends on the nature of the involved individual queues.
The question that arises is what kind of individual queues do the
ETL activities produce. One possible way to answer this question
is to define an extension of the relational algebra, specifically
tailored for ETL purposes and study the properties of each
operator from the viewpoint of queue theory. Since this would
probably produce quite complex queues, we adopt a different,
black-box approach and define a taxonomy of ETL
transformations, based on the relationship of their input and
output. This way, we practically categorize ETL tasks in families
without delving in the particularities of their internal
functionality. Specifically, the taxonomy of activities consists of
the following categories: (a) Filters, (b) Transformers and (c)
Binary Operations.

Pa

 Pr

A

rejected

 accepted

λIN λOUT
λREJ

Fig. 2. Queuing model for multi-output activities

Filters examine each incoming tuple to determine whether it
meets certain criteria. If these criteria are fulfilled, then a tuple is
accepted and propagated towards an acceptance output. If not, it is
rejected and possibly propagated towards a rejection output. We
assume that tuple arrivals occur due to a Poisson process and
service times follow an exponential distribution. We define the
probability that some tuple i is accepted as Pa and the probability

that some tuple i is rejected by the system as Pr. This is illustrated
in Figure 2. It is obvious that Pa+Pr=1.

The filtering operations do not impose a change to the overall
number of tuples making the following equation valid:

| tuples entering service | = | tuples accepted |+| tuples rejected |

Also, these operations do not incur changes to the schema of the
tuples entering the service facility compared to the schema of the
exiting tuples. Typical operations of this category are not-null,
domain and foreign key checks, selections, and in general, any
type of operation, operating locally on a tuple and determining
whether it will be further propagated or not. Due to their multiple
outputs, filters can also act as routers for tuples whose destination
depends on their value.

Considering the case of Transformers, tuples entering a
transformer undergo changes to their value and/or their schema.
We can distinguish two subclasses of Transformers taking into
account the relationship between the number of tuples entering
and the number of tuples exiting the transformation.

In the first case the two quantities are equal which means:

| tuples entering service | = | tuples accepted |

We assume that tuple arrivals occur due to a Poisson process and
service times follow an exponential distribution, in other words
we have the same case with filters transformations. Again, we
define the probability that some tuple i is accepted as Pa and the
probability that some tuple i is rejected by the system as Pr. Since
all tuples are accepted, we have: Pa=1 and Pr=0 (Figure 3).
Examples of such transformations are the surrogate key
transformation, the usage of functions for the derivation of new
values and, in general, any transformation that derives an output
tuple solely on the basis of the value of a single input tuple.

Pa

T

λIN λOUT

Fig. 3. Queuing model for single-output activities

In the second case, the number of tuples entering the system is
different compared to the number of tuples exiting and in specific:

| tuples entering service | > | tuples accepted |

This occurs because some of the tuples entering service are
aggregated or merged. We assume that tuple arrivals occur due to
a Poisson process and service times follow an exponential
distribution. The problem with this kind of transformations is that
practically queue customers disappear and new customers are
produced by each transformation. To model this property in terms
of queue theory, we make the assumption that depending on the
aggregation or merging factor, some of the incoming customers
continue and some exit the system. In other words, we assume that
some of the tuples, after being transformed, continue through the
system as accepted. The number of these tuples equals the number
of tuples produced as a result of the transformation. The rest of
the tuples are assumed to be rejected by the system after their
service and exit the system. The following equation holds:

| tuples rejected | = | tuples entering service | - | tuples accepted |

30

Again, we define as Pa the probability that some tuple i is
accepted and Pr the probability that some tuple i is rejected by the
system: Pa+Pr=1. Given the aggregation factor of an incoming set
of data, we can easily compute the acceptance and rejection rate as
well as the respective routing probabilities. The routing
probabilities are:

result _ tuples
Pa

input _ tuples
= and

input _ tuples result _ tuples
Pr input _ tuples

−

=

The third class of ETL activities deals with Binary operators. This
is the case where data from multiple sources are combined and a
single outgoing stream is produced. Examples of such operations
involve variants of the join operation, including the join of data
from different tables, as well as difference and update detection
operations among different snapshots of the same table. [14]
describe a window-based hash join algorithm for continuous
streams. In the context of ETL, we make the following
assumptions and observations:

• One of the two inputs is considered as the primary input
flow. Tuples of this flow are checked over filters or
transformed according to the values of some other relation
and ultimately, either propagated towards the warehouse or
rejected.

• The second input of the operator is acting as a regulator of
the primary flow. In other words, its values are only needed
in order to determine the processing and routing of the tuples
of the primary flow. For all practical purposes where active
ETL functionality is needed (update detection, difference,
facts joined with dimension values), a static snapshot of the
regulator flow can even be assumed.

• Adopting the model of [14], both inputs arrive at the same
queue – they simply undergo processing with different
distributions of processing times.

In principle, a binary operator has to be dealt with as a multi-class
queuing system, with one class for each flow (input or output) –
see Figure 4. We refer the interested reader to [14] for such a
treatment. Still, based on the aforementioned assumptions, we can
avoid modeling the system as a multi-class queue, and deal only
with the primary flow of the operator. In the rest of the paper, we
will consider single-class queues, the tuples of which either (a)
continue in the system or (b) are ultimately rejected. An
interesting observation here is that no matter how many different
categories of tuples enter the node for service, the output tuples
can be assumed to belong in one of the two aforementioned
categories.

We consider Poisson arrivals and exponential service times. As
stated earlier, the two routing classes are accepted with probability
Pa and rejected with probability Pr and as before Pa+ Pr=1. This
type of operations does not impose a change to the overall number
of tuples existing making the following equation valid (Figure 4):

| tuples entering service | = | tuples accepted |+| tuples rejected |

However, differently from Filters, the schema of the tuples
possibly changes.

We can generalize the three aforementioned classes, through a
Generic Model, where a node consisting of a single server serves
possibly more than one classes of customers. All customers arrive

according to a Poisson process and are serviced with exponential
service times. The general case is depicted in Figure 4.

In the general case we can assume that tuples belonging to one of
the two different classes of customers, say ci, after their ETL
transformation at the node, leave the system with probability Pri

and continue in the queue network with probability Pai.
Concerning the number of tuples in the system the following
equation is still valid:

| tuples entering service | = | tuples accepted |+| tuples rejected |

Concerning the schema of the tuples before and after service, we
observe that the schema changes in the general case, apart from
the case of filters.

Pa
(i)

 Pr
(i)

ETL

rejected

 accepted

λIN=λ(1)+λ(2) λOUT
λREJ

Fig. 4. Generic Model for ETL Queues

In the rest of this paper, we will follow the assumption of a
primary input flow. This obviously results in forming an M/M/1
queuing node as the constructing element of our ETL queue
network.

2.3. Queue Networks for ETL queues
Many queuing systems consist of a network of queues. In a
queuing network (QN), a customer finishing service in a service
facility is either immediately proceeding to another service facility
or leaves the system. For our purposes, we assume that each node
of this network consists of a single server with exponential arrival
and exponential service times. One basic classification of queuing
networks is the distinction between open and closed queuing
networks. In an open network, new customers may arrive from
outside (coming from a conceptually infinite population) and later
on leave the system. In a closed queuing network, the number of
customers is fixed and no customer enters or leaves the system. In
our case, we are exclusively interested in open networks.

If an open queuing network is in steady state (i.e., the number of
customers in the queue has converged over time), then for each
node i, its arrival rate λi equals its departure rate µi. The arrival
rate λi to node i is clearly the sum of all arrivals to i (including i
itself). Assuming that i has N neighbors, the rate of external
arrivals is λ0i, and the probability of an arrival from its j-th

neighbor is pj,i, we have: ∑
=

+=

N

j
jijii p

1
,0 λλλ

These equations are called traffic equations and they can be
transformed into a set of N simultaneous linear equations with a
unique solution for M/M/1 nodes. In order to calculate the
performance measures in queuing networks the steady state
probabilities π(k1,…, kN) have to be found. The term π(k1,…, kN)
denotes the probability of k1 customers in queue 1, k2 customers
in queue 2 and so on. To this end, we employ Jackson’s theorem
that allows the calculation of the steady state probabilities of the
whole network by separately calculating the probabilities of each

31

node, under reasonable assumptions (that our ETL queues fulfill)
[23].

Jackson’s Theorem [23]. If in an open network the condition λi <
µi · mi holds for every i ∈{1, ..,N} (with mi standing for the
number of servers at node i) then the steady state probability of
the network can be expressed as the product of the state
probabilities of the individual nodes:

π (k1,…, kN) = π1(k1)π2(k2)... πΝ(kΝ)

Therefore, we can solve this class of networks in four steps:

1. Solve the traffic equations to find λi for each queuing node i.

2. Determine separately for each queuing system i its steady-
state probabilities πi(ki).

3. Determine the global steady-state probabilities π (k1,…, kN).
Derive the desired global performance measures.

4. From step 1, we can derive the mean delay and queue length
for each node.

Methodology. How can we exploit the aforementioned theoretical
analysis for designing ETL workflows for active data
warehousing? The design problem for active data warehousing
involves predicting the mean delay and the queue length of ETL
queues in the ADSA, given the source production rates and the
processing power of the ADSA and the DW.

The methodology for this task is straightforward. First, we classify
each ETL task that we need to perform in one of the categories of
our taxonomy. Then, we construct a queue network of such ETL
queues. Finally, we solve the network equations as mentioned
above.

3. FRAMEWORK AND ISSUES RAISED
Apart from the theoretical issues, there are several issues
concerning the implementation of an active data warehouse.
Therefore, in this section, we will start by presenting the general
architecture of such a system. In subsection 3.1, we present the
grand view for active warehousing and its specific instantiation
that we have investigated. Then, in subsection 3.2, we proceed to
a detailed presentation of the issues raised within this framework.

3.1. System Architecture
Our architecture consists of the following elements: a Data Source
generating data, an intermediate data staging area that will be
referred to as the Active Data Staging Area (ADSA) where the
processing of data takes place and the Data Warehouse (DW). The
architecture is illustrated in Figure 5.

The source comprises a data store (legacy or conventional) and an
operational data management system (e.g., a DBMS or an
application, respectively). Changes that take place at the source
side have to be propagated towards the warehouse, which
typically resides in a different host computer. The communication
between hosts employs a network protocol (e.g., TCP or UDP).
To avoid the extra overhead of overloading the network with half-
full packets and, as our experiments indicate, to avoid overloading
the source with the extra task of performing this task, we employ a
Source Flow Regulator (SFlowR) module that compiles changes
in blocks and propagates them towards the warehouse.

ETL

Source

Source

S FlowR

ADSA DW

ETL

ETL

WS Client

ETL

WS Client

WS

WS

DW

Fig. 5. Architecture Overview

Once record blocks have left the source, an ETL workflow
receives them at the intermediate staging area. The role of the
ETL workflow is to cleanse and transform the data in the format
of the data warehouse. The ETL workflow comprises a set of ETL
activities, also called ETL queues, each pipelining blocks of tuples
to its subsequent activities, once its filtering or transformation
processing is completed. In order to perform this task, each ETL
activity checks its queue (e.g., in a periodic fashion) to see
whether data wait to be processed. Then, it picks a specified
number of records, performs the processing and forwards them to
the next stage. If less than the specified records exist in the queue,
then they are all retrieved. If the queue is empty, then the
invocation is postponed, until there exist data to be processed.

The role of the active data staging area is versatile: (a) it performs
all the necessary cleansings and transformations, (b) it relieves the
source from having to perform these tasks, (c) it can act as a
regulator for the data warehouse, too (in case the warehouse
cannot handle the online traffic generated by the source) and (d) it
can perform various tasks such as checkpointing, summary
preparation, and quality of service management.

Once all ETL processing is over, data are ready to be loaded at the
warehouse. As already explained, we chose to perform this task
through a heavy but reliable (syntactically and operationally)
middleware, web services. For each target table or materialized
view at the warehouse, we define a receiving web service. To be
able to invoke the web service, a client needs to be constructed.
To regulate the traffic between the staging area and the
warehouse, the client compiles the data in blocks, too. The web
service at the warehouse side then populates the target table it
serves. Load-balancing mechanisms at the warehouse side and
physical warehouse maintenance (e.g., index maintenance) can
also be part of this architecture. Still, for the moment, we do not
address these problems.

In terms of the particular implementation that we examine in this
paper, we have studied the problem as it appears over legacy
sources. In our configuration, the source includes two software
modules: (a) an ISAM file and (b) an application used to modify
data in the legacy data source. In order to manipulate ISAM files,
there is a library of ISAM routines that are invoked from the
application at the source side. We have modified these library
routines in order to replicate the data manipulation commands and
send updates towards the staging area. Several ETL queues reside
at the staging area performing cleanings, transformations and
aggregations. Each ETL activity retrieves data from its queue with
a constant rate, retrieving a given number of elements in constant
intervals. ETL activities communicate both with each other and
with the web service clients via Java thread-safe queues. The
transfer from the staging area towards the Data Warehouse is done
over HTTP (implying TCP as the underlying network protocol).

32

For our experiments, we assume that the warehouse simply stores
the data performing no other task.

3.2. Issues Raised
In order to fulfill all the goals mentioned in Section 1, using the
architectural elements described above, there are some issues
raised which mainly concern the tuning and configuration of the
system. The key issues that affect system performance and need to
be resolved are discussed in this section and classified with
respect to their locality at the source or the staging area, as well as
the overall setup of the environment. All the technical choices and
their alternatives are summarized in Τable 1.

3.2.1 Choices concerning the Topology
Having described our architectural elements, the next step is to
determine their topology. Our architecture offers the ability of
selecting different number of tiers. Several choices exist:

• Two-tier architecture, where the source and the warehouse
are found on different machines. There are two alternatives
concerning this choice: the first is to place the staging area
together with the source, putting the data warehouse on a
separate machine. The second alternative is to place the
staging area at the host where the data warehouse resides
(Figure 6).

• Three-tier architecture, where we use a separate dedicated
machine for the staging area, leading to a three-tier topology.

Fig. 6 Two-tier topology: The Data Warehouse and the ADSA
reside on the same host, while the Source resides on a separate
machine.

Coming to the two-tier architecture, the main issue that arises is
related to the placement of the staging area. In the case of the
staging area placed at the source, data warehousing operations do
not burden the source, but still the resources used by the web
services API to perform the invocation remain considerable. A
way for dealing with this is to move the staging area to the
warehouse host (Figure 6), which can be expected to be more
powerful from the source host. This way, the source is completely
detached from the active data warehousing process. Naturally, if
the warehouse server is too loaded or its configuration too
complex for the extra software setup of a web service server, the
three-tier architecture can also be employed. Using the three tier
architecture solves all the abovementioned problems, but
increases the setup and maintenance cost, since an extra server,
apart from the one used from the warehouse, has to be engaged
and administered.

Having discussed the architectural alternatives for our topology,
we can now proceed to discuss the technical issues raised for each
of the main components and their overall setup.

3.2.2 Choices concerning the Source
Concerning the source side, the first consideration that arises has
to do with the interconnection type between the source and the
staging area. Since our goals are to impose as little impact as
possible to the source and to make only minor changes, we have
chosen the solution of sockets both due to its anticipated (but not
thoroughly tested) lighter footprint characteristics and the easiness
of programming such a solution.

The next choice is between TCP and UDP protocols for the
transmission of data between the source and the staging area. On
one hand, TCP offers reliability. On the other hand, UDP offers
speed through non-blocking calls, followed by a concern on the
server side for the socket buffer size, in case of extended datagram
bursts and no reliability.

A third architectural choice concerns the way that changes to the
source file are written to the socket, i.e., whether data are
organized in blocks before being further propagated to the staging
area. There are two ways to deal with this issue: either to write
each modification to the socket, or to write bulks of modification
commands. In the first case, whenever a data manipulation
command is issued, it is immediately written to the socket along
with the respective data. In the second case, nothing is written,
until a number of records is completed. Then, all records together
are sent to the staging area.

3.2.3 Choices concerning the Staging Area
The internal structure of the data staging area and the tuning of its
operation are the major issues concerning the performance of our
architecture. The staging area is a multithreaded environment with
shared components, thus having to be set up properly to avoid
race conditions and consistency.

The problem of locking raises the issue of queue emptying rate.
Assuming that the input to the staging area is determined by the
workload of the source (i.e., it cannot be constrained by the
warehouse administrator), a proper emptying rate for the ETL
queues has to be determined. A high arrival rate compared to the
configured service rate will result in instability and queue length
explosion. On the contrary, a very high service rate potentially
results in too many locks of the queue (resulting again in delay,
contrary to what would normally be expected). It is obvious that
the service rate should be close to the arrival rate in order to have
both efficient service times, and as less locks as possible.

Another dilemma is related to the interconnection type between
the staging area and the data warehouse. As already mentioned,
the staging area invokes a web service residing at the warehouse
side. Although the SOAP protocol is one-way and asynchronous,
implementations abide by the traditional middleware conventions
of remote invocation, namely (a) blocking and (b) non-blocking.
Blocking invocation involves an acknowledgment message to be
sent from the web service, before its client can continue. In our
case, this means that a response from the warehouse is required,
delaying however the queue emptying rate. Non-blocking
invocation does not delay the queue-emptying process of the web
service client, since no response is returned from the invocation.

ISAM

Application ETL
Workflow

Host 1 Host 2

DW DW

WS

33

Finally, the issue of sending data as tuple-at-a-time or blocks is
raised again for the communication between the staging area and
the warehouse. In this case, apart from the network overhead, the
cost of parsing the incoming web service messages at the
warehouse plays a role for this choice.

3.2.4 Choices concerning the Warehouse
The data warehouse side is characterized by a web wervice per
target table, receiving the cleansed data from the data staging area.
The web services API offers three ways of handling the remote
invocations of the client that resides in the data staging area. The
first way is to create a single web service instance that handles all
incoming requests. The second way is to create an instance for
every session, and the third is to create an instance for each
invocation request. In our configurations, we use the first of these
alternatives. The reason is that in our experiments, we have
employed one client for the service, which stops its operation after
inserting a specific amount of records into the ISAM file. This
makes the case of using an instance per session the same as using
a single instance. Using an object per request is prohibitive, since
we assume high frequency invocations.

Table 1. Architectural choices

Issue Alternatives
General Architecture

Topology
- 2-tier, ADSA at the source side
- 2-tier, ADSA at the DW side
- 3 tier

Source

Connection Type
- UDP
- TCP

Propagation Type
- One at a time
- Block-based

Active Data Staging Area

Interface between the two APIs
- None
- Synchronized Queue

Web Service invocation type
- Blocking
- Non Blocking

Propagation Type
- One at a time
- Block-based

Data Warehouse

Session management
- Single WS
- Instance per session
- Instance per request

4. EXPERIMENTS
In this section, we present the experiments we conducted. We
present two sets of experiments. The first set presented in section
4.1 deals with the general behavior of the system. The purpose of
this set of experiments is to figure out the behavior of each system
component separately, and to establish guidelines for building the
system. In this case, data are just transferred to the warehouse and
no ETL operations are involved. In the second set of experiments,
presented in section 4.2, we evaluate the behavior of our system in
a realistic setup, based on the conclusions derived from the first
set. Naturally, in this case, we also transform data using ETL
operations.

Our experimental setup, which stands for both cases, is as follows:
The ISAM library that we altered is the PBL/ISAM suite [20]

available under GPL license. We have used a sample program
distributed within the suite as the legacy application. We use two
different data sets for our purposes. The first consists of 100,000
records and the second of 1,000,000 records. The ETL queues of
the ADSA have been implemented using the Sun JDK 1.4, whose
runtime engine has also been used. As a Web Services platform
we have used Apache Axis 1.1 [4] with Xerces XML parser
running over Apache Tomcat 1.3.29. Our data warehouse is
implemented as a MySQL 4.1 database.

The host we used for the source was a PIII 700MHz with 256MB
of physical memory running SuSE Linux 8.1. The host used as the
data warehouse was a Pentium 4 2.8GHz with 1GB of physical
memory running Mandrake Linux. This server also hosted the
staging area. The hosts are interconnected via the switched Fast
Ethernet LAN of our department.

Our data were created from the TPC-H data generation tool. For
the first case, each row of data has fixed size equal to 20 bytes. In
the second case, where we evaluate the system behavior under
operational conditions, we used data of variable size. In this case
each row has an average size of 140 bytes.

In our experiments we evaluate the cost in marginal conditions.
Thus in order to evaluate the worst case, the source stores data at
its peak capability. Moreover, since our warehouse host is a much
faster computer than the source host, we would not be able to
make safe conclusions if we let it operate at full capability (see
also subsection 4.1.4). Thus we simulate slower server
performance by employing timeouts between operations. This will
be explained in more detail later.

4.1. Experiments on Architecture without
ETL Processing

This section includes the first set of experiments we conducted.
The aim of these experiments is to decide on basic architectural
choices of our system. Throughout the experiments, the software
operating at the staging area is a simple queue, called Data
Warehouse Flow Regulator (DWFlowR), receiving source blocks
of records and passing them to the warehouse.

4.1.1 Smooth Upgrade
One of the goals of our architecture is to pose minimal
modifications to the source’s code. In our approach, we do not
alter the legacy application itself, but the library that manipulates
the ISAM files by adding few lines of code to the routines that are
of interest to the purpose of active warehousing. These routines
are: the file opening routine, the record insertion routine and the
file closing routine. The alterations are located only in the
following four points of the library’s source code:

1. The first modification is to include our library which
contains the socket’s client and the SFlowR.

2. The second modification is to add a call to the routine of our
library that opens a socket to the staging area at the ISAM
file opening routine. This call is performed only if the
opening of the ISAM file is successful.

3. The third modification is to extend the insertion routine of
the ISAM file library that writes the record to the file with a
call to our library’s function that propagates the change to
the socket. This routine stores the specific record to the

34

SFlowR’s buffer and when the defined number of records is
completed, it delivers them to the staging area. Again, this
routine is called only after a successful insertion.

4. The fourth modification is to add a call to the routine of our
library that closes the opened socket to the staging area, at
the ISAM file closing routine. This call is performed only if
the closing of the ISAM file is successful.

Figure 7 shows the alterations that we have performed to the
library in pseudo-code. The overall length of code that had to be
written for this part of the implementation, including the additions
at the ISAM library, is approximately 100 lines.

The routine that opens the socket to the DWFlowR reads
configuration information from a plain text file, before the
opening of the socket. This file contains the following three pieces
of information:

1. The number of records the SFlowR will gather
2. The address of the DWFlowR
3. The port of the DWFlowR

Original Routine Altered Routine

Open_isam_File()
{
 …
opening_isam_file_co
mmands
 …
}

Open_isam_File()
{
 …
opening_isam_file_comm
ands
 …
if(open==success)
DWFlowR_socket_open()
}

Write_record_to_File
()
{
 …
insert_record_comman
ds
 …
}

Write_record_to_File()
{
 …
insert_record_commands
 …
if(write==success)
write_to_SFlowR()
}

Close_isam_File()
{
 …
closing_isam_file_co
mmands
 …
}

Close_isam_File()
{
 …
closing_isam_file_comm
ands
 …
if(close==success)
DWFlowR_socket_close()
}

Fig. 7. Code alterations at the routine opening the ISAM file.

As an overall assessment of the impact of our changes, we can say
that (a) minimal code had to be written to achieve the replication
of incoming updates to the warehouse in an active fashion, (b)
simple configuration parameters are required, (c) no changes were
required to the code, rather than a simple recompilation under the
new library.

4.1.2 UDP vs. TCP
The first parameter that needed to be tested involved the network
protocol between the source and the staging area. The goal of our
first experiment is to determine the system’s behavior using UDP
and specifically if there are any datagram losses. The results show
a 35% packet loss of data, most probably due to the overflowing
of data. Such losses are prohibitive for normal operation of an on-
line environment. Therefore, for the rest of the paper, we have

fixed TCP as the interconnection protocol between the source and
the staging area.

4.1.3 Overhead at the Source
The main requirement for the architecture at the source side
involves minimal overhead during regular operation. Therefore,
the goal of the next experiment is to measure the overhead that
our configuration incurs at the source side. We measure the time
to complete the insertion of (a) 100 000 and (b) 1 000 000 to the
ISAM file.

First, we measure the effect of using the SFlowR at the source.
We try three values: 1, 100, and 1000 records for each packet that
the SFlowR sends to the staging area. When using one record at a
package, we have in fact the case of not using a SFlowR. In Fig. 8
and 9, we refer to the regular operation of the source (without
sending records towards the ADSA) as “plain”.

Time to insert 100 000 records

0

20

40

60

80

100

120

1 100 1000

Number of records sent
simultaneously

C
o

m
p

le
ti

o
n

 t
im

e
(s

ec
s)

plain

non blocking invocation

blocking invocation

Fig. 8. Time to insert 100 000 records using two-tier topology

Time to insert 1 000 000 records

0

200

400

600

800

1000

1200

1 100 1000

Number of records sent
simultaneously

C
o

m
p

le
ti

o
n

 t
im

e
(s

ec
s)

plain

non blocking invocation

blocking invocation

Fig. 9. Time to insert 1 000 000 records using two-tier topology

Another issue worth investigating is the isolation of the Source,
ADSA and Data Warehouse layers. Therefore, we employ two
modes for the operation of the staging area, to assess its impact.
Each test case is examined with blocking and non-blocking
invocation for the communication between the staging area and
the Web Service at the data warehouse side. The staging area uses
a synchronized queue. The input rate at the queue is equal to the
output rate of the Legacy Application. The queue’s output rate is
fixed to one thousand records per second.

Figure 8 depicts the results of the experiment for 100 000 records,
while Figure 9 the results for 1 000 000 records. The x-axis for
Figures 8 and 9 shows the number of rows in a packet. The y-axis
of the diagrams measures the throughput of inserting the records
to the ISAM file.

35

Based on our experimental results, the following observations are
made:

1. The SFlowR plays a very important role, since without it
the throughput deteriorates by 34%, while using a SFlowR
incurs an impact of approximately 1.7%.

2. The way that the DWFlowR is tuned does not affect the
source. Regardless of using blocking or non blocking Web
Service invocation at the DWFlowR, the source’s
throughput is the same in both cases.

3. Sending smaller packets of records performs slightly better,
since in the case of 1000 records, network propagation time
decreases throughput. Moreover, choosing a packet size of
100 instead of 1000 records saves buffer size at the
SFlowR.

4. The cost delay ratio in terms of the size of data sent to the
warehouse remains stable both in the case of 100 000 and 1
000 000 records.

5. The behavior of our system remains stable regardless of the
size of data it has to handle.

4.1.4 Data Freshness
A major requirement in our setting is to achieve the maximum
data freshness possible, through our framework. With a 1.7%
delay at the source, the focus of interest is isolated in the side of
the staging area. The goal of the next set of experiments is to
measure the data freshness time provided by our application with
respect to the queue emptying rate and the block retrieved from
the queue. We consider as data freshness time the time required
for a record that was inserted in the ISAM file to be transferred to
the warehouse.

Specifically, we measure the overall throughput, i.e., the time
needed to empty the DWFlowR’s queue after the first record is
sent to the warehouse. The freshness is then measured as the time
needed to empty the queue, which practically stands for the
response time for the last record. To perform these measurements,
we assume that the legacy application sends 100 000 records to
the staging area in blocks of 100 records over TCP. Also, we
measure the queue length as an indicator of resource consumption
at the staging area.

It is important to determine the behavior of the ADSA using data
service rates close to the service rate of the source. Since our data
warehouse server is faster than our source, we wanted to simulate
slower performance to determine the behavior of the system in
marginal conditions. Thus, we empty the queue retrieving the
records from the queue using timeouts of 0.1 seconds and
retrieving 100, 150 and 200 records each time and then invoking
the web service, having as a source data rate approximately 1300
records per second. These are the maximum emptying rates,
meaning that if the queue contains fewer records, then all the
records from the queue are retrieved. We also present the results
of the server operating at its top performance.

The results of emptying the queue using various rates are depicted
in Figure 10. In these graphs, two other parameters play a major
role. The first parameter, as indicated on the x-axis, is the time
required to empty the queue. The second parameter, as shown on
the y-axis, is the number of elements in the DWFlowR’s queue.
Figure 11 depicts the data freshness provided by our architecture.

We measure the time required to transfer all data from the staging
area to the data warehouse.

Queue size over time. Emptying the queue as
soon as possible

0
200
400
600
800

1000
1200
1400
1600

0

4.
85

9.
84

14
.6

19
.2

23
.8

28
.3

33
.6

38
.2

42
.8

47
.3

51
.8

56
.4

61
.1

65
.9

70
.5 75

Time (secs)

S
iz

e
o

f
q

u
eu

e
(#

el
em

en
ts

)

Queue size over time. Emptying rate 100 records
per 0.1 sec

0

5000

10000

15000

20000

25000

30000

35000

0

7.
2

14
.2

21
.2

28
.2

35
.1 42

48
.9

55
.9

62
.7

69
.6

76
.5

83
.4

90
.2 97 10
4

11
1

Time (secs)

S
iz

e
o

f
q

u
eu

e
(#

el
em

en
ts

)

Queue size over time. Emptying rate 150 records
per 0.1 sec

0

500

1000

1500

2000

0

4.
9

9.
69

14
.4

19
.1

23
.8

28
.5

33
.2

37
.9

42
.5

47
.2 52

56
.6

61
.3

65
.9

70
.6

75
.2

Time (secs)

S
iz

e
o

f q
u

eu
e

(#
el

em
en

ts
)

Queue size over time. Emptying rate 250 records
per 0.1 sec

0
200
400
600
800

1000
1200
1400
1600

0

4.
88

9.
81

16
.3 21

25
.7

30
.3

34
.9

39
.6

44
.2

48
.8

53
.5

58
.1

62
.8

67
.4 72

76
.7

Time (secs)

S
iz

e
o

f
q

u
eu

e
(#

el
em

en
ts

)

Fig 10 Queue size at the staging area emptying the queue as
soon as possible

In Figure 10, the top left graph shows what happens when we let
the ADSA operate fully. We can easily see that practically no
queue is ever formed. The mean queue size is 100 records which
is the rate of the SFlowR. In other words, the ADSA is one step
later than the source, in terms of performance.

 Time to complete transfer from DWFlowr to DW

0
50

100

150
200

250

500 1000 1500 2000 2500 3000
Queue emptying rate

Ti
me
(se
cs) Time to

complete
transfer from
DWFlowr to
DW

Fig. 11 Queue emptying time at the staging area.

The other three graphs show the queue sizes using service rates of
1000, 1500 and 2000 rows per second. In the first case, where the
service rate is lower than the arrival rate, the queue explodes, as
expected. In the second case, where we are close to the arrival
rate, the queue displays a quite transient yet stable behavior. The
last graph practically presents the same behavior as in the first
graph even though the service rate is slightly increased compared
to the case of 1500 rows per second. We have also experimented
with even higher service rates i.e., up to 3000 rows per second,
which still present the same behavior. We omit these results due
to lack of space.

Observing the results of this set of experiments, we are led to the
following conclusions:

1. We can achieve data freshness time equal to data insertion
time when we continuously empty a small size queue.

2. In this case, the size of the queue is equal to the arrival rate
from the source, i.e., there is practically no delay at the
queue.

36

4.2. Operational Evaluation
In this subsection, we will use the architectural guidelines derived
from the first set of experiments presented in subsection 4.1 to
build an active data warehouse where we will also deploy our
online ETL operations. The aim of this section is to evaluate the
behavior of this fully deployed system.

4.2.1 Impact at the Source
In this paragraph, we will try to refine the results learned in 4.1.
For this reason, we examine again the impact on the source system
of the packet size of the SflowR. This time we will use small
package sizes, as derived from the previous set of experiments.

Figure 12 shows the impact at the source using packets at the
SflowR of various sizes. In general, packet sizes of over 25
records offer the least burden to the source. The smallest delay
was achieved with a packet size equal to 50, where the source
delay was measured to be at 5.8%.

0

20

40

60

80

100

120

140

ti
m

es
 (

se
cs

)

Packet size at source:
plain

Packet size at source: 1
row/packet

Packet size at source:
10 rows/packet

Packet size at source:
25 rows/packet

Packet size at source:
50 rows/packet

Packet size at source:
75 rows/packet

Fig. 12 Packet size of the SFlowR and impact at source

4.2.2 Data Freshness of Online ETL
In this paragraph, we deploy certain ETL scenarios and evaluate
their performance compared to the theoretical analysis and in
terms of data freshness. For this reason, we consider the following
scenarios and their individual steps:

• Scenario (a): We simply transfer data inserted into the legacy
application to the warehouse using various service rates.

• Scenario (b): (1) We filter 10% of incoming data through a
selection predicate. (2) Then, we employ a surrogate key
transformation to the first column of the filtered data. (3)
Next, we perform a cumulative aggregation (group by with
sum). (4) Finally, data are fed to the warehouse.

• Scenario (c): (1) We filter 10% of incoming data. (2) Then,
we additionally filter another 2% of the remaining data. (3)
Next, a surrogate key operation is applied to the first column
of the data. Then, the stream is replicated along two
branches.

� For the first branch populating a materialized view,
(4.1.1) a cumulative aggregation is performed and
(4.1.2) data are fed to the warehouse.

� For the second branch, populating the detailed fact
table (4.2), data are fed to the warehouse.

• Scenario (d): (1) We filter 10% of incoming data. (2) We
replace the values of the first field, to simulate value
computations through functions. (3) A surrogate key

transformation is applied. Then, the stream is replicated
along two branches:

� For the first branch, (4.1.1) a cumulative
aggregation is performed first and (4.1.2) a filter
(HAVING clause) rejecting 6% of the groups is
applied. Then, (4.1.3) data are fed to the warehouse.

� For the second branch, (4.2.1) a second value
derivation is performed, (4.2.2) a filter rejecting 2%
of detailed input data is applied and, finally, (4.2.3)
data are fed to the warehouse.

In Figures 13, 14, 15 and 16 we depict the evolution of the
experiments as time passes. The x-axis depicts the time points
when we measured the queue length. The final time point gives
the time (in seconds) required to complete the transfer from the
ADSA to the Warehouse. The y-axis depicts the number of rows
existing in the queue. The graphs only show the time points when
our measurement showed that the queue is not empty. Each of the
queues in the graph is identified by its operation name (e.g., in
Figure 13, “FILTER”), possibly its selectivity (e.g., “10” for 10%)
and its occurrence in the scenario (e.g., “01” for the first
occurrence).

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 10
0

P
ac

ke
ts

 i
n

 t
he

 q
ue

u
e

20 packets/sec

22.5 packets/sec

30 packets/sec

40 packets/sec

Scenario (a)

0

0.5

1

1.5

2

2.5

3

3.5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91

P
ac

ke
ts

 i
n

 t
h

e
q

u
eu

e

FILTER_10_01

GBSUM_01

SK_01

WS_01

Scenario (b)

0

0.5

1

1.5

2

2.5

3

3.5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91

P
ac

ke
ts

 i
n

 t
he

 q
ue

u
e FILTER_10_01

FILTER_2_01

GBSUM_01

SK_01

WS_GB_01

WS_UPD2_01

Scenario (c)

0

0.5

1

1.5

2

2.5

3

3.5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91

P
ac

ke
ts

 i
n

 t
h

e
q

u
eu

e

FILTER_10_01

FILTER_2_01

FILTER_6_01

GBSUM_01

REP_01

REP_02

SK_01

WS_GB_01

WS_UPD2_01

Scenario (d)

Fig. 13-16 Queues for scenarios (a), (b), (c), (d)

88.5
89

89.5
90

90.5
91

91.5
92

92.5
93

scenario
(a)

scenario
(b)

scenario
(c)

STORE

scenario
(c)

GROUP
BY

scenario
(d)

STORE

scenario
(d)

GROUP
BY

T
im

e
(s

ec
s)

Fig. 17 Data freshness for each scenario

In all the scenarios the block size of the SFlowR was fixed at 50
rows per block. Scenario (a) was configured to use the following
service rates: 20, 22.5, 30 and 40 packets per second, which
represent rates of 1000, 1250, 1500 and 2000 rows per second
respectively. In scenarios (b), (c) and (d) the service rates were
simulated to 30 packets per second both for the ETL rates and the
Web Service clients.

37

Finally, Figure17 summarizes the total times needed for the
ADSA to transfer all data to the warehouse, for each scenario of
ETL queues.

Observing the figures, we derive the following conclusions:

1. The source capability is approximately 1100 rows/sec. In
scenario (a) we are led to queue explosion, when we employ
service rate smaller than the source’s arrival rate. Using a
service rate of 1250 rows / sec, which is a setting close to the
arrival rate, we can see that transient effects tend to appear,
but the queue converges to steady state. By using higher
service rates, 1500 and 2000 rows / sec respectively, the
queue maintains its steady state.

2. In scenarios (b), (c) and (d) we observe that the entire
system, as well as the queue of each operation, maintains a
steady state. The number of packets in the queue is less or
equal to the maximum number of packets polled
simultaneously from the queue. This practically means that
after each poll the queue empties and that the ADSA is only
one step behind the source.

3. In Figure 17, the total time needed for the entire dataset to be
transferred from the ADSA to the Warehouse is dependent
on the number of the intermediate ETL operations. As the
number of intermediate ETL operations that a packet has to
visit increases, the total delay increases as well. Nevertheless,
in our exemplary scenarios, the increase is rather small, due
to the pipelining of data. The average delay per row is around
0.9 msec for all scenarios.

In Table 2 we present the comparison of our theoretical evaluation
of queue length against the observed values. For lack of space, we
show only the results of scenario (c) with service rate of 2000
rows/sec; all the other scenarios present identical behavior. As
one can observe, in average, the theoretical prediction typically
underestimates the average queue length by a very small amount
(of the size of 5 records). In our detailed experiments, the system
behaves in accordance with this pattern for all four scenarios, with
an average error of half a packet (i.e., 25 records).

Table 2. Theoretical prediction vs. actual measurements of
average queue length for scenario (c) in packets

 Measured
Theoretical
Prediction

Difference

FILTER_10_01 0.160 0.056 0.104
FILTER_02_01 0.134 0.047 0.087

SK_01 0.154 0.054 0.100
GB_SUM_01 0.137 0.048 0.089

WS_GB 0.091 0.031 0.059
WS_GB_UPD 0.100 0.035 0.066

5. RELATED WORK
In this section, we present work related to our approach. Research
in ETL has provided results in (a) tools [10, 21], (b) algorithms
for specific tasks [7, 15, 16, 18]. Both tools and algorithms
operate in a batch, off-line fashion. So far, minimum emphasis has
been paid to the investigation of ETL tasks, apart from a general
model for [7, 18], where ETL activities are studied under the
prism of lineage or resumption of a failed process. As already
mentioned, data streams [1, 5, 17] could possibly appear as the
paradigm for active warehouse maintenance. So far, streams have
been studied from the point of view of continuous querying,

without any investigation of transformations or updates. Both our
architecture and theoretical analysis could possibly be applied
over streams for this purpose. To our knowledge, the only paper
related to our approach is [14], where the authors apply a “white-
box” (as opposed to our black box) method to determine the
properties of SPJ relational operators with respect to queue
theory.

Work in materialized views refreshment [12, 13, 24, 25] is
orthogonal to our setting. In [13] the authors describe materialized
views, their applications, and the problems and techniques for
their maintenance. Novel techniques and an up-to-date survey of
related work in the field are presented in [12]. Materialized views
refreshment fits orthogonally with our on-line refreshment
technique, since we can treat each ETL queue as a black-box
process. In the context of this paper, a dedicated web service is
assigned to each materialized view. Although the tuning of the
system for large workloads of views is an interesting topic of
research, we find this issue outside the scope of this paper.

Another area related to our approach is the one of active
databases. In particular, if conventional systems (rather than
legacy ones) are employed, one might argue that the usage of
triggers [7] could facilitate the on-line population of the
warehouse. Still, related material suggests that triggers are not
quite suitable for our purpose, since they can (a) slow down the
source system and (b) require changes to the database
configuration [6]. In [19] it is also stated that capture mechanisms
at the data layer such as triggers have either a prohibitively large
performance impact on the operational system. As compared to
these problems, our architecture achieves low overhead with
minimal impact in the configuration of the source. We conjecture
that a replication mechanism similar with the proposed one,
propagating log entries towards the warehouse is a possible
solution towards this problem.

6. CONCLUSIONS AND FUTURE WORK
Active Data Warehousing refers to a new trend where data
warehouses are updated as frequently as possible, due to the high
demands of users for fresh data. In this paper, we have proposed a
framework for the implementation of active data warehousing,
keeping in mind the following goals: (a) minimal changes in the
software configuration of the source, (b) minimal overhead for the
source due to the "active" nature of data propagation, (c) the
possibility of smoothly regulating the overall configuration of the
environment in a principled way. In our framework, we have
implemented ETL activities over queue networks and employed
queue theory for the prediction of the performance and the tuning
of the operation of the overall refreshment process. In terms of
data freshness, source overhead and minimal impact of software
configuration the results seem satisfactory. A summary of the
lessons learned is as follows:

• In terms of architecture, isolating the ETL tasks in a special-
purpose area, either in the warehouse, or in an intermediate
tier, guarantees both minimum performance overhead at the
source and the possibility of regulating the flow towards the
warehouse target tables.

• Queue theory can be successfully employed as the theoretical
background for the estimation of the response of the active
staging area. The system reaches a steady state quite close to
the predicted behavior. Freshness is quite satisfactory too.

38

• The overall overhead at the source side is around 1.7% and
the amount of code modification is around 100 lines, without
affecting applications.

• Tuning the network-related parameters helps. TCP should be
used instead of UDP, due to the packet loss of the latter.
Organization of rows in blocks, both at the source and the
ADSA side increases performance.

Future work includes several directions. A first line of research
would have to do with the failure management of the components
of the environment, to determine safeguarding techniques and fast
resumption algorithms for the event of a failure. Further tuning
can be made, by testing multiple concurrent loading sources for
the warehouse. Also, the case of materialized aggregate views and
schema evolution poses interesting challenges in this context.

7. ACKNOWLEDGMENTS
E. Papapetrou has helped with comments on issues of queue
theory and implementation. This research has been partially
supported from the European Commission and the Greek Ministry
of Education through the Pythagoras Program.

8. REFERENCES
[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, et al.

Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12(2), 120-139, 2003.

[2] G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web
Services: Concepts, Architectures and Applications.
Springer-Verlag, 2003.

[3] J. Adzic, V. Fiore. Data Warehouse Population Platform.
In Proc. 5th Intl. Workshop on the Design and
Management of Data Warehouses (DMDW’03), Berlin,
Germany, 2003.

[4] Apache Software Foundation. Axis. Available at
http://ws.apache.org/axis/

[5] S. Babu, J. Widom. Continuous Queries over Data
Streams. SIGMOD Record 30(3), 109-120, 2001.

[6] Donald Burleson. New Developments In Oracle Data
Warehousing. Available at: http://dba-
oracle.com/oracle_news/2004_4_22_burleson.htm

[7] Stefano Ceri, Jennifer Widom. Deriving Production Rules
for Incremental View Maintenance. In Proc. VLDB,
Barcelona Spain, September 1991, 577-589

[7] Yingwei Cui, Jennifer Widom. Lineage tracing for general
data warehouse transformations. The VLDB Journal 12(1),
41-58, 2003.

[9] W. Duquaine Web Services Ruminations. Presentation at
High Performance Transaction Systems Workshop
(HPTS’03). Asilomar Conference Center, California,
October 12-15, 2003. Available at
http://research.sun.com/hpts2003/

[10] Galhardas, H., Florescu, D., Shasha, D., and Simon, E..
Ajax: An Extensible Data Cleaning Tool. In Proc. ACM

SIGMOD, Dallas, Texas, May 2000, p. 590.
[11] D. Gross, C. Harris. Fundamentals of Queuing Theory.

Wiley, 3rd Edition, 1998.
[12] H. Gupta and I.S. Mumick. Incremental Maintenance of

Aggregate and Outerjoin Expressions. To appear in
Information Systems, 2004.

[13] Ashish Gupta, Inderpal Singh Mumick. Maintenance of
Materialized Views: Problems, Techniques, and
Applications. Data Engineering Bulletin 18(2), 3-18,
1995.

[14] Qingchun Jiang, Sharma Chakravarthy. Queueing analysis
of relational operators for continuous data streams. In
Proc. CIKM, New Orleans, Louisiana, USA, November
2003, 271-278.

[15] Wilburt Labio, Jun Yang, Yingwei Cui, Hector Garcia-
Molina, Jennifer Widom: Performance Issues in
Incremental Warehouse Maintenance. In Proc. VLDB,
Cairo, Egypt, September 2000, 461-472.

[16] Wilburt Labio, Hector Garcia-Molina: Efficient Snapshot
Differential Algorithms for Data Warehousing. In Proc.
VLDB, Mumbai, India, September 1996, 63-74.

[17] D. Lomet, J. Gehrke. Special Issue on Data Stream
Processing. Data Engineering Bulletin, 26(1), 2003.

[18] Wilburt Labio, Janet L. Wiener, Hector Garcia-Molina,
Vlad Gorelik. Efficient Resumption of Interrupted
Warehouse Loads. In Proc. of ACM SIGMOD, Dallas,
Texas, USA, May 2000, 46-57.

[19] On-Time Data Warehousing with Oracle10g - Information
at the Speed of your Business. An Oracle White Paper.
August 2003. Available at http://www.oracle.com/
technology/products/bi/pdf/10gr1_twp_bi_ontime_etl.pdf

[20] P. Graf. The Program Base Library. Publicly available
through http://mission.base.com/peter/source/

[21] Vijayshankar Raman, Joseph M. Hellerstein: Potter's
Wheel. An Interactive Data Cleaning System. In Proc.
VLDB, Rome, Italy, September 2001, 381-390.

[22] C. White. Intelligent Business Strategies: Real-Time Data
Warehousing Heats Up. DM Ρeview, August 2002.
Available at http://www.dmreview.com/article_sub.cfm?
articleId=5570

[23] A. Willig. Performance Evaluation Techniques. Available
at http://www-ks.hpi.uni-potsdam.de/docs/engl/teaching/
pet/ss2004/script.pdf, 2004.

[24] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer,
Jennifer Widom: View Maintenance in a Warehousing
Environment. In Proc. of ACM SIGMOD, 1995, 316-327.

[25] Xin Zhang, Elke A. Rundensteiner: Integrating the
maintenance and synchronization of data warehouses
using a cooperative framework. Information Systems
27(4), 219-243, 2002.

39

An Event Based Framework for Improving Information
Quality That Integrates Baseline Models, Causal Models

and Formal Reference Models ∗

Joseph Bugajski
Visa International

PO Box 8999
San Francisco, CA 94128
jmbugajski@yahoo.com

Robert L. Grossman
†

and Eric Sumner
Open Data Partners

1145 Westgate Street
Oak Park, IL 60301
{rlg1@, esum-

ner@}opendatagroup.com

Zhao Tang
Bearing Point

1676 International Drive
McLean, VA 22102

tao.zhang@bearingpoint.com

ABSTRACT
We introduce a framework for improving information qual-
ity in complex distributed systems that integrates: 1) Ana-
lytic models that describe baseline values for attributes and
combinations of attributes and components that detect sta-
tistically significant changes from baselines. These models
determine whether a significant change has occurred, and
if so, when. 2) Casual models that help determine why a
statistically significant change has occurred and what its
impact is. These models focus on the reasons for a change.
3) Formal business and technical reference models so that
data and information quality problems are less likely to oc-
cur in the future. In this note, we focus on the first two
types of models and describe how this framework applies to
data quality problems associated with electronic payments
transactions and highway traffic patterns.

1. INTRODUCTION
In this note, we introduce a framework for monitoring,

exploring and ameliorating the information quality of event
based data. We are interested in data and information qual-
ity problems for complex, distributed real time systems.
Here are two motivating examples that are described in more
detail below.

The first example is the processing of electronic payments.
A payments card transaction is an example of an event and
involves several parties, namely the cardholder, the mer-
chant, the merchant’s bank, the cardholder’s bank and the
payment processor. Each of these independent parties is

∗This work was supported in part by the Visa International
Data Interoperability Program and the U.S. Army Pantheon
Project.
†Robert L. Grossman is the corresponding author. He is also
a faculty member at the University of Illinois at Chicago.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06 ...$5.00.

involved in the decision of whether to accept the transac-
tion, decline the transaction, or request further information
about the transaction. Poor data and information quality
can increase the rate of improper declines and improper ap-
provals.

The second example is the real time analysis of traffic pat-
terns over a metropolitan region in order to quickly identify
accidents and other anomalous behavior. In this example,
we assume that traffic sensors produce real time informa-
tion about the speed and volume of traffic. The resulting
sensor readings are examples of events which are aggregated
to produce features summarizing the traffic at a particular
time and location. Traffic patterns can be quite complex
and vary with the time, location, weather, local events, etc.
Obtaining accurate data can be very challenging.

There are several challenges common to both of these ex-
amples:

1. The data sizes are large and the data is heterogeneous.

2. The data is produced and processed by several differ-
ent parties and this sometimes introduces data and
information quality issues.

3. The data and system is sufficiently complex that es-
tablishing baseline data quality and information levels
can be quite challenging.

In this note, we describe a framework for monitoring, ex-
ploring and ameliorating the data and information quality
for systems with these types of challenges. The framework
has four components:

Building Baselines. The first component of the frame-
work is an analysis engine that:

1. analyzes event based data

2. divides the event based data into appropriate segments

3. computes features or states from these events for each
segment

4. and from these features estimates appropriate base-
lines for each segment.

The idea is that although the system has a whole may be
quite complex by dividing the data into enough cells (by

40

restricting to appropriate ranges of values along each di-
mension), the data becomes homogeneous enough to ana-
lyze, addressing the first challenge. In this context, we call
each such cell a segment (as in segmented modeling). In our
experience, analyzing appropriate features associated with
various entities of interest instead of directly analyzing the
events themselves helps address the second challenge.

Monitoring. The second component of the framework is a
monitor that:

1. monitors streams of event based data

2. computes summary or state information,

3. uses this information as input to statistical measures
and models

4. compares the outputs of the measures and models to
previously computed baselines, and

5. issues alerts in case of statistically significant devia-
tions.

The goal of monitoring is to determine whether a statisti-
cally significant change has occurred. In other words, rather
than starting with a certain expectation of data or informa-
tion quality, the approach is to detect as quickly as possible
changes in data or information quality, addressing the third
challenge.

Root Cause Analysis. The third component of the frame-
work is a process for exploring the monitored data to un-
derstand casual relationships between data and defined out-
come variables. A variety of techniques can be used to un-
derstand causality, including contingency tables [1], discrim-
inant analysis, regression, and classification and regression
trees [13]. The challenge is to understand whether different
variables are causally related or simply correlated.

Here is a simple example from the analysis of payments
card transactions: The decline rate of transactions is an out-
come variable that has obvious business significance. Some
declines are due to insufficient funds or fraudulent usage,
while others are due to data quality problems. Errors in
how a merchant processor sets up an e-commerce system
can lead to hidden data quality problems and higher than
usual declines. The role of the root cause analysis process
is to understand some of the casual reasons for statistically
significant changes in baselines. In other words, the goal
of root cause analysis is to determine why something has
happened.

Amelioration. Once one one or more root causes are iden-
tified, the goal of the fourth component of the framework is
to take actions to ameliorate the problems. In the example,
above this may involve educating the merchant processor so
that the identified data quality problems do not occur in the
future.

In our experience, data quality problems for complex dis-
tributed systems are often the result of documentation that
is hard to understand or difficult to interpret. We have been
exploring the use of model driven architecture [7] to provide
formal business and technical reference models and methods
that can directly address this difficulty.

In this paper, we describe this framework and provide
some high level experiences of some of the implementations
we have done.

Although monitoring, causal analysis and amelioration
are components for several different data and information
quality methodologies [6], [14], [15], as best as we can tell
from reading the literature, our paper makes the following
contributions:

1. Most data and information quality methodologies [14],
[17], [15] do not distinguish carefully between transac-
tion or event data and summary or profile data that
is aggregated from it. This is an important distinction
for our targeted applications. As a simple example, the
data and information quality issues are quite different
for payments card transactions and summary informa-
tion at the merchant, account, issuer, or acquirer level.

2. A common approach to data and information quality
is to measure the quality of data along several dimen-
sions. For example, accuracy, completeness, validity,
timeliness, etc. (see, for example, [20]). In contrast,
our focus is not on the dimensions themselves but on
effective procedures for creating small cells or segments
of data (defined by dimensional ranges) that have both
business and statistical significance and building ef-
fective baselines for each cell. For example, we view
data for a transaction process as being naturally di-
vided into cells by logical entity (issuer, acquirer, type
of payments card or payment product) and temporal
entity (weekday, holiday, weekend, etc.)

3. Our methodology is closely tied to standards, in par-
ticular, the Predictive Model and Markup Language
or PMML, that dominant standard for statistical and
data mining models. This has several important im-
plications. In particular, this allows us to instantiate a
data quality in a standards based fashion as an XML
file.

2. RELATED WORK
There is now quite a bit of research in the field of data

and information quality, and several books [18] and [3]. In
this section, we briefly discuss some of the research that is
most directly relevant.

Our approach to data and information quality is statis-
tical. This tradition goes back at least to Deming [4]. In
particular, our focus is on establishing baselines and measur-
ing statistically significant deviations from baselines. This
is a standard approach in change detection [2]. In contrast,
many approaches for data and information quality are busi-
ness systems or engineering based (see for example, [14] or
[18]).

Once deviations from baselines are detected, a statistical
analysis is undertaken to try to determine the underlying
reasons. Today, there are a wide variety of approaches for
trying to determine causality, including root cause analysis
[19], contingency tables [1], discriminant analysis, regres-
sion, and classification and regression trees [13].

A common approach to data and information quality is to
measure the quality of data along several dimensions. For
example, DOD Guidelines recommend using accuracy, com-
pleteness, consistency, timeliness, uniqueness and validity.
As another example, Strong et. al. [20] introduce 16 dimen-
sions organized into four categories (intrinsic information
quality, contextual information quality, representational in-
formational quality, and accessibility information quality).

41

In this note, we use some, but not all, of these standard di-
mensions. In particular, most of the work described below
are based on metrics measuring completeness, consistency,
and validity.

In this note we distinguish formally between input events
and persistent states. Although this is standard in dynami-
cal systems, automata theory, and control theory, but does
not appear to be a standard approach in statistics or data
mining [11].

Most data and information quality methodologies [14],
[17], [15], [6] include components for defining, measuring,
analyzing, and improving data and information quality is-
sues, as our does. On the other hand, the approach sketched
below differs in two significant ways from [14], [17], [15], [6]
and related work:

1. Our approach is closely tied to standards based archi-
tectures. As many approaches do today, we employ a
data warehouse. In addition, we employ a monitor for
monitoring streaming data, a component for building
baselines, and a scoring engine [12] for measuring the
deviation of the streaming data from the baseline.

2. Second, our approach is closely tied to standards for
data mining and statistical models [10] and [5], such as
the XML-based Predictive Model Markup Language.

3. EXAMPLES
We have applied the framework described here to several

examples, including those involving payments card transac-
tions, highway traffic data, and multi-modal sensor data. In
this section, we provide a bit of background for two of these
examples in order to make this note more self contained.

Here is a simplified description of some of the steps in-
volved in a payments card transaction.

1. A cardholder (the card has an account number) pur-
chases an item at a merchant.

2. The merchant has a relationship with a bank called
the acquiring bank, which agrees to process the pay-
ments card transactions for the merchant. The ac-
quiring bank provides the merchant with a terminal
or other system to accept the transaction and to pro-
cess it.

3. The acquiring bank has a relation with financial pay-
ment system, such as those operated by Visa, Master-
Card, Discover, etc. The transaction is processed by
the acquiring bank and passed to the payment system.

4. The payment system the transaction and passes the
transaction to the bank that issued the payments card
to the card holder (the issuing bank). In other words,
one of the essential roles of the payment system is to
act as an intermediary between the acquirer and the
issuer.

5. The issuing bank processes the transactions and de-
termines if there are sufficient funds for the purchase,
if the card is valid, etc. If so, the transaction is au-
thorized; the transaction can also be declined, or a
message returned asking for additional information.
In each of these cases, the path is reversed and the
transaction is passed from the issuing bank back to

the payment system, from the payment system back
to the merchant bank, and from the merchant bank,
back to the merchant.

One of the challenges of a problem like this is to monitor
in real time data and information quality problems for the
various different parties when the data is processed trans-
action by transaction. Our approach is to use event based
processing model and to create different summary or feature
vector for each entity of interest. In this case, this includes
the cardholder, the merchant, the acquirer, the issuer, and
the payment system.

As another example, consider the problem of understand-
ing highway traffic congestion. The Gateway System em-
ploys over 800 sensors to collect volume, speed, and occu-
pancy data in a three state, fifteen county Gary-Chicago-
Milwaukee (GCM) corridor [16]. The Pantheon Gateway
Testbed augments this data with data about weather, spe-
cial events that may effect highway conditions, and related
information.

Here is a question that can be posed using this data: On
a Monday, around 7 am, that is not a holiday, and when it
is beginning to rain lightly, what is the average speed and
volume for traffic on Interstate - 290 near the Austin exit?
What will the average speed and volume be around 8 am if
the rain continues?

This is an important motivating question and suggests
our approach. Rather than try to understand data and in-
formation quality problems for the system as a whole, our
approach is divide the data into relatively homogeneous seg-
ments or cells (such as traffic on Mondays around 7 am with
light rain) and to establish appropriate baselines for each
such segment. With this knowledge, understanding data
and information quality problems becomes much easier.

4. OVERVIEW
Broadly speaking, our technical approach is as follows:

1. We assume that data consists of events, such as trans-
actions or sensor readings. Events are first divided into
segments or cells that are relatively homogeneous. An
event can be associated with multiple segments. Of
course, there are many different ways of doing this and
a discussion of these is outside the scope of this paper.

2. For each segment, events are processed to update state
or feature vectors containing persistent features asso-
ciated with the events. This is described in more detail
in the section below.

3. For each segment, appropriate baselines are established
for collections of state or feature vectors. Baselines
may be temporal, geospatial, logical, or some combi-
nation. Determining good break points for dimensions
appears to be a difficult problem and is outside the
scope of this paper.

4. Deviations from baselines are detected using simple
threshold models or more complex change detection
models [2]. Deviations are used to determine as quickly
as possible whether something has changed.

5. Separately, casual analysis is used to determine whether
conditions or combinations of conditions are likely to

42

effect outcome or impact variables. To begin n by m
contingency tables are used as a starting point for this
analysis [1]. This is supplemented as required by dis-
criminant analysis, linear regression, and nonlinear re-
gression techniques, such as classification and regres-
sion trees [13].

6. When important casual conditions are identified, for-
mal models [7] are used to begin to improve the condi-
tion. The use of formal models for this purpose is also
outside the scope of this paper.

5. EVENT BASED DATA PROCESSING
It is useful when developing baselines to distinguish be-

tween data and derived attributes following [5].
A data attribute is simply an attribute present in the data

itself, while a derived attribute is an attribute derived from
the data or aggregations of the data. For example, given a
payments card transaction the raw amount of the transac-
tion is in the data itself, while currency related attributes,
interchange fees, the amount of transactions for an account
holder during the past hour, the number of declined trans-
actions that are e-commerce-related, etc. are all examples
of derived attributes.

In this note, we follow an event based approach to analyze
information [11]. We assume that we are given:

• A stream of events α1, α2, . . . in Rm. Attributes in
the events are data attributes.

• A finite collection ξ of feature vectors (also called state
vectors)

ξ = {x1, x2, . . . , xn ∈ RN}.

• An update rule (denoted dot) specifying how an event
α updates the collection of feature vectors

ξ′ = α · ξ.

Attributes in the feature or state vectors consist of
derived attributes formed from the event data through
transformations and aggregations.

• A function of the state space

f : RN −→ R1

representing a statistical or data mining model pro-
ducing scores or other outputs.

We illustrate this using our running example of payments
card transactions. In this case, the events are payments card
transactions, while the state vector represents information
associated with a related entity, such as a payments card
or issuing bank. For example, if the state vector represents
a payments card transaction, the a component of the state
vector might be the number of transactions during the the
previous 60 minutes. If the state vector represents an issu-
ing bank, then a component of the state vector might be
the number of declined transactions during a day. In both
cases, the model might be a change detection model indicat-
ing that the observed feature is statistically different than a
previously computed baseline level.

For another example, assume that events consist of sen-
sor readings for a collection of sensors and that there is a

feature vector for each sensor that maintains the number of
readings, the average of the readings, the min sensor read-
ing, and the maximum sensor reading for each sixty minute
period, for each of the 168 = 7 × 24 sixty minute periods
during a seven day week. Here the update rule, updates
the features corresponding to the appropriate sixty minute
period.

6. BASELINE MODELS
In this section, we review a standard approach for de-

tecting deviations from baselines [2]. In the methodology
described here, this is applied to each segment or cell sepa-
rately. We assume that one have mean and variances repre-
senting normal behavior and behavior that is not normal.

More explicitly, assume we have two Gaussian distribu-
tions with mean µi and variance σ2

i , i = 0, 1.

fi(x) =
1√

2πµi
exp

−(x− µi)
2

2σi

The log odds ratio is then given by

g(x) = log
f1(x)

f0(x)
.

and can now define a CUSUM algorithm as follows [2]:

Z0 = 0.

Zn = max{0, Zn−1 + g(xn)}.

Streaming data is compared to existing baseline data and
deviations are noted and flagged for investigations. Baseline
models like these are used to determine whether something
has changed, and, if so, when it changed.

Baseline models aggregate data along several dimensions
(in the running example of payments card transactions, base-
line models aggregate data by issuer, acquirer, region, tem-
poral period, type of transaction, etc.) At too high a level of
granularity, too much information is lost. At too fine a level
of granularity, it is too difficult to discern what is important.

For example, it is important to know that the overall au-
thorization rate is 93%, but this doesn’t easily lead to actions
that improve the authorization rate. On the other hand,
knowing that the authorization rate for transactions with
inconsistent point of sales data is 20% higher than the av-
erage provides some very important information. The chal-
lenge with baseline models is to choose the right of level
of granularity so that the baselines are meaningful and can
uncover opportunities for improvement. From this perspec-
tive, advanced baseline models can dive down into the data
to uncover homogeneous pockets of data and establish ap-
propriate baselines for each pocket.

The Predictive Model Markup Language or PMML is an
XML based language to describe statistical and data mining
models. As part of the work described here we have pro-
duced PMML models for baselines and to detect deviations
from baselines. Using the terminology of [5], an applica-
tion that produces baselines is a PMML producer and an
application that monitors baselines is a PMML consumer.

7. ROOT CAUSE ANALYSIS
Different applications structure the root cause analysis

differently. For example, when analyzing payment data the
current approach consists of two steps:

43

1. In the first step, the relation between different con-
ditions and different outcome or impact variables is
examined using to generate alerts, together with con-
fidence levels. The goal of this step is to provide an
initial identification of conditions that are correlated
with variables of business interest.

2. In the second step, an investigation is undertaken in-
volving subject matter experts to explore the relation-
ship and to determine whether the relation is casual,
and, if so, to estimate its business impact.

We now briefly describe each of these steps in the running
example of payments card transactions.

A simple way to analyze data is to use data and derived
attributes to define conditions and then to examine the rela-
tion between the conditions and certain outcomes using con-
tingency tables [1]. Recall that contingency tables capture
the relation of two categorical variables. See the Table be-
low for a simple example. In addition to contingency tables,
we currently beginning to explore multivariate techniques,
such as discriminant analysis or classification trees [13] to
generate alerts.

Alert conditions are defined by specifying values or ranges
of values for data or derived fields. Defining binary indicator
variables is a very simple way of defining conditions. Here
is a simple example. A transaction has a field indicating
that it is e-commerce related. For example, an indicator
attributed can be defined by defining a condition to be 1
if the transaction is e-commerce related in this sense and 0
otherwise. As another example, a payments card transaction
also has a field indicating the type of merchant. An indicator
variable can be defined if the type of merchant is a casino
and 0 otherwise. More complex types of conditions can also
be defined. For example, conditions with three, four or more
different values can also be defined. Conditions defined in
these ways are examples of statistical factors.

Outcome and impact attributes can be data attributes,
but are generally derived attributes. Examples include a
binary variable indicated whether a financial transaction
is approved or not. As another example, a binary indica-
tor variable indicating whether a transaction is cleared, or
whether or not a transaction is associated with a charge back
or not.

Outcome
- State 1

Outcome
- State 2

Alert Condition
Present

n11 n12

Alert Condition
Not Present

n21 n22

Table 1: A 2x2 contingency table that is sometimes
a helpful step in the root cause analysis of alerts.

In addition to baseline models, our framework also uses
more complex statistical to help determine what conditions
and combination of conditions are likely to result in certain
outcomes, such as a decrease in authorizations. In conjunc-
tion with this, our framework also employs an investigative
process involving subject matter experts to help determine
why an outcome variable (such as the approval rate or charge
back rate) has changed and if so what the impact is? We
call these casual models.

8. STATUS
To date, we have undertaken several projects using this

methodology. Here we give a brief summary of the status of
two of these.

Payments card transactions. We have begun to analyze
data and information quality problems associated with de-
clines for a large financial transaction processor. The status
is as follows: some measures for incomplete, invalid, and in-
consistent fields have been developed. Using this measures,
we are currently developing baselines and identifying com-
binations of conditions capturing common data and infor-
mation quality problems. We are also examining casual re-
lations between these conditions and impact variables, such
as the rate of declines. Finally, preliminary business and
technical reference models for some of the more important
fields have been developed [7].

Highway traffic data. The Gateway System collects near
real time data from over 800 highway traffic sensors cover-
ing the three state, fifteen county Gary-Chicago-Milwaukee
(GCM) corridor. This data is archived by the Pantheon
Gateway Project [16] and overlaid with data about special
events, such as concerts or sports events, and data about
the weather. In addition, data about accidents is collected.
Using this data, we have established preliminary baselines
used a real time scoring engine employing PMML-based
change detection models to detect statistically significant
changes from these baselines. To date, CUSUM-based and
threshold based change detection models [2] have been de-
veloped and deployed. Currently, casual models using tree-
based classifiers are being developed to try determine semi-
automatically whether deviations from baselines are due to
chance, unusual weather, special events, or accidents.

Publicly available data and information about the first
projects is rather limited due to its confidential nature. On
the other hand, data for the third project is publicly avail-
able from the web site [16].

9. CONCLUSION
In this note, we have introduced a framework consisting

of four steps that can help identify and ameliorate data and
information quality problems for complex, distributed sys-
tems.

Our assumption is that the data is event based and hetero-
geneous. In a preliminary step, we divide the data into more
homogeneous cells or segments and aggregate the data into
feature or summary vectors attached to entities of interest.

1. The first component statistically analyzes each seg-
ment and produces a baseline.

2. The second component monitors the event stream in
real time and compares computed quantities of each
interest in each segment to historical baselines. Devi-
ations result in request for an investigation (an alert).
This component detects whether something has hap-
pened.

3. The third component is a root cause analysis which
seeks to identify the root cause of each alert. This
involves subject matter experts. This component de-
termines why something has happened and, if so, what
its impact is.

44

4. The fourth component employs formal models [7] to
reduce the likelihood that similar problems will happen
in the future.

This framework has been applied in several different do-
mains. In this paper, we discussed two of these: under-
standing data and information quality problems for pay-
ments card transactions and for highway traffic data.

10. REFERENCES
[1] Alan Agresti, An Introduction to Categorical Data

Analysis, John Wiley and Sons, Inc., New York, 1996.

[2] M. Basseville and I. V. Nikiforov. Detection of Abrupt
Changes: Theory and Application. Prentice Hall, 1993

[3] Tamraparni Dasu and Theodore Johnson, Exploratory
Data Mining and Data Cleaning, Wiley, 2003.

[4] W. Edwards Deming, Elementary Principles of the
Statistical Control of Quality: A Series of Lectures,
JUSE, Tokyo, 1952.

[5] Data Mining Group, The Predictive Model Markup
Language, Version 3.0, retrieved from www.dmg.org
on March 20, 2005.

[6] DOD Guidelines on Data Quality Management
(Summary), retrieved from
tricare.osd.mil/rm/documents/fa/
DoDGuidelinesOnDataQualityManagement.pdf on
March 20, 2004.

[7] David S. Frankel, Model Driven Architecture, Wiley
Publishing Inc., Indianapolis, 2003.

[8] Glenn W. Goodman Jr., Taming the River of Data:
New Software Tools Fuse Intelligence From Many
Sources, Defense News, March 14, 2005.

[9] Robert L. Grossman, H. Bodek, D. Northcutt, and H.
V. Poor, Data Mining and Tree-based Optimization,
Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, E. Simoudis,
J. Han and U. Fayyad, editors, AAAI Press, Menlo
Park, California, 1996, pp 323-326.

[10] Robert Grossman, Mark Hornick, and Gregor Meyer,
Data Mining Standards Initiatives, Communications
of the ACM, Volume 45, Number 8, 2002, pages 59-61

[11] Robert L. Grossman and R. G. Larson, An Algebraic
Approach to Data Mining: Some Examples,
Proceedings of the 2002 IEEE International
Conference on Data Mining, IEEE Computer Society,
Los Alamitos, California, 2002, pages 613-616.

[12] Robert L. Grossman, Alert Management Systems: A
Quick Introduction, in Managing Cyber Threats:
Issues, Approaches and Challenges, edited by Vipin
Kumar, Jaideep Srivastava, Aleksandar Lazarevic,
Kluwer Academic Publisher, 2004.

[13] Trevor Hastie, Robert Tibshirani, and Jerome
Friedman, The Elements of Statistical Learning,
Springer, New York, 2001.

[14] Yang W. Lee, Diane M. Strong, Beverly K. Kahn,
Richard Y. Wang, AIMQ: A Methodology for
Information Quality Assessment, Information and
Management, December 2002, Volume 40, Issue 2,
pages 133–146.

[15] Ken Orr, Data Quality and Systems, Communications
of the ACM, Volume 41, Number 2, 1998, pages 66–71.

[16] Pantheon Gateway Testbed, retrieved from
highway.ncdm.uic.edu on March 20, 2005. (A SVG
plug in for your browser is required to see the map.)

[17] Leo L. Pipino, Yang W. Lee and Richard Y. Wang,
Data Quality Assessment, Communications of the
ACM, Volume 45, Number 4, 2002, pages 211–218.

[18] Thomas C. Redman, Data Quality: The Field Guide,
Digital Press, Boston, 2001.

[19] James J. Rooney and Lee N. Vanden Heuvel, Root
Cause Analysis for Beginners, Quality Prgoress, 2004,
pages 45–53.

[20] D. M. Strong, Y.W. Lee and R.Y. Wang, Data
Quality in Context, Communications of the ACM,
Volume 40, Number 5, 1997, pages 1030-110.

[21] Shawn Turner, Defining and Measuring Traffic Data
Quality, Proceedings of the Traffic Data Quality
Workshop, Washington, DC, December 31, 2002.

45

Figure 1: We have applied the framework described here to detect real time deviations from baselines from
multi-modal highway data collected from over 800 highway traffic sensors in the greater Chicago region.

46

Exploiting relationships for object consolidation∗†

Zhaoqi Chen Dmitri V. Kalashnikov Sharad Mehrotra

Computer Science Department
University of California, Irvine

ABSTRACT
Data mining practitioners frequently have to spend signifi-
cant portion of their project time on data preprocessing be-
fore they can apply their algorithms on real-world datasets.
Such a preprocessing is required because many real-world
datasets are not perfect, but rather they contain missing, er-
roneous, duplicate data and other data cleaning problems.
It is a well established fact that, in general, if such prob-
lems with data are not corrected, applying data mining al-
gorithm can lead to wrong results. The latter is known as
the “garbage in, garbage out” principle. Given the signif-
icance of the problem, numerous data cleaning techniques
have been designed in the past to address the aforemen-
tioned problems with data.

In this paper, we address one of the data cleaning chal-
lenges, called object consolidation. This important challenge
arises because objects in datasets are frequently represented
via descriptions (a set of instantiated attributes), which
alone might not always uniquely identify the object. The
goal of object consolidation is to correctly consolidate (i.e.,
to group/determine) all the representations of the same ob-
ject, for each object in the dataset. In contrast to traditional
domain-independent data cleaning techniques, our approach
analyzes not only object features, but also additional se-
mantic information: inter-objects relationships, for the pur-
pose of object consolidation. The approach views datasets
as attributed relational graphs (ARGs) of object represen-
tations (nodes), connected via relationships (edges). The
approach then applies graph partitioning techniques to ac-
curately cluster object representations. Our empirical study
over real datasets shows that analyzing relationships signif-
icantly improves the quality of the result.

1. INTRODUCTION
Nowadays data mining techniques are widely used to an-

alyze data for scientific applications and business decision

∗RelDC project (http://www.ics.uci.edu/~dvk/RelDC)
†This work was supported by NSF grants 0331707, 0331690

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA
Copyright 2005 ACM 1-59593-160-0/05/06...$5.00.

making. To build proper models and compute accurate re-
sults it is important that analyzed datasets are accurately
represented and interpreted. Many real-world datasets how-
ever are not perfect, they frequently contain various data
cleaning issues such as incomplete, erroneous and duplicate
data, which need to be addressed before data mining tech-
niques can be applied. As a result, data mining practitioners
frequently spend significant effort on preprocessing of data
to address cleaning issues that exist in their datasets, to
ensure high quality of the results.

In this paper, we address one common data cleaning chal-
lenge known as object consolidation [8, 20, 22, 25]. It arises
most frequently when the dataset being processed is con-
structed by merging various data sources into a single unified
database, such as by crawling the web. In many real-world
datasets objects/entities are not represented by unique iden-
tifiers, instead an object is represented by a description (a
set of instantiated attributes), used in a certain context,
which may lead to ambiguity. An object might have multiple
different representations in the dataset and also an object
representation, in general, might match the description of
multiple objects instead of one. The goal of object consoli-
dation is to correctly group all the representations that refer
to the same object.

For example, consider a database that contains informa-
tion about two people: ‘John A. Smith’ and ‘John B. Smith’.
Firstly, entity ‘John A. Smith’ might have multiple repre-
sentations throughout the dataset: e.g., ‘John Smith’, ‘J.
Smith’ ‘John Smithx’ (a misspelled representation). Sec-
ondly, representation ‘J. Smith’ can refer to both ‘John A.’
and ‘John B.’ Smith, so one representation matches the de-
scriptions of multiple entities. Finally, the fact that there are
only two ‘John Smith”s in the dataset might not be known
in general. Thus, for this example the goal is to determine
that all ‘John Smith’ representations should be clustered
into two groups and then assign them to groups such that
all representations for ‘John A. Smith’ are in one group and
for ‘John B. Smith’ in the other. Sometimes it is possible to
infer more attributes/information from the context in which
representations appear. For example, for ‘J. Smith’ used in
a specific context, it might be known that the mentioned
‘J. Smith’ works at MIT. This context information can be
potentially used to consolidate representations better.

Let us use an example to demonstrate the implication
of applying data analysis techniques on datasets where the
object consolidation problem is not resolved correctly. Con-
sider the task of computing author impact in a citation net-
work using a simple citation-count statistic. That is, the

47

task might be to compute the impact of ‘John A. Smith’ by
counting the number of citations of his publications. This
simple task might be more difficult than it seems due to the
problem with representations identified above. Notice, even
though the representations appear in some context, the in-
formation about the object available from the context might
be of a limited nature, which makes the object consolidation
task challenging. For instance, the only direct information
available about the authors, for some of the publications,
might be only their first initials and last names. Because
of such problems with representations, some of the papers
written by ‘John A. Smith’ might be wrongfully assigned
to other authors and some of the papers written by other
authors might be assigned to ‘John A. Smith’. Thus, the
impact of ‘John A. Smith’, computed on such a dataset, can
be very different from the real one.

While the object consolidation problem exists in differ-
ent domains, in this paper we will often use citation net-
works, like in the example above, to illustrate our domain-
independent approach.

The problem of object consolidation is related to the prob-
lem of record deduplication or record linkage [1,10,13,19,23]
that often arises when multiple tables (from different data
sources) are merged to create a single database. The causes
of record linkage are similar, i.e. differences in represen-
tation of objects across different datasets, entry errors, etc.
The difference between the two problems is that while record
linkage deals with records in a table, object consolidation
deals with entities/objects – a semantic concept of a higher
level. In record linkage it is often assumed that many at-
tributes are available in each record, which are very effec-
tively employed for deduplications. In object consolidation,
however, very few attributes can be available, thus making
the problem more challenging.

Another related problem is the problem of reference dis-
ambiguation [14, 18]. In the problem of reference disam-
biguation the goal is to match object representations with
the list of possible objects which is known in advance and
known to be clean. The requirement of having such a clean
list of objects limits the applicability of reference disam-
biguation. As a rule, each instance of the reference disam-
biguation problem can be formulated as an instance of the
object consolidation problem, while the reverse is not true.
That is, the object consolidation problem is more general.

Most of the traditional domain-independent data clean-
ing techniques belong to the class of feature-based similarity
(FBS) methods.1 To determine if two objects/records are
the same they employ a similarity function that compares
values of object/record attributes (features) for the purpose
of deduplication. The values of the attributes of an object
are typically derived from the object representation and the
context in which it is used. In this paper, we study a domain-
independent approach that utilizes not only features but also
additional semantic information present in datasets: inter-
object (chains of) relationships. For instance, ‘J. Smith’

1For example, two strings ‘J. Smith’ and ‘John Smith’, while
not identical, are sufficiently similar to suggest that one can
be the other and FBS techniques can detect that. It can also
be known from the context that the mentioned ‘J. Smith’
works at MIT and ‘John Smith’ works at MIT, then FBS
approaches can use this additional attribute (affiliation) and
suggest that they are now more confident that the two rep-
resentations refer to the same person.

might be used to refer to an author in the context of a par-
ticular publication. This publication might also have more
authors, which can be linked to their affiliated organizations
and so on, forming a web of entities inter-connected via rela-
tionships. The knowledge of relationships can be exploited
alongside attribute-based similarity resulting in improved
accuracy of object consolidation. Our approach is based on
the following hypothesis, which is referred to as the Context
Attraction Principle (CAP):

The CAP hypothesis:
• if two representations refer to the same entity, there

is a high likelihood that they are strongly connected to
each other through multiple relationships, implicit in
the database;

• if two representations refer to different entities, the
connection between them via relationships is weak, com-
pared with that of the representations that refer to the
same entity.

Our approach views the underlying database as an at-
tributed relational graph (ARG), where nodes correspond
to object representations and edges correspond to relation-
ships. Our technique first uses feature-based similarity, to
determine if two representations can refer to the same ob-
jects. If, based on the FBS similarity, two representations
can refer to one object, then the relationships between those
representations are analyzed to measure the connection strength
between them. Graph partitioning techniques are then em-
ployed to consolidate the representations of objects based on
the FBS similarity and connection strength among them.

The primary contributions of this paper are:

• A novel object consolidation approach, which, unlike
traditional techniques, employs not only attribute (fea-
ture) similarity, but also analyzes inter-object rela-
tionships to improve the quality of consolidation (Sec-
tion 4).

• Novel metrics to analyze the quality of the outcome
(Section 4.3).

• An empirical evaluation of the proposed technique,
that establishes that analyzing relationships is impor-
tant for object consolidation (Section 5).

Next, in Section 2, we present a motivational example and
then, in Section 3, we formalize the problem and introduce
the notation necessary to explain the approach.

2. MOTIVATING EXAMPLE
In this section we use an instance of the “author match-

ing” problem to illustrate that exploiting chains of relation-
ships, that exist among entities, can improve the quality of
object consolidation.

Consider a toy database consisting of the author and pub-
lication records shown in Figures 1 and 2. Assume that
the publications are represented in the database using the
attributes 〈id,title,authorRef1, . . . , authorRefN〉, where
id is the paper identifier, title is the paper title, and
authorRef’s are the names of the authors of the paper.
Suppose that the author information is stored in the form
〈id,authorName,affiliation〉, where id is the author iden-
tifier, authorName and affiliation are the author’s name
and affiliation.

48

〈P1, Title1, ‘John Smith’, ‘Alan White’〉
〈P2, Title2, ‘Alan White’, ‘Mike Black’〉
〈P3, Title3, ‘J. Smith’, ‘Mike Black’〉
〈P4, Title4, ‘Tom Grey’, ‘John Smith’〉
〈P5, Title5, ‘Tom Grey’, ‘Kate Red’〉

Figure 1: Publication records

〈A1, ‘John Smith’, ‘MIT’〉
〈A2, ‘John Z. Smith’, ‘CMU’〉
〈A3, ‘John Smith’, ‘Stanford’〉
〈A4, ‘Alan White’, ‘MIT’〉
〈A5, ‘Mike Black’, ‘NEC’〉
〈A6, ‘Tom Grey’, ‘Intel’〉
〈A7, ‘Kate Red’, ‘Stanford’〉

Figure 2: Author records

�� �������

	
������
����
���

	������	��	��� ���

�����	������

�

������� 	������	����
 ����������

�����

 !�

	"�#�����

	$����% ��&��% 	����������% 	$����%'��'

(�'��%��)��

*�

*

Figure 3: Graph for toy database.

�� �������

	
������
����
���

	������	��	��� ���

�����	������

�

������� 	������	����
 ����������

�����

 !�

	"�#�����

$�

$

������� 	������

�
����
��� 	
�����

	%����& ��'��& 	����������& 	%����&(��(

)�(��&��*��

Figure 4: Adding context info.

��

��������	

�����

 ���

������������

��

�����	
������ ��

������

�
���

� �

�!�"
����

#�

#�

�$�	��% �
&��% ������
���
% �$�	��%'��'

(�'��%��)��

Figure 5: Adding relshp analysis.

We assume that in this database we are only uncertain
about representations of people. For instance, we are uncer-
tain to which author the representation ‘John Smith’ in the
paper P1 refers to: A1, A2, or A3. For that matter, we are
also uncertain, whether A1, A2, or A3 are representations of
different people, or they are just duplicate records. The lat-
ter can be the case, for instance, if ‘John Smith’ was a grad-
uate student at MIT and then became a faculty at CMU,
so A1 and A2 are duplicates in this scenario. However, un-
der our assumptions, we are certain that the representation
‘MIT’ in A1 is the same organization as the ‘MIT’ in A4,
because these two representations are of the type affiliation,
and not of the type people.

Traditional FBS techniques. To solve this problem
using traditional techniques one would first try to dedupli-
cate author records. After that, those records would be as-
sumed to uniquely represent each distinct author and the
goal would be to match authorRef’s in publication records
to the correct authors. For example, existing feature-based
similarity techniques can be used to compare the descrip-
tion in each authorRef in publication records with the val-
ues of the authorName attribute in authors records. Using
this technique we can accurately consolidate most of the
representations for our toy database, except for the ‘John
Smith’ representations. For example, the author represented
as ‘Alan White’ in publications P1 and P2 will be mapped
uniquely to the author record A4 for ‘Alan White’; ‘Mike
Black’ in publications P2 and P3 will be correctly mapped
to A5 and so on. The only difficulty will be with ‘John
Smith’ and ‘J. Smith’ in P1, P3, and P4, since each of
them can correspond to either A1, A2, or A3.

Let us note that we can visualize the resulting dataset
as a graph. In this graph, each entity/object, as well as the
not-yet-consolidated representations, become nodes. The re-
lationships that exist among them are visualized as edges.

The graph for the toy database is illustrated in Figure 3.
For instance, since author A1 is affiliated with ‘MIT’, there is
an edge between them, that corresponds to this relationship.
Since, under our assumptions, ‘MIT’ uniquely identifies the
corresponding entity, only one node is created for all ‘MIT’
representations. However, each ‘John Smith’ has a separate
node in this figure.

Employing context. The most recent data cleaning

techniques, such as [7], are also capable of employing the
context to improve the quality of cleaning. There might
be additional context information (‘context attributes’) that
such algorithms might be able to use.

For instance, if it is also known that the coauthor of P1,
‘Alan White’, is from ‘MIT’, then, given that A1 is from
‘MIT’ as well, we may decide that ‘John Smith’ in P1 refers
to A1 and not to A2 or A3. As another example, if we
already know that A2 has papers with titles similar to that
of P3, then we can infer that ‘J. Smith’ in P3 refers to
A2. The resulting dataset can be visualized as the graph
illustrated in Figure 4, where R1, A1, and R2, A2 are shown
to be merged into two nodes.

Analyzing relationships. Now we will show how addi-
tional semantic information, stored in the relationships that
exist between entities, can help to improve the quality of
cleaning even further.

Observation 1: (‘John Smith’ in P1). First, to handle
author ‘John Smith’ in P1, we observe that his co-author
‘Alan White’ has also written a paper P2 with ‘Mike Black’,
who in turn has a paper P3 with ‘J. Smith’. This gives us
certain evidence that ‘John Smith’ in P1 is the same person
as ‘J. Smith’ in P3. The intuition behind it is that people
in the similar/related research areas tend to cooperate with
each other and form co-authorship networks. Based on this
evidence, we might decide that P1 and P3 are written by
the same author, whose name is ‘John Smith’.

Recall, by using the context, we have determined above
that ‘John Smith’ in P1 refers to A1, and ‘J. Smith’ in P3
to A2. Therefore, the evidence suggests that A1 and A2 are
duplicate records for the same author – the fact that was not
captured by the above feature-based similarity algorithm!

Observation 2: (‘John Smith’ in P4). Consider the task
of deciding whether the representation ‘John Smith’ in P4
refers to A1, A2, or A3. Observe that the coauthor of that
paper, ‘Tom Grey’, has a paper P5 with ‘Kate Red’, who is
at ‘Stanford’. The author A3 is also at ‘Stanford’, and thus
we are able to establish a connection between ‘John Smith’
in P4 and A3. Given that there are no such connections
to A1 an A2 that we can find, we might decide that ‘John
Smith’ in P4 probably refers to A3.

Generic approach. At first glance, the analysis in Ob-
servations 1 and 2 might seem to be domain-specific. How-

49

ever, a domain-independent approach emerges if we view the
underlying database as a graph of object representations
(modeled as nodes) linked to each other via relationships
(modeled as edges). The analysis can be viewed as applica-
tion of the CAP hypothesis to the toy database, represented
as the graph in Figure 4.

The first observation we made, regarding R1 and R2 being
two representations for the same author, was based on the
presence of the path (we use ‘path’, ‘relationship chain’, and
‘connection’ interchangeably):

R1 → P1 → A4 → P2 → A5 → P3 → R2.

Via this path, we were able to ‘connect’ R1 and R2.
The second observation we made regarding disambigua-

tion of ‘John Smith’ in P4 was based on the presence of the
path

R3 → P4 → A6 → P5 → A7 → ‘Stanford’ → A3.

Via this path, we ‘connected’ R3 and A3.
Figure 5 shows the resulting graph, which reflects the out-

come of the above analysis. In this figure, R1, R2, A1, and
A2 are grouped together (forming the first group), since,
those representations are likely to refer to the same person.
Similarly, R3 and A3 are grouped as well, forming the sec-
ond group. Let us observe that the graph in Figure 4 can
be split into two connected subgraphs G1 and G2, such that
G1 contains nodes of the first group and G2 of the second
group.

In general, connections between representations can be
more complex than those in this example. Therefore, a simi-
lar analysis may need to measure and compare the “strength”
in the connections that exists between various entities.

Thus, the generic approach for object consolidation may
consist of the following steps. First, the approach identifies
the representations that can refer to the same entity. Then,
it discovers connections between these representations and
measures the connection strength between them to obtain
the evidence to be used in the consolidation process. The
algorithm then employs a graph partitioning algorithms to
group the representations into clusters, such that the con-
nections among the nodes in the same cluster are strong,
and among the nodes across the clusters are weak, to satisfy
the CAP principle.

Naturally, one should demonstrate that the CAP hypoth-
esis holds over real datasets by designing a generic solution
to exploiting relationships for object consolidation. We will
develop one such general domain-independent strategy in
Section 4. We perform an extensive study of the proposed
approach over a real dataset, to establish that exploiting
relationships can further improve the quality of object con-
solidation. Before we develop our solution, we first introduce
the notation and concepts needed to explain the approach,
in Section 3.

3. PROBLEM FORMULATION

3.1 Notation
Let D be the database being processed. We will use

O = {o1, o2, . . . , o|O|} to denote the set of all entities (or,
objects) in D. ‘Entities’ here have the same meaning as in
the E/R model. Various consolidation scenarios are possi-
ble w.r.t. O. In one scenario, the consolidation algorithm
has some information about the objects in O and about the

cardinality of O. A more complicated scenario is when no
information about the number or the nature of the objects
in O is available.

Entities are referred in the database via representations.
Let X = {x1, x2, . . . , x|X|} (where |X| ≥ |O|) be the set of
all representations in D. A representation is a description
of an entity, which may consist of one or more attributes.
For instance, in the toy database in Section 2, authorRef
representations consist of only one attribute 〈author name〉.
If, besides author names, author affiliation were also stored
in the publication records, then authorRef references would
have consisted of two attributes – 〈author name, author
affiliation〉.

Each representation xi semantically refers to a single spe-
cific entity in O, which we denote by d[xi], where d[xi], in
general, is unknown to the consolidation algorithm. The
goal is to group all the representations in X into a set C of
|O| non-empty clusters, C = {C1, C2, . . . , C|O|}, such that
all the representations in one cluster refer to the same en-
tity, and no two representations from two different clusters
refer to the same entity.2 That is, for any two represen-
tations x and y from the cluster Ci it should follow that
d[x] = d[y]. Similarly, for any two representations x and y

from two distinct clusters Ci and Cj , it should follow that
d[x] 6= d[y].

We will use C[xi] to denote the group set of xi – the set of
all the representations from X that refer to the same entity
as xi, and thus should be put into the same group with xi:
C[xi] = {xj ∈ X : d[xj] = d[xi]}. Similar to d[xi], the
group set C[xi], in general, is unknown to the consolidation
algorithm. Given this notation, the goal can be reformulated
as determining C[xi] for each xi ∈ X. Let S[xi] denote
the consolidation set of xi – the set of all representations
from X such that xi and any representation from S[xi] can
potentially refer to the same entity based on their feature-
based similarity. That is, S[xi] = {xj : sim(xj , xi) > τ},
where sim denote a feature-based similarity function and τ

is some threshold. We assume that C[xi] ⊆ S[xi].
To illustrate these concepts, consider the database in Ta-

ble 1. It contains four representations of people: x, xA, xB ,
and y. Assume that those representation are not misspelled,
and therefore xA and xB cannot refer to the same person,
i.e. d[xA] 6= d[xB]. Suppose that x and xA are represen-
tations of one person, xB is of another person, and y is of
a third person. Then the corresponding cluster sets and
consolidation sets are shown in Table 1.

�

��

��

�

����������

�����

����

Figure 6: Similarity edges.

Figure 6 graphically illustrate this example. In this fig-
ure, a node is created per representation and a similarity
edge is created between two nodes only if the corresponding

2Notice, the goal is only to be able to accurately group rep-
resentations, not to infer any information about the entities
they represent, etc.

50

Representations C S S∗

x = ‘J. Smith’ C[x] = {x, xA} S[x] = {x, xA, xB} S∗[x] = {x, xA, xB}
xA = ‘J. A. Smith’ C[xA] = {x, xA} S[xA] = {x, xA} S∗[xA] = {x, xA, xB}
xB = ‘J. B. Smith’ C[xB] = {xB} S[xB] = {x, xB} S∗[xB] = {x, xA, xB}

y = ‘Alan White’ C[y] = {y} S[y] = {y} S∗[y] = {y}

Table 1: Example to illustrate the notation.

representations may refer to the same entity, as determined
by their feature-based similarity.

In general, such a virtual similarity graph can be created
for the set X of all the representations in D. Typically, this
graph is composed of multiple virtual connected subgraphs
(VCS). To define the VCS for a representation xi, we first
define the set of all the representations S∗[xi] that belong to
the same VCS as xi. The set S∗[xi], consists of xi and each
representation y ∈ X, such that there exist a path xi ;

y, consisting of only similarity edges. Notice that C[xi] ⊆
S[xi] ⊆ S∗[xi], as illustrated in Table 1. For instance, the
graph in Figure 6 consists of two VCS’s: one with nodes
{x, xA, xB} and the other one with node {y}.

The concept of a VCS is useful because the representations
that belong to different VCS’s cannot refer to the same en-
tity. This allow us to cluster references in a “one VCS at a
time” fashion.

3.2 The Attributed Relational Graph
Our consolidation approach views the database D as an

undirected attributed relational graph (ARG) G = (V, E),
where V is the set of nodes and E is the set of edges. ARGs
are often utilized by various applications to represent the
entities (nodes) in a dataset, connected via relationships
(edges). The graph is called attributed because attributes
can be associated with both the edges and nodes of such
a graph. We use ARGs in a similar manner, as elaborated
below.

Nodes. In real-world datasets all the representations
can be divided into two categories: those for which consoli-
dation is trivial and those for which this task requires extra
processing. For instance, in the toy database all representa-
tions of affiliations can be trivially consolidated by applying
feature-based similarity since this similarity was sufficient to
uniquely identify each distinct entity. However, consolida-
tion of certain author representations required an additional
processing. For those cases where consolidation is trivial,
the representations of the same entity are clustered, and a
node is created per the resulting cluster of representations.
For those cases where consolidation is not trivial, a node is
created per representation. Figure 4 illustrates the result-
ing graph for the toy database from Section 2. Let us note
that the way our approach creates nodes closely resembles
the way they are typically created in ARGs – to represent
distinct entities.

Edges. The approach handles two types of edges: regular
and similarity edges. Regular edges connect representations
of entities if they are related via relationships.3 For instance,

3We will concentrate primarily on binary relationships.
Multiway relationships are rare and most of them can be
converted to binary relationships [11]. Most of the de-
sign models/tools only deal with binary relationships, for
instance ODL (Object Definition Language) supports only
binary relationships.

�������

�������

	
������
����
���

	������

	������

Figure 7: Virtual connected subgraph

in the graph in Figure 3 in Section 2, edges connect all the
representations of authors and the papers they have written.
A similarity edge is created for each pair of representation
that can refer to the same entity (based on feature-based
similarity). Each similarity edge has a weight associated
with it (a real number from [0,1] interval) which reflects the
degree of similarity between the two representations based
on their features. Similarity edges for the toy database are
illustrated in Figure 7.

Figure 8: Graph Example

Representing nodes and edges graphically. We will
use solid lines to graphically represent regular edges and
broken lines for similarity edges. Nodes that correspond to
already consolidated clusters of representations will not have
color; representations that are yet to be consolidated are
represented as shaded nodes. So an ARG might look like
the one illustrated in Figure 8. Notice how the similarity
edges define the three distinct VCS’s in this example.

3.3 Connection Strength
In Section 1, we discussed that the approach consolidates

representations based on the CAP hypothesis. To achieve
that, it utilizes the notion of connection strength between
two representations x and y, denoted as c(x, y). This mea-
sure captures how strongly x and y are connected to each
other via relationships. Many different models for comput-
ing c(u, v) have been proposed in the literature, and we will
take up one of them in Section 4.1.

4. THE CONSOLIDATION ALGORITHM
We now have developed all the concepts and notation

needed to explain our approach for object consolidation.
The approach exploits both features and relationships for
the purpose of consolidation, and outputs the resulting clus-

51

tering as the outcome. The approach consolidates represen-
tations using the following steps:

1. Construct the ARG and identify all VCS’s. The
first step is to construct the ARG for the dataset. We
assume that feature-based similarity is used in con-
structing such a graph. This step has been explained
in detail in Section 3.2.

2. Choose a VCS and compute c(u, v)’s. Pick a VCS
in the ARG to be partitioned next. Then, compute the
connection strength c(u, v) for each pair of represen-
tations u and v in the VCS that are connected via a
similarity edge.

3. Partition the VCS. Take, from Step 2, the VCS
and the connection strength values. Use a graph par-
titioning algorithm to partition the VCS into clusters.
The partitioning is carried out based on the connec-
tion strengths. After the VCS is partitioned, adjust
the ARG accordingly. If the VCS was the last to be
partitioned, then stop. Otherwise, go to Step 2.

We now discuss the above steps in more detail in the fol-
lowing subsections.

4.1 Computing Connection Strength
The connection strength measure c(u, v) for two objects

u and v computes how strongly they are connected to each
other via relationships.

4.1.1 Existing models.
Recently, there has been a spike of interest by various

research communities in the measures directly related to the
c(u, v) measure. Since the c(u, v) measure is at the core
of the proposed consolidation approach, we next analyze
several principal existing models for computing c(u, v).

Diffusion Kernels. The earliest work in this direction
that we can trace is in the area of kernel-based pattern anal-
ysis [29]. The kernel methodology currently undergoes very
active development, and shows a great promise for improv-
ing various pattern analysis tasks. In particular, this area
studies ‘diffusion kernels on graph nodes’, which are of direct
interest in our context and are defined as follows.

A base similarity graph G = (S, E) for a dataset S is
considered. The vertices in the graph are the data items
in S. The undirected edges in this graph are labeled with
a ‘base’ similarity τ(x,y) measure. That measure is also
denoted as τ1(x,y), because only the direct links (of size
1) between nodes are utilized to derive this similarity. The
base similarity matrix B = B1 is then defined as the matrix
whose elements Bxy, indexed by data items, are computed
as Bxy = τ(x,y) = τ1(x,y). Next the concept of base
similarity is naturally extended to path of arbitrary length
k. To define τk(x,y), the set of all paths P k

xy of length k

between the data items x and y is considered. The similarity
is defined as the sum over all these paths of the products of
the base similarities of their edges:

τk(x,y) =
∑

(x1x2...xk)∈P k
xy

k∏

i=1

τ1(xi−1,xi)

Given such τk(x,y) measure, the corresponding similarity
matrix Bk is defined. It can be shown that Bk = Bk. The

idea behind this process is to enhance the base similarity by
those indirect similarities. For example, the base similarity
B1 can be enhanced with similarity B2, e.g. by consider-
ing a combination of the two matrices: B1 + B2. The idea
generalizes to more then two matrices. For instance, by ob-
serving that in practice the relevance of longer paths should
decay, it was proposed to introduce a decay factor λ and de-
fine what is known as the exponential diffusion kernel: K =∑∞

k=0
1
k!

λkBk = exp(λB). The von Neumann diffusion ker-

nel is defined similarly: K =
∑∞

k=0 λkBk = (I−λB)−1. The
diffusion kernels can be computed efficiently by performing
eigen-decomposition of B, that is B = V′ΛV, where the
diagonal matrix Λ contains the eigenvalues of B, and by
making an observation that for any polynomial p(x), the
following holds p(V′ΛV) = V′p(Λ)V. The elements of the
matrix K exactly define what we refer to as the connection
strength: c(x,y) = Kxy.

The solutions proposed for the diffusion kernels work well,
if the goal is to compute c(u, v) for all the elements in the
dataset. They are also very useful for illustration purposes
and similar in nature (though cannot be used “as is”) to the
weight-based model we employ in our previous work [14,
17]. However, in data cleaning, the task is frequently to
compute only some of c(u, v)’s, thus more efficient solutions
are possible. Also, often after computing one c(u, v), the
graph is adjusted in some way, which affects the values of
c(u, v)’s computed after that.

Relevant importance in graphs. White et al. in [33]
consider the problem of computing ‘relevant importance’ of
a set of nodes in a graph with respect to the set of ‘root’
nodes. The problem of computing c(u, v) can be postulated
as computing the relevant importance of node u with re-
spect to the root node v. In [33] several known techniques
are evaluated for their goal. Basic techniques, such as the
length of the shortest paths between u and v, are compared
against more involved ones, which are similar to the diffu-
sion kernels. In the context of our problem, the work in [33]
has an advantage over the work on kernels, because [33] fo-
cuses on efficient computation of one c(u, v), whereas the
kernel methods compute the whole similarity matrix K.

Electric circuit analogy. Faloutsos et al. in [9] con-
siders a model for computing c(u, v). They view the graph
as an electric circuit consisting of resistors, and compute
c(u, v) as the amount of electric current that goes from u

to v. One of the primary contributions of that paper is the
optimizations that scale their approach to large graphs.

Random walks in graphs. Another common model
used for computing c(u, v) is to compute it as the probability
to reach node v from node u via random walks in the graph.
That model has been studied extensively, including in our
previous work [14,17].

Problems with existing models. In the context of
data cleaning, the existing techniques have several disad-
vantages. One disadvantage is that the true ‘base’ similarity
is rarely known in real-world datasets. Some existing tech-
niques try to mitigate that by imposing a similarity model.
However, the CAP principle implies its own similarity mea-
sure, and any imposed model, created for its own sake in
isolation from the specific application, might have little to
do with it. Ideally, the similarity measure should be de-
rived directly from data for the specific application at hand
that employs it. One step toward achieving this, is to con-
sider parameterized models and then try to learn an optimal

52

combination of parameters directly from data. We have ex-
plored such an approach in [16] for the problem of reference
disambiguation. Next we will present the c(u, v) model we
use in this paper for object consolidation. That model is
parameterized, however in this paper we do not study how
to learn the right parameters, but rather assume they are
assigned by the domain analyst, as we will elaborate shortly.
Let us note that our overall approach is independent from
a particular c(u, v) model, and a different model, e.g. [17],
can be utilized for this purpose.

4.1.2 The connection strength model.
The c(u, v) model we use is very similar to that of the

diffusion kernels. To compute c(u, v), the set of all L-short
simple paths PL(u, v) between u and v is analyzed, where
a path is L-short if its length does not exceed L. The total
connection strength between nodes u and v is computed as
the sum of connection strengths of paths in PL(u, v):

c(u, v) =
∑

p∈PL(u,v)

c(p). (1)

The connection strength c(p) of each individual path p

is computed the same way as in the kernel formulae: as a
product of base similarities of edges.

The differences between the proposed model M and that
of the kernels MK are as follows. The model MK employs
the decay factor λ, whereas M does not. In MK , we have
L = ∞, in M the parameter L is finite, e.g. L = 5. In
MK all base similarities τ(u, v) are known, in M we will
derive them in a particular way: the ultimate goal (not con-
sidered in this paper) is to eventually to be able to learn
them directly from data.

The procedure for computation c(u, v) consists of two log-
ical phases. The first phase discovers connections/paths be-
tween u and v. The second phase computes/measures the
strength in connections discovered by the first phase.

The connection discovery phase. In general there
can be many connections between nodes u and v. Intuitively,
many of those (e.g., very long ones) are not very important.
To capture most important connections while still being ef-
ficient, the algorithm computes the set of all L-short simple
paths PL(u, v) between nodes u and v in graph G. This
algorithm is the bottleneck of the overall approach. Several
optimizations of this algorithms has been studied in [14,17],
which achieve orders of magnitude in improvement. In this
paper we employ the same optimizations.

The second phase computes the strength in the discovered
connections using Equation (1). We are yet to specify how
we compute the connection strength c(p) of each individual
path p from PL(u, v) in Equation (1). Let us address this
issue.

Motivating c(p) formula. Which factors should be
taken into account when computing the connection strength
c(p) of each individual path p? Figure 9 illustrates two
different paths (or connections) between nodes u and v:
pa = u → a → v and pb = u → b → v. Let us under-
stand which connection is better.

Both connections have the same length of two. One con-
nection is going via node a and the other via node b. The
intent of Figure 9 is to show that node b “connects” many
nodes, not just u and v, whereas node a “connects” only u

and v. For instance, in the context of the author matching
problem u and v can be two authors, a can be a publication

� ��

���
�������������������

�

Figure 9: Motivating c(p).

��

��
��

��

���
�������������������

���	�
��
� ���	����
���

���

Figure 10: c(p).

Figure 11: Experiments

and b a university, as illustrated in Figure 10. We argue the
connection between u and v via b is much weaker than the
connection between u and v via a: since b connects many
nodes, it is not surprising we can connect u and v via b as
well. Notice, measures such as path length, network flow do
not capture the fact that c(pa) > c(pb).

We compute c(p) as follows. Let us assume first that path
p consists of only regular edges, and no similarity edges. All
edges in the ARG can be classified into a finite set of types
T = {T1, T2, . . . , Tm}. For example, for the author matching
problem, type T1 can be the edges that connect authors and
publications, type T2 can be the edges that connect authors
and their affiliated organizations. So path pa in Figure 10
can be viewed as a 〈T1, T1〉 path and path pb as a 〈T2, T2〉
path. Each edge type Ti has a weight wi (a real number from
[0,1] interval) associated with it. The connection strength
of path p is computed as the product of weights associated
with its edge types. For example, if path p contains n1

edges of type T1, n2 edges of type T2 and so on, then c(p) is
computed as

c(p) = w
n1

1 w
n2

2 × · · · × w
nm

m . (2)

Assigning weights. An important question is how those
wi weights are determined. There are several methods to
accomplish that, we will briefly discuss only two methods:

1. The weights are assigned by the domain analyst.
2. The weights are learned from data using a supervised

learning algorithm.

The first case is straightforward: the domain analyst, who
is well-familiar with the dataset and the nature of this al-
gorithm, picks the appropriate weights. However, it is of-
ten desirable to minimize the participation of the analyst.
Thus, in our ongoing work, e.g. [16], we address the second
case, where the challenge is to learn the weights automati-
cally, directly from training data, by employing a supervised
learning algorithm. Ideally, that solution should lead to a
self-tunable algorithm, which achieves the best quality of
consolidation.
Example. Without loss of generality, let us assume the
weights are assigned by a domain analyst. Then, in the
context of our motivating example, taking into account the
fact that connections via publications are more unique than
those via universities, the analyst might decide that the fol-
lowing combination of weights is reasonable: w1 = 1

2
and

w2 = 1
10

. So c(pa) = w2
1 = 1

4
, c(pb) = w2

2 = 1
100

, and
c(pa) > c(pb).
Paths with similarity edges. Let us consider paths that
can contain similarity edges. Recall that a similarity edge
between nodes for two representation x and y denote the fact
that there is a chance that x and y can refer to the same

53

��������� �	��
��
��������� ������
���	

������� ������������� ���������� �������

�� �������������� �����������������

 �!

 "!

 #!

Figure 12: Paths with/without similarity edges.

entity. This edge has a weight wF associated with it, which
reflects the degree of similarity between x and y based on
their features: wF = sim(x, y). We will refer to this weight
as the FBS weight.

Let us note that a path containing a similarity edge might
not even exist in reality. For instance, in Figure 12(a) the
path consists of only regular edges and we are confident it
exists. However, the existence of the path in Figures 12(b)
depends on whether R3 and A1 refer to the same entity or
not. The same applies to R3 and A3 in Figure 12(c).

The simplest solution is not to consider paths that contain
similarity edges at all. Another (heuristic) solution we use
is to associate the same very small base weight wε for all
similarity edges. Then, compute the total weight vi of a
similarity edge as a product of its FBS weight wF and the
base weight wε: vi = wF × wε. So, if path p has ni edges
of type Ti (i = 1, 2, . . . , m) and k similarity edges with total
weights v1, v2, . . . , vk, then c(p) is computed as

c(p) = w
n1

1 w
n2

2 × · · · × w
nm

m v1v2 × · · · × vk. (3)

4.2 Consolidating objects by partitioning VCS’s
To consolidate objects we need to partition the represen-

tations in each VCS. Each VCS contains representations of
at least one object. If a representation of an object is con-
tained in a VCS, then, by construction of VCSs, the rest
of the representations of the same objects are contained in
the same VCS. Two scenarios are possible. In one scenario,
the knowledge of the number of objects contained in each
VCS is available. In the other scenario, no such knowledge
is available.

Assume we know that a given VCS contains the repre-
sentations of exactly k objects. Then, the VCS must be
partitioned into exactly k clusters. We need to consider all
possible partitions of the VCS into k clusters, which are fea-
sible according to the similarity edges in the VCS. There
might be several such partitions and we should choose the
one that best satisfies the CAP principle. We try to achieve
that by employing a min-cut algorithm proposed in [30].
The standard min-cut problem is defined as follows. Given
a weighted graph G = (V, E), the goal is to partition V into
two non-empty disjoint subsets V1 and V2, such that the to-
tal weight of the edges connecting the two parts, called the
cut (i.e., the weight of {(u, v) ∈ E : u ∈ V1; v ∈ V2}), is
minimized.

In our case, we partition V into not 2, but k subsets. The
min-cut algorithm we employ [30] has two useful properties:
(a) it utilizes a ‘normalized’ (to [0, 2] interval) cut; and (b)
it achieves the goal of minimizing connections across clus-
ters and maximizing connections inside clusters at the same
time. The former property will later allow us to specify a
single threshold per all VCS’s, while the latter property is
important to better satisfy the CAP principle.

Defining weights for partitioning. A min-cut algo-
rithm uses weights w(u, v) between nodes for partitioning.

The weights are defined as follows: if there is a similar-
ity edge between u and v then w(u, v) = c(u, v), otherwise
w(u, v) = 0. Let us note that the formula for w(u, v) can
also include the feature-based similarity sim(u, v), e.g. as a
weighted sum: w(u, v) = α × c(u, v) + (1 − α) × sim(u, v),
0 ≤ α ≤ 1. But we do not study this approach in this paper.

Further partitioning. Consider now the second sce-
nario, where we do not know the number of objects in a
given VCS. The algorithms handle this case by first parti-
tioning VCS into two parts. Then, the algorithm decides
whether to actually split the nodes into two clusters, or not.
It achieves that by comparing the value of the resulting nor-
malized cut c against predefined threshold τ . Currently, the
value of τ is not yet learned from data, but rather is set by
the domain analyst. If c > τ , the two parts are still well
inter-connected and the algorithm does not divide VCS fur-
ther into two clusters. That means the algorithm assumes
that all the representations in this VCS refer to a single real-
world entity, and hence they should be grouped together in
one cluster. On the other hand, if c < τ , the algorithm re-
peatedly partition the resulting subgraphs until c > τ . The
resulting clustering of representations is returned as the final
result of the algorithm.

4.3 Measuring the quality of outcome
The goal of object consolidation algorithms is to accu-

rately group the representations of entities. However, con-
solidation algorithms can make mistakes, and thus the qual-
ity of the outcome should be quantified. Measures known
as dispersion and diversity has been proposed before for this
purpose [2].
Dispersion. We want the representations of the same
entity to be clustered together in one cluster. The dispersion
of a given entity captures the number of distinct clusters into
which its representations are clustered. Therefore, the lesser
the dispersion the better and the ideal dispersion is 1 for a
given entity.
Diversity. We also want each cluster to contain represen-
tations of just one entity. The diversity of a given cluster
captures the number of distinct entities whose representa-
tions are in this cluster. Similarly, the lesser the diversity
the better and the ideal diversity is 1 for a given cluster.
Problems with dispersion and diversity. The disper-
sion and diversity do not always accurately reflect the qual-
ity of the outcome of object consolidation, although they
are simple and easy to understand. Consider the following
example. Assume a VCS to be partitioned is composed of
2n representations a1, a2, · · · , a2n of entity EA and of 2n

representations b1, b2, · · · , b2n of entity EB . The goal is to
group them correctly and therefore the ideal result is the
two clusters:

C1 = {a1, a2, . . . , a2n},
C2 = {b1, b2, . . . , b2n}.

The algorithm however can make mistakes and the resulting
two clusters might be:

C1 = {a1, a2, . . . , an, b1, b2, . . . , bn},
C2 = {an+1, an+2, . . . , a2n, bn+1, bn+2, . . . , b2n},

that is, half of the representations are misassigned. In an-
other situation, the two clusters might be

C1 = {a1, a2, . . . , a2n−1, b2n},

54

C2 = {b1, b2, . . . , b2n−1, a2n},

that is, just one is misassigned for each cluster.
Obviously, the latter answer is better than the previous

one. However, in both situations, since the representations
of both EA and EB are scattered across two clusters, the
dispersion of each of the two entities, EA and EB , is 2.
The diversity of each of the two clusters C1 and C2 is 2,
since each cluster contains the representations of both EA

and EB . Therefore, the dispersion and diversity measures
cannot distinguish the two situations in this case.
Entropy-based quality measures. We argue that the
metrics known as entropy can be utilized to better capture
the above situations. Entropy was first proposed by Shan-
non in his famous work [28] on the mathematical theory of
communication.

The entropy of a discrete random variable X reflects the
degree of uncertainty associated with possible values of X.
Let variable X take values from set {x1, x2, . . . , xn} with the
respective probabilities p(x1), p(x2), . . . , p(xn), where p(xi) 6=
0 and p(x1) + p(x2) + · · · + p(xn) = 1. Then the entropy of
X, denoted H(X), is defined as:

H(X) =

n∑

i=1

p(xi) log2
1

p(xi)

Entropy H(X) attains its minimum value H(X) = 0, when
there exists some i such that p(xi) = 1. In that situa-
tion there is no uncertainty associated with X: the value
of X is always xi. On the other hand, H(X) attains its
maximum value in the most uncertain scenario: when all
the values x1, x2, . . . , xn are equally likely, in which case
H(X) = log2 n. Thus, H(X) ∈ [0, log2 n].
Entity entropy. Assume that a certain entity E has
m representations in the database, which are assigned to
n clusters C1, C2, . . . , Cn by the algorithm. The assign-
ment is such that m1 representations are assigned to the
cluster C1, m2 to C2 and so on, such that mi 6= 0 and
m1 + m2 + · · · + mn = m. To measure the spread of rep-
resentations of E over the clusters, we consider the frac-
tions of all representations of E assigned to each cluster Ci

(i = 1, 2, . . . , n): pi = mi

m
. Then, using those fractions, we

utilize entropy to quantify the spread of the entity’s repre-
sentations: H(E) =

∑n
i=1 pi log2

1
pi

. Let us note that the

dispersion for this case is always n. The lower the value of
H(E), the better. The ideal value is 0.
Cluster entropy. Similarly, we can define the cluster en-
tropy. Assume that the algorithm assigns to a cluster C ex-
actly m representations, that correspond to n entities. Sup-
pose that m1 of them are representations of entity E1, m2 of
E2, . . . , mn of En, where mi 6= 0 and m1 +m2 + · · ·+mn =
m. Like in the case above, we consider fractions pi = mi

m
and then use them in entropy to quantify the spread of the
cluster’s representations: H(C) =

∑n
i=1 pi log2

1
pi

. Let us

observe that the diversity in this case is always n. The
lower the value of H(C) the better, the ideal value is 0.
Example. Consider the example above with the two clus-
ters C1 and C2, and assume that n = 10. In the first situa-
tion, the entity entropy is:

H(EA) = n
2n

log2
1

n/2n
+ n

2n
log2

1
n/2n

= 1,

H(EB) = 1,

avg = H(EA)+H(EB)
2

= 1.

The cluster entropy is:

H(C1) = n
2n

log2
1

n/2n
+ n

2n
log2

1
n/2n

= 1,

H(C2) = 1,

avg = H(C1)+H(C2)
2

= 1.

In the second situation, the entity entropy is:

H(EA) = 2n−1
2n

log2
1

(2n−1)/2n
+ 1

2n
log2

1
1/2n

= 0.0703,

H(EB) = 0.0703,

avg = H(EA)+H(EB)
2

= 0.0703.

The cluster entropy is:

H(C1) = 2n−1
2n

log2
1

(2n−1)/2n
+ 1

2n
log2

1
1/2n

= 0.0703,

H(C2) = 0.0703,

avg = H(C1)+H(C2)
2

= 0.0703.

Let us observe that in contrast to the diversity and disper-
sion, the entropy-based measures do capture that the second
partitioning is better than the first one, since 0.0703 < 1.0.

5. EXPERIMENTAL EVALUATION
In this section, we experimentally study the proposed ap-

proach on a real dataset. We conducted the experiments on
a 2GHz Pentium 4 machine with 1GB RAM. In the rest of
this section, we first describe the dataset we use and then
present the experiments that test the quality and the effi-
ciency of the proposed technique.

5.1 RealMov Dataset
One of the dataset used in data cleaning research is the

movies dataset, available from [34]. It is a real public-
domain dataset. In this paper we refer to a processed ver-
sion of it as ‘RealMov’. RealMov contains entities of three
types: movies (11,453 entities), studios (992 entities), and
people (22,121 entities), which are stored in movies, studios
and people tables respectively. The movies table contains
multiple attributes, such as the title of a movie, the direc-
tor, the producer, the studio producing the movie, the studio
distributing the movie, etc. The studios table has attributes
such as studio name, the founder of the studio, the year of
foundation, etc. The people table contains attributes like a
person’s name, the date of birth, gender, etc. There is also
a cast table storing all the actors of each movie.

This dataset contains five types of (regular) relationships:
movie actor, movie director, movie producer, producingStu-
dio, and distributingStudio, which map movies to their ac-
tors, directors, producers, producing studios and distribut-
ing studios respectively. Figure 13 presents a sample graph
for RealMov dataset. Relationships movie actor, movie director,
and movie producer connect entities of type movies to enti-
ties of type people. Relationships producingStudio and dis-
tributingStudio connect entities of types movies and studios.

A clean version of this dataset is available, in which all en-
tities and relationships among them are accurately captured.
This will allow us to test the quality of various consolidation
techniques: by comparing their output against the true situ-
ation. Figure 13 shows a sample ARG for RealMov dataset.
Each entity is represented as a node, and each relationship
as an edge.

5.2 Quality experiments
Typically, two aspects of data cleaning algorithm are eval-

uated empirically: the quality of their outcome and their

55

movies

people

studios

Spellbound

Roman Holiday

Mission Impossible

Paula Wagner

David Selznick

Alfred Hitchcock

William Wyler

Brian De Palma

Eddie Albert

Henry Czerny

Tom Cruise

Ingrid Bergman

Gregory Peck

Audrey Hepburn

movie-producingStudio movie-distributingStudio

A D P

movie-actor movie-director movie-producer

D

D

P

P

A

A

A

A

A

A

A

P

D

P

Paramount

Selznick Pictures United Artists

A

Cinecitta

Figure 13: Graph example for movie dataset

efficiency. In this section, we study the quality of our ap-
proach on consolidating the representations of director enti-
ties. Let us note that the true mapping between the movies
and their directors is available. Having this knowledge is the
advantage of this dataset, since it will allow to compute the
quality of various consolidation techniques.
Constructing experiment data. To test our approach,
we will use a standard technique, commonly employed by
data cleaning practitioners, e.g. in [4]: we introduce un-
certainty/errors (in director representations) manually. The
uncertainty will be introduced differently in different exper-
iments, as explained next.

Assume that RealMov stores information about d1, d2, . . . , dn

director entities. We first choose randomly a fraction ρ of
those directors: all their representations will be made uncer-
tain. Based on the typical degree of uncertainty in real-world
dataset [17], we set ρ to either 1%, 5%, 10%, 15%. Suppose
that, say, the directors d1, d2, . . . , d10 were chosen. We will
make uncertain all the representations that refer to them,
whereas for the rest of the directors d11, d12, . . . , dn, all their
representations will still uniquely identify the right director.

To achieve that, we group the “uncertain” directors d1, d2,
. . . , d10 in some fashion, say in groups of two, e.g. {d1, d2},
{d3, d4}, . . . , {d9, d10}. Then, we simulate the desired FBS
uncertainty by changing all the representations of directors
that belong to one group, such that each representation can
refer to all directors in this group – if only the FBS similarity
is utilized. For instance, assume that the dataset contains a
representation r1, which could only represent d1. We mod-
ify r1 such that it will fit the description of both, d1 and
d2, – but will not fit the description of any other director.
Such a constructed dataset is characterized by two types of
parameters: ρ and the sizes of those groups.
Baseline methods. To reflect how our approach would
compare against FBS techniques, we construct two baseline
methods: Baseline 1 and Baseline 2. Recall that our algo-
rithm is applied only to ‘tough’ cases – after the existing
FBS methods have already been used to successfully con-
solidate many of the representations (e.g., those “certain”
representations). We now only test the quality of consoli-
dating those ‘tough’ cases, which cannot be disambiguated
by FBS methods.

Given that FBS cannot be used further to distinguish be-
tween the representations, whereas we would like to compare
our algorithm against at least simple solutions, we construct
our baseline methods as follows.

• Baseline 1 method creates one cluster per each VCS
and then assigns all the VCS’s representations to this
one cluster. That is, that method does not parti-
tion the VCS’s further. This näıve method always
achieves the ideal dispersion and entity entropy, be-
cause entities end up in just one cluster, as they should.
However, if the VCS contains the representation of m

objects, then the diversity of the cluster will be m,
whereas the ideal diversity is 1.

• Baseline 2 method knows the statistics of how many
director groups there are of size 2, of size 3, and so on.
Based on this statistics, for a given VCS, it first selects
the number of partitions to split this VCS into. It
then creates that many clusters, and randomly assigns
representations from the VCS to each cluster.

Experiment 1. In this experiment, we set ρ = 1% and
the size of each group of directors to be 2. The results for
ρ = 5%, 10% and 15% closely resemble those for ρ = 1%
and thus omitted. For this experiment we also make our
algorithm (and Baseline 2) aware that each resulting VCS
must be partitioned into exactly two clusters.

Figure 14(c) and 14(d) show the average diversity and
dispersion as we vary parameter L . Recall that we con-
sider only L-short paths, or paths of length no greater than
L. The results show that additional semantic information,
stored in inter-object relationship, improves the quality of
object consolidation. They also show that longer paths help
improve the quality of the outcome.

Since Baseline 1 does not partition VCS’s at all, each re-
sulting cluster always contains representations of 2 entities,
and thus the diversity is always 2. Also, since the nodes of
the same entity are always grouped into the same cluster,
the entity dispersion is always 1 (the ideal dispersion).

Compared to the diversity and dispersion, the entropy
should more properly capture the composition of groups.
Figures 14(a) and 14(b) show the average cluster- and entity-
entropy, achieved by the consolidation approaches. Recall
that the lower the entropy, the better, and that the ideal
entropy is zero. The figures look similar to the figures for
the diversity and dispersion.
Experiment 2. In this experiment, the size of each direc-
tor group is not 2 as in the previous experiment, but chosen
randomly as 2, 3, or 4 with equal probability. Also our ap-
proach now is not aware into how many clusters each VCS
should be clustered but rather utilizes threshold τ to decide
that, as discussed in Section 4.2.

Figure 15 studies the effects of τ on the quality of the out-
put. When τ is small, the normalized cut of most partitions
is greater than τ , so the further partitioning is not carried
out. Therefore, representations in each VCS are likely to be
grouped into a small number of clusters and that is why the
results closely resemble those of Baseline 1. On the other
hand, large τ leads to creating many clusters for each VCS.
This improves the cluster entropy, but the entity entropy
becomes worse. So, there is a natural trade-off between the
cluster entropy and entity entropy.

Figure 15(c) plots the cluster and entity entropy in one
figure. Such a figure is useful for the analysts to pick the
right value of τ , such that the desired compromise between
the values of cluster- and entity- entropies is achieved. Fig-
ures 15(d), 15(e), 15(f) are similar to Figures 15(a), 15(b),
15(c), but for the diversity and dispersion.

56

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 5 6

C
lu

st
er

 E
nt

ro
py

L

RelCluster
Baseline1
Baseline2

(a) Cluster entropy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 5 6

E
nt

ity
 E

nt
ro

py

L

RelCluster
Baseline1
Baseline2

(b) Entity entropy

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 4 5 6

D
iv

er
si

ty

L

RelCluster
Baseline1
Baseline2

(c) Cluster diversity

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 4 5 6

D
is

pe
rs

io
n

L

RelCluster
Baseline1
Baseline2

(d) Entity dispersion

Figure 14: Experiments with various lengths of paths

 0

 0.5

 1

 1.5

 2

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

C
lu

st
er

 E
nt

ro
py

Threshold

RelCluster
Baseline1
Baseline2

(a) Cluster entropy vs. τ

 0

 0.25

 0.5

 0.75

 1

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

E
nt

ity
 E

nt
ro

py

Threshold

RelCluster
Baseline1
Baseline2

(b) Entity entropy vs. τ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E
nt

ity
 E

nt
ro

py

Cluster Entropy

RelCluster 1%
Baseline1 1%
Baseline2 1%
RelCluster 5%
Baseline1 5%
Baseline2 5%

(c) Entropy: cluster vs. entity

 1

 1.5

 2

 2.5

 3

 3.5

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

D
iv

er
si

ty

Threshold

RelCluster
Baseline1
Baseline2

(d) Cluster diversity vs. τ

 1

 1.25

 1.5

 1.75

 2

 2.25

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

D
is

pe
rs

io
n

Threshold

RelCluster
Baseline1
Baseline2

(e) Entity dispersion vs. τ

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.5 2 2.5 3 3.5

E
nt

ity
 D

is
pe

rs
io

n

Cluster Diversity

RelCluster 1%
Baseline1 1%
Baseline2 1%
RelCluster 5%
Baseline1 5%
Baseline2 5%

(f) Diversity vs. Dispersion

Figure 15: Experiments with various thresholds

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

T
im

e(
ho

ur
s)

Fraction of Movies

RelCluster 1% L=4
RelCluster 5% L=4

RelCluster 10% L=4

Figure 16: Execution time vs. database size.

5.3 Efficiency
Experiment 3. This experiment tests the efficiency of
the proposed approach. Figure 16 shows the execution time
of RelCluster as a function of the fraction of movies from
RealMov dataset, e.g. 1.0 corresponds to the whole RealMov
dataset. The bottleneck of our approach is the algorithm
for discovering all L-short simple paths. In [14] we study
several optimizations of that algorithm, which improve the
performance by 1–2 orders of magnitude. We employ the
same optimizations in out implementation of RelCluster.

6. RELATED WORK
Many research challenges have been explored in the con-

text of data cleaning: dealing with missing data, handling
erroneous data, record linkage, and so on. The closest to
the problem of object consolidation addressed in this paper
is the problem of record linkage. The importance of record
linkage is underscored by the large number of companies,
such as Trillium, Vality, FirstLogic, DataFlux, which have
developed domain-specific record linkage solutions.

Researchers have also explored domain-independent tech-
niques, e.g. [1, 10, 13, 19, 23]. Their work can be viewed as
addressing two challenges: (1) improving similarity func-
tion, as in [3]; and (2) improving efficiency of linkage, as
in [4]. Typically, two-level similarity functions are employed
to compare two records. First, such a function computes
attribute-level similarities by comparing values in the same
attributes of two records. Next, the function combines the
attribute-level similarity measures to compute the overall
similarity of two records. A recent trend has been to em-
ploy machine learning techniques, e.g. SVM, to learn the
best similarity function for a given domain [3]. Many tech-
niques have been proposed to address the efficiency challenge

57

as well: e.g. using specialized indexes [4], sortings, etc.
Those domain-independent techniques deal only with at-

tributes. Only one existing approach [17] analyzes rela-
tionships in a fashion similar to that proposed in this pa-
per. That approach, and the one proposed in this paper,
are part of the Relationship-based Data Cleaning (RelDC)
project [15] at UCI. However, [17] solves a different data
cleaning challenge, called reference disambiguation. That
problem is known to be a subproblem of the problem of ob-
ject consolidation and the approach proposed in [17], in gen-
eral, cannot be used to solve the problem addressed in this
paper. That approach converts the cleaning task to solv-
ing a nonlinear programming problem whereas we employ
partitioning techniques for data cleaning. Other researchers
have also proposed using relationships for cleaning, but in a
different fashion. In [1] Ananthakrishna et al. employ simi-
larity of directly linked entities, for the case of hierarchical
relationships, to solve the record deduplication challenge.
In [18] Lee et al. develop an association-rules mining based
method to disambiguate references using similarity of the
context attributes: the proposed technique is still an FBS
method, but [18] also discusses “concept hierarchies” which
are related to relationships. Getoor et al. in [2] use simi-
larity of attributes of directly linked objects, like in [1], for
the purpose of object consolidation. However, applying that
technique in practice on real-world datasets was identified
as future work in that paper. In contrast to the above de-
scribed techniques, our approach and [17] utilize the CAP
hypothesis to automatically discover and analyze relation-
ship chains, thereby establishing a framework that employs
systematic relationship analysis for the purpose of cleaning.

7. CONCLUSION
In this paper, we have shown that analysis of inter-object

relationships is important for object consolidation and have
demonstrated one approach that utilizes relationships for
this purpose. Our ongoing work [16] addresses the challenge
of automatically adapting the proposed data cleaning tech-
niques to datasets at hand, by learning how to weigh differ-
ent connections directly from data, in an automated fashion.
Solving this challenge, in general, not only makes the ap-
proach a plug-and-play solution, but also improves both the
accuracy and efficiency of the approach as discussed in [16].

8. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Elimin-

ating fuzzy duplicates in data warehouses. In VLDB, 2002.

[2] I. Bhattacharya and L. Getoor. Iterative record linkage for
cleaning and integration. In DMKD Workshop, 2004.

[3] M. Bilenko and R. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In SIGKDD’03.

[4] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data cleaning.
In SIGMOD Conf., 2003.

[5] P. Christen, T. Churches, and J. X. Zhu. Probabilistic
name and address cleaning and standardisation. The
Australasian Data Mining Wshp, 2002.

[6] W. W. Cohen and J. Richman. Learning to match and
cluster large high-dimensional data sets for data
integration. In SIGKDD, 2002.

[7] X. Dong, A. Halevy, and J. Madhavan. Reference reconcil-
iation in complex information spaces. In SIGMOD, 2005.

[8] M. G. Elfeky and V. S. Verykios. On search enhancement
of the record linkage process. In KDD-2003 Wshp on Data
Cleaning, Record Linkage, and Object Consolidation, 2003.

[9] C. Faloutsos, K. McCurley, and A. Tomkins. Fast discovery
of connection subgraphs. In SIGKDD, 2004.

[10] I. Fellegi and A. Sunter. A theory for record linkage.
Journal of the American Statistical Association,
64(328):1183–1210, 1969.

[11] H. Garcia-Molina, J. Ullman, and J. Widom. Database
systems: the complete book. Prentice Hall, 2002.

[12] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB01.

[13] M. Hernandez and S. Stolfo. The merge/purge prob- lem
for large databases. In SIGMOD, 1995.

[14] D. Kalashnikov and S. Mehrotra. Exploiting relationships
for domain-independent data cleaning. SIAM SDM, 2005.
ext. ver., http://www.ics.uci.edu/∼dvk/pub/sdm05.pdf.

[15] D. V. Kalashnikov and S. Mehrotra. RelDC project.
http://www.ics.uci.edu/∼dvk/RelDC/.

[16] D. V. Kalashnikov and S. Mehrotra. Learning importance
of relationships for reference disambiguation. UCI
Technical Report RESCUE-04-23, Dec. 2004. http:
//www.ics.uci.edu/∼dvk/RelDC/TR/TR-RESCUE-04-23.pdf.

[17] D. V. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting
relationships for domain-independent data cleaning. In
SIAM International Conference on Data Mining (SIAM
SDM 2005), Newport Beach, CA, USA, April 21–23 2005.

[18] M. Lee, W. Hsu, and V. Kothari. Cleaning the spurious
links in data. IEEE Intelligent Systems, Mar-Apr 2004.

[19] A. K. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with application to
reference matching. In SIGKDD, 2000.

[20] M. Michalowski, S. Thakkar, and C. Knoblock. Exploiting
secondary sources for automatic object consolidation. In
KDD-2003 Wshp on Data Cleaning, Record Linkage, and
Object Consolidation, 2003.

[21] A. E. Monge and C. P. Elkan. An efficient
domain-independent algorithm for detecting approximately
duplicate database records. In SIGMOD Wshp on Research
Issues on Data Mining and Knowledge Discovery, 1997.

[22] M. Neiling and S. Jurk. The object identification
framework. In KDD-2003 Wshp on Data Cleaning, Record
Linkage, and Object Consolidation, 2003.

[23] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P.
James. Automatic linkage of vital records. Science,
130:954–959, 1959.

[24] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity uncertainty and citation matching. In Advances in
Neural Processing Systems 15. Vancouver, British
Columbia:MIT Press, 2002.

[25] D. Quass and P. Starkey. Record linkage for genealogical
databases. In KDD-2003 Wshp on Data Cleaning, 2003.

[26] L. D. Raedt and et al. Three companions for data mining
in first order logic. In Relational Data Mining.
Springer-Verlag, 2001.

[27] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In SIGKDD, 2002.

[28] C. E. Shannon. The Mathematical Theory of
Communication. University of Illinois Press, 1949.

[29] J. Shawe-Taylor and N. Cristianni. Kernel Methods for
Pattern Analysis. Cambridge University Press, 2004.

[30] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(8), 2000.

[31] S. Tejada, C. A. Knoblock, and S. Minton. Learning
domain-independent string tranformation weights for high
accuracy object identification. In SIGKDD, 2002.

[32] V. Verykios, G.V.Moustakides, and M. Elfeky. A bayesian
decision model for cost optimal record matching. The
VLDB Journal, 12:28–40, 2003.

[33] S. White and P. Smyth. Algorithms for estimating relative
importance in networks. In SIGKDD, 2003.

[34] G. Wiederhold. www-db.stanford.edu/pub/movies/.

58

Blocking-Aware Private Record Linkage

Ali Al-Lawati Dongwon Lee Patrick McDaniel
Penn State / CSE Penn State / IST Penn State / CSE

allawati@cse.psu.edu dongwon@psu.edu mcdaniel@cse.psu.edu

ABSTRACT
In this paper, the problem of quickly matching records (i.e.,
record linkage problem) from two autonomous sources with-
out revealing privacy to the other parties is considered. In
particular, our focus is to devise secure blocking scheme to
improve the performance of record linkage significantly while
being secure. Although there have been works on private
record linkage, none has considered adopting the blocking
framework. Therefore, our proposed blocking-aware private
record linkage can perform large-scale record linkage without
revealing privacy. Preliminary experimental results showing
the potential of the proposal are reported.

1. INTRODUCTION
The task of integrating similar databases populated at

separate locations to improve data qualities and enable accu-
rate data analysis is often restricted by heterogeneity in the
data. Specifications of how data is represented differ across
databases of different parties. For example, “penn state
university” can appear as simply “penn state”, or as “The
Pennsylvania State University”. The goal of record link-
age [16] is to identify similar records with precision, thereby
facilitating accurate pattern and data analysis. In record
linkage, all data to be matched appears in its original form
in the matching process. This is acceptable when the data
is of little value or when participants are mutually trusting.
However, it is inappropriate to reveal privacy of autonomous
sources. The goal of private record linkage [7] is, thus, to
identify similar records without revealing privacy to others
[1]. Applications that demand such a private record link-
age include the medical field where patient records must be
shared among hospitals and institutions while the identity
of the patients are sealed.

Given two data sources, X and Y , the most naive form
of record linkage is to perform pair-wise comparison – each
record x from X and y from Y are compared one by one,
having a quadratic time complexity of O(|X||Y |). Further-
more, each record x and y are typically examined by some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IQIS2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06...$5.00.

distance metrics – if dist(x, y) exceeds some threshold then
the pair is “matched”. One of the popular techniques to im-
prove the performance of record linkage methods is to use
blocking – by clustering records into pre-determined blocks
so that expensive distance measures are performed to only
records within each block. Typical blocking works as fol-
lows: Suppose one pre-groups records in Y into Y/b blocks
(i.e., each block has b records on average). Then, each record
x from X is compared to only records from one block and
the matching record is determined. That is, the time com-
plexity is reduced to O(|X||b|). Since b � X, this blocking
in general improves the performance.

As the data size grows and more expensive distance met-
rics are employed, the importance of blocking increases as
well. However, in the case of private record linkage, to our
best knowledge, no previous approaches attempt to combine
the “blocking” with the “private record linkage.” Therefore,
in this paper, we study a blocking-aware private record link-
age protocol and propose several blocking schemes for en-
hanced performance. A key observation is the preprocessing
of records into blocks, using “secure blocking” schemes.

Example 1 (Motivation). To illustrate the benefits of blocking-
aware private record linkage, consider two credit card com-
panies that wish to identify fraudulent customer list common
to both companies. However, using the regular record link-
age is inappropriate because of the private nature of credit
card information (i.e., two companies do not want to share
their customer-related information with the other party).
Assume company A holds 2 million records and company
B holds 3 million records. Moreover, suppose an average
of 50 records are assigned to each block. In the absence of
blocking, every record pair has to be compared, resulting
in 2 million × 3 million = 6 trillion comparisons! However,
blocking reduces the number of comparisons to 2 million ×
50 = 100 million. 2

2. RELATED WORK
By and large, three categories of previous work are closely

related to ours: secure data sharing, record linkage, and
private record linkage.

Secure data sharing. Private record linkage applies
when the underlying data is of sensitive nature. Such pri-
vacy aware protocols are categorized under the emergent
field of privacy preserving data mining: a topic of wide re-
cent interest. Most work in the area is either in data per-
turbation, or secure data sharing. Data perturbation algo-
rithms [17, 14] distort individual fields of a database for pri-

59

vacy, but preserve the overall structure of a database. This
enables the extraction of aggregate data or patterns without
disclosing raw data. On the other hand, secure data sharing
considers sharing or querying of selected data while securing
all other. Unlike secure data sharing, private record linkage
applies when data is heterogeneous.

Many protocols for secure data sharing have been de-
scribed in the literature. Yao et al [26] describe the first two-
party sharing protocol; more protocols and cryptographic
constructions that support multiparty sharing are presented
in [15]. Secure data sharing protocols assume a semi-honest
or honest-but-curious [3] behavior from the participating
parties. This means parties follow the protocol without
cheating, but may try to find as much information about
one another’s databases. Other work by Evfimievski et al
[8, 9] investigates the secure mining of association rules, eval-
uation of breeches, and quantification of privacy.

The work of Agrawal et al [1] defines minimal information
sharing in the context of secure data sharing protocols as
the set of additional categories of information inferred by
parties. The protocols they describe, however, are not useful
for matching of heterogeneous data.

Record Linkage. Record linkage is a problem that has
received wide attention from different communities. The
statistical field is interested in probabilistic approaches to
evaluating the similarity of records [24, 10, 13]. In the AI
field, training data is fed to distance metrics in order to en-
hance their ability to recover duplicate records [22]. The
information retrieval and database fields are mainly con-
cerned with merging heterogeneous databases and optimiz-
ing queries using constructions such as inverted indexes.

To improve the performance of record linkage for large
datasets, blocking (sampling) schemes are described in the
literature. The essence of blocking is similar to indexing;
in the database field, indexing increases the performance of
query processing by maintaining tables of related records.
Parallel to indexing, several distinctions arise in blocking
such as manual vs. automatic, or controlled vs. uncontrolled
vocabulary [21]. For generality, it is important that blocking
is automated and accommodates any vocabulary.

Blocking schemes reduce the set of candidate record pairs
for which more expensive distance metrics, such as TFIDF
[21] or Jaro [2], are computed. Baxtor et al [2] analyze
several different blocking schemes and compare them for ac-
curacy and reduction ratio. An effective sampling algorithm
is described in [12, 11] based on records’ textual attributes.
Experimentation shows that even a simple blocking scheme
can result in significant performance gains, with minimal
impact on precision.

Private Record Linkage. Much of the work in private
record linkage has been pioneered in the medical field. Of
mention is the work of Quantin et al [19, 18], inspired by
the confidentiality needs of medical information. In them,
Quantin et al describe a keyed hashing transformation proto-
col for representing epidemiological data as per the require-
ment of European privacy laws for irreversible transforma-
tions of such data. Matching of similar data is computed
on the transformed set. More recent trends with privacy
needs include cooperation among government agencies, se-
lective sharing of intellectual property, and outsourcing [1].
Churches et al [4] analyze security of their protocols as a
function of the number of mediating parties. They refer to

Alice Bob

Carol

Negotiate k

Data(
B)

A ∩
B

Data(A)

A ∩
B

A B

Figure 1: A general third-party matching protocol.

their techniques as “blindfolded” record linkage.
More recent is the work of Ravikumar et al [6] which

proposes a secure, stochastic private record linkage proto-
col that implements all distance metrics where records are
representable in a weight vector, such as TFIDF and Soft-
TFIDF [5]. Calculation of vectors’ similarity relies on a
secure intersection algorithm to compare tokens with proba-
bility proportional to their weight. Precision asymptotically
converges to the true value as the number of record samples
increases. Nonetheless, this protocol’s use of a secure in-
tersection algorithm translates into expensive computation.
Such algorithms rely on commutative hashing based on ex-
pensive public key encryptions. Furthermore, the protocol
requires multiple occurrences of each record to accurately
observe the probabilistic model (i.e., training set). Overall,
this work is a valuable contribution that paves the way for
two-party private record linkage, however, the constructions
upon which it is based lack practical maturity.

3. PRIVATE RECORD LINKAGE

3.1 Overview
Suppose two autonomous parties wish to compute the pri-

vate record linkage problem on their databases. The task is
to design a blocking-compatible private record linkage pro-
tocol for enhanced performance. The protocol computes the
matching set of records securely, minimizing any information
leakage.

We adopt a third party approach to solve this problem.
Figure 1 illustrates the communication steps needed. To
secure the contents of databases A and B, Alice and Bob
must negotiate a secret key and use it to achieve data confi-
dentiality. In this Section, we define our protocol and show
how we use hash signatures to achieve confidentiality and
compactness. Later, we describe several blocking schemes
and experimentally verify the performance gains achieved.

3.2 Threat Model and Evaluation
Participants in a private record linkage problem are char-

acterized by semi-honest, or honest-but-curious behavior [3].
Semi-honest behavior presumes a party will attempt to in-
fer any information possible from the data supplied by other
parties. This includes carrying out frequency analysis and
known-text attacks of data. We adopt a conservative ap-
proach to security based on the premise that an adversary
has access to a pool of all known text.

Nonetheless, semi-honest behavior forbids participants from
other forms of cheating. Participants do not misrepresent
their inputs by supplying false data (spoofing attack) or in-

60

tentionally hiding parts of their data (hiding attack) [25].
No form of collusion between any party and a third party
occurs. Semi-honest behavior is a common requirement for
participants in secure data sharing problems in the litera-
ture.

In minimal information sharing, security is determined by
the additional categories of information divulged in the pro-
cess of solving a problem. For example, depending on the
distance metric used, the third party is given access to infor-
mation (e.g. weight information) that facilitates matching of
records. However, there exist other important categories of
information with more tunable levels of exposure. The fol-
lowing categories of information are considered in our anal-
ysis of information leakage:

• Database size (DBsize).

• Vocabulary size of a database (V ocabsize).

• Lengths of database records (Reclen).

• Frequency of all tokens in a database (Tokfrq), not to
be confused with TFIDF’s token frequency (TF).

For each category above, we define three levels of expo-
sure:

• Yes (divulged, revealed, determined, exposed): the
category is accurately measured by a curious party.

• inf : (1) an upper bound is computed on the whole
category, or (2) an accurate measure is calculated on
a subset of a category.

• No: the category is not divulged, neither is an upper
bound divulged.

Determining a level of exposure on the defined categories
is a loose characterization of a protocol’s privacy. In Sec-
tion 4, we employ this characterization to analyze the per-
formance of our protocol with respect to blocking scheme
alternatives.

3.3 Protocol
Several participants interact in a private record linkage

problem. We first define the participants as follows: There
are three semi-honest participants: Alice, Bob, and Carol.
Alice holds private database A that contains a set of records
with a finite number of fields. Bob holds another database
B that contains a similar but separate set of records. Alice
and Bob are the collaborating parties who wish to find the
common records in their databases A and B. Carol is the
third party chosen by Alice and Bob to execute the distance
metric.

Figure 1 illustrates a general third party matching proto-
col. The protocol assumes all communication between par-
ties is carried over a secure channel, e.g., via cryptography.
A general overview of the steps of our private record linkage
protocol that incorporates blocking is as follows:

1. Alice and Bob negotiate a secret key, k, unknown to
Carol.

2. Alice and Bob each use a blocking method to generate
blocks and assign records of databases A and B to the
blocks. Next, Alice and Bob transmit the blocks to
Carol.

3. Carol computes a distance on the reduced set of candi-
date pairs and forwards the results to Alice and Bob.

Third party requirement is common among private record
linkage protocols because techniques used in two party pro-
tocols fail to correctly represent and match heterogeneous
data. Two party protocols rely on double encryptions of
data, the output of which are matched. Double encryptions
do not preserve properties of heterogeneous data. In [4],
the authors further expand on the number of third parties
and analyze security as a function of the number of com-
promised third parties. In [6], the authors describe a third
party free protocol for private record linkage, but it achieves
poor performance as we mentioned previously.

Third party protocols use keyed transformations of records,
e.g keyed hashing, to prevent security breeches due to cu-
rious behavior from the third party. Otherwise, the third
party can analyze collaborating parties’ databases with sim-
ilar transformations performed on a pool of all known text
(i.e brute force).

3.4 Secure Hashing
We introduce the hash signature transformation construct

as a compact and secure way to represent TFIDF weight vec-
tors. TFIDF is a proven distance metric based on the tokens
(words) in a record. Hash signatures use keyed hashing of
individual tokens of a record using a pre-negotiated key k.
For brevity, k is omitted but implied in the computation of a
hash signature. Before presenting further details, it is useful
to first introduce TFIDF.

TFIDF. The TFIDF [21] (Token Frequency / Inverse Doc-
ument Frequency) distance metric is widely used for match-
ing of similar information. TFIDF is based on the intuition
that tokens which appear frequently in a given record should
be assigned higher weights in that record (TF weight), while
tokens which appear frequently in the database as a whole
should be generally assigned low weights (IDF weight). For
example, consider a database of universities. TFIDF would
assign higher weights to tokens such as “PSU” and “Stan-
ford”, and lower weights to tokens such as “university” and
“college”. Records are matched according to a normaliza-
tion of the linear combination of the TF and IDF weights
of similar tokens. Two records Ax and By are considered
similar if their TFIDF score exceeds some threshold. The
TFIDF score is given by:

TFIDF (Ax, By) =
weightx · weighty

|weightx| × |weighty|
(1)

To compute weightx, for each wi ∈ Ax,

weight(x, wi) = log(TFwi + 1)× log(IDFi) (2)

It follows,

weightx =
⋃
i

weight(x, wi) (3)

Alternatively, Eq 1 can be represented as a dot-product of
two vectors Vx and Vy [6].

Vx =
weightx

|weightx|
(4)

Hence, Alice and Bob can independently compute Vx and
Vy. The vector lengths are dependent upon the size of the
vocabulary set of the two databases.

61

Database A Database B
id record id record
a1 {‘a’, ‘b’} b1 {‘b’}
a2 {‘c’} b2 {‘a’, ‘b’}

Table 1: Databases A and B

F [0] F [1] F [2] F [3]
HS(a1) weight(a1,‘b’) 0 0 weight(a1,‘a’)
HS(a2) 0 0 weight(a2,‘c’) 0
HS(b1) weight(b1,‘b’) 0 0 0
HS(b2) weight(b2,‘b’) 0 0 weight(b2,‘a’)

Table 2: Example hash signatures

TFIDF specifies measuring the TF weight of tokens on a
record granularity, but measures the IDF weight, i.e. IDFi,
on a common vocabulary of A ∪ B. For Alice to correctly
represent Vx, token information is required from database B,
and vice versa. Note that it may be insecure to divulge the
IDF weights of the vocabulary of either database. However,
it is conceivable to assume that databases A and B are sim-
ilar, e.g., if database A consists of citation data, database
B will also consist of citation data. Hence, separate IDF
measurements appear to be good estimates for a common
vocabulary.

Hash Signature. As mentioned above, hash signatures
are compact and secure representations of TFIDF weight
vectors, namely, Vx and Vy. The size of vectors Vx and Vy is
not fixed and is based on the data residing in databases
A and B. This results in long vectors and requires inse-
cure pre-agreement on vocabulary ordering. A hash signa-
ture transformation of Ax denoted as HS(Ax) is a compact,
vocabulary-independent representation of the TFIDF weight
vector based on a simple hashing function with a small out-
put t, e.g., 10 bits. The hash function is evaluated on each
token, and the hash output is an index to a 2t floating point
array where the weight is stored. As with Vx and Vy, the
TFIDF score of a pair of records is a dot-product of the hash
signatures.

For example, let Ax = {w1, ..., wn}, F be an array of float-
ing point values initialized to 0, and ht be a hash function
with t bit output.

F [i1] = weight(x, w1)
F [i2] = weight(x, w2)

...
F [in] = weight(x, wn)

il = ht(wl), l ∈ {1...n}1

HS(Ax) = F (5)

Example 2. Assume Alice’s database A contains 2 records
and Bob’s database B also contains 2 records as in Table
1. To illustrate how a hash signature is computed, let the
hash function ht output be t = 2. As mentioned previously,
the hash function performs keyed hashing with an omitted
key k: ht(′a′) = 3, ht(′b′) = 0, and ht(′c′) = 2. Each hash

1Actually, ht(wi||k) is computed, but k is omitted for
brevity. The symbol ′||′ denotes string concatenation.

signature is composed of a floating point array of weights,
as shown in Table 2. The array position where a weight of
a particular token is stored depends on the hash output of
the token. For example, weight(a1,‘b’) is stored in the entry
with index 0, because ht(′b′) = 0. 2

3.5 Analysis
Notice that since the hash output size, t, is relatively

small, there is a high probability of collisions. This means
distinct tokens of a record may map to the same hash sig-
nature entry. Likewise, dissimilar tokens of a record pair
may map to the same entry. This can result in inaccurate
TFIDF scoring. In our implementation, if multiple tokens of
a record map to the same entry, only the smallest weight is
stored to minimize the effect on TFIDF scoring. Assuming
that every collision incident results in incorrect matching:

Lemma 1. The worst case performance of our protocol us-

ing hash signatures is 2t!
(2t−n)!×2nt , where n is the number of

different tokens in Ax ∪By.

Proof. Assume a worst case performance such that every
collision occurrence results in a mismatch. We want to show
the worst case performance of TFIDF using hash signatures

is 2t!
(2t−n)!×2nt of the performance of TFIDF. But, given H-

S(Ax), and HS(By), the number of permutations such that
two different tokens in the the pair map to the same ar-

ray entry =

(
2t

n

)
× n!. By dividing the total number of

possibilities, we have

 2t

n

×n!

2nt = 2t!
(2t−n)!×2nt . (q.e.d)

Hence, for n � 2t, the worst case achieves performance
above 95% of performance of TFIDF. Note, t is a design
parameter that can be adjusted to satisfy n � 2t.

A further modification geared at conserving disk space is
possible with hash signatures. Since n � 2t, hash signa-
tures are sparse weight arrays. It follows that the set of
database records is an instance of a sparse matrix. There
are many ways to compactly represent sparse matrices, in-
cluding smaller arrays of positions and corresponding values
or a linked list of position/value pairs. However, we consider
a technique known as run-length encoding, which lists each
weight followed by the number of zeros suppressed. Run-
length encoding is suitable to our scheme because it is easy
to implement and features a small overhead, yet has been
found to achieve up to 70% compression [21].

4. BLOCKING SCHEMES
Among many variations, in our implementation, we use

token blocking [5] – every pair of records becomes a candi-
date pair if they share at least one token. A separate block
is associated with every token, containing records in which
the token appears.

Phase 2 Blocking. The structure of our hash signa-
tures enables augmenting the blocking process with a sec-
ond phase executed on records of the same block to further
reduce the set of candidate pairs. We find that the well-
known Jaccard [5] metric is readily compatible. Jaccard is
computed on a binary representation of a record’s hash sig-
nature, such that non-zero weights are treated as a binary 1

62

and zero weights as a binary 0. Let DA and DB be the bi-
nary representations of Ax and By, respectively, the Jaccard
metric is given by,

Jaccard(DA, DB) =
|DA ∩DB |
|DA ∪DB |

(6)

The use of Jaccard for blocking appears to further increase
performance, because it is computed very efficiently. The
details are investigated in our experiments.

Information Leakage. The level of information leakage
is evaluated for our protocol with respect to each block-
ing scheme introduced. It is important to note, however,
there are subtle differences between the levels of sharing
defined. To better illustrate this, consider a database of
records mapped to hash signatures. It is easy to see that
DBsize is divulged as it equals the number of hash signature
entries. However, only inf Reclen is divulged because a hash
signature may incur collisions. Furthermore, inf V ocabsize

is revealed because the number of different entries in the
set of hash signatures necessarily means different tokens.
However, Tokfrq is not revealed because collisions do not
preserve an accurate measure of the frequency of tokens.

On the other hand, if a subset of the hash signatures is
available, only inf DBsize is divulged. However, Reclen is
not divulged, because it is an inaccurate measure (due to
collisions) that is revealed on a subset of all records. Lastly,
V ocabsize is also not revealed for the same reason.

Assumptions. We partially base our analysis of secu-
rity on several assumptions. Records are non-empty and do
not solely consist of stop list tokens – very commonly occur-
ring tokens in a database. We further assume that stop list
tokens are not interesting: a measure of a category is con-
sidered accurate, even if it fails to represent stop list tokens.

In addition, if two hash signatures possess a similar set
of weights stored, this does not necessarily imply that the
hash signatures are the same. They are only considered the
same if the weights reside in the same array entries. The
reason for this will become more apparent in the following
subsections.

4.1 Baseline Approach
Assume two parties Alice and Bob wish to compute the

matching problem on their databases A and B, respectively.
A is a set of records A1, ..., An and B is a set of records
B1, ..., Bm. Alice and Bob share a secret key k that is tac-
itly used in the computation of hash signatures. Carol is the
mediating third party. In the “baseline” scheme, the match-
ing problem is computed without the use of any blocking.
The interest of this scheme is purely experimental. Alice and
Bob transmit sequences of the hash signatures of databases
A and B to Carol. Carol computes the matching problem
on all pairs of A and B, and identifies matching records to
Alice and Bob. This scheme proceeds as follows:

1. For each Ax ∈ A, Alice computes HS(Ax). Likewise,
for each By ∈ B, Bob computes HS(By).

2. Let Ahs denote all HS(Ax) that Alice transmits to
Carol. Let Bhs denote all HS(By) which Bob trans-
mits to Carol.

3. For each DA ∈ Ahs, DA is paired with every DB ∈ Bhs

for computing of the distance metric.

Figure 2: Phase 1 blocking in Simple blocking

This scheme does not employ any blocking, resulting in
O(nm) load. The additional categories of information re-
vealed to Carol, I0, in this scheme include: DBsize, inf
V ocabsize, and inf Reclen of databases A and B, because of
the possibility of collisions in hash signatures. Tokfrq is not
revealed.

4.2 Simple Blocking
In the Simple blocking scheme, token blocking is used to

enhance the performance of the baseline scheme. The col-
laborating parties arrange records in blocks and transmit
the blocks to Carol. The protocol steps are as follows:

1. For each wi ∈ Ax, Alice computes HSwi(Ax) and
stores it in Rwi , the block of wi. Similarly, for each
wj ∈ By, Bob computes HSwj (By) and stores it in
Swj , Bob’s block of wj .

2. Let KeyA → BlockA denote all mappings h(wi) →
Rwi that Alice transmits to Carol. Let KeyB → BlockB

denote all mappings h(wj) → Swj , which Bob trans-
mits to Carol.

3. For each w ∈ KeyA, if w ∈ KeyB , compute the Jac-
card metric on every pair DA ∈ BlockA and DB ∈
BlockB .

4. If Jaccard(DA, DB) > threshold, DA and DB are
paired for computing of the distance metric.

In step 2 of this scheme, h is a keyed hashing function
that provides confidentiality to the block identifier, i.e. the
token; the key is concatenated analogous to hash signatures.
Any secure hashing algorithm may be used. In our case, we
implement SHA-1.

I1, the additional categories of information divulged to
Carol in Simple blocking include: V ocabsize because to-
ken blocking generates a separate block for each token in
a record, and inf DBsize of databases A and B. Further,
since Carol has no way of knowing whether hash signatures
appearing in different blocks with permuted weights repre-
sent the same original record, only inf DBsize is determined
by Carol. For the same reason and because of hash signature
collisions, only inf Reclen is divulged.

Finally, Tokfrq of databases A and B is divulged to Carol.
Each block contains a list of hash signatures where the to-
ken appears, thereby an accurate measure of frequency of
a token is revealed. This may prove to be a vulnerability
to statistical attacks, such as Zipf [21] distribution. A tech-
nique to thwart such attacks is considered in Section 6.

63

Figure 3: Phase 1 blocking in Record-aware blocking

4.3 Record-aware Blocking
In Simple blocking, the assignment of hash signatures to

blocks equivocates a record across blocks where it is placed.
The reason is that in step 1 of Simple blocking, the hash
signature is computed with respect to the block (HSwi).
Hence, the same record is indistinguishable to the third
party when placed in multiple blocks. This means Sim-
ple blocking will compute duplicate distance metrics on the
same pair of records proportional to the number of com-
mon blocks in which they appear. A relatively high ratio
of common blocks per record pair can render the blocking
scheme extremely inefficient. Record-aware resolves this by
coupling an id with the hash signature of each record. The
ids of every pairing made are maintained to ensure unique-
ness of a pair. The blocking steps of Record-aware are as
follows:

1. For each wi ∈ Ax, Alice computes HSwi(Ax) and
stores the pair [x, HSwi(Ax)] in Rwi , the block of wi.
Similarly, for each wj ∈ By, Bob computes HSwj (By)
and stores the pair [y, HSwj (By)] in Swj , Bob’s block
of wj .

2. Let KeyA → [IDA, BlockA] denote all mappings h(wi) →
Rwi that Alice transmits to Carol. Let KeyB → [IDB , BlockB]
denote all mappings h(wj) → Swj , which Bob trans-
mits to Carol.

3. For each w ∈ KeyA, if w ∈ KeyB , Carol computes the
Jaccard metric on every pair DA ∈ BlockA and DB ∈
BlockB , such that (IDA, IDB) /∈ Paired. Paired is
used to ensure that duplicate distance metrics on the
same pair are not computed.

4. If (IDDA , IDDB) /∈ Paired and Jaccard(DA, DB) >
threshold, DA and DB are paired for computing of the
distance metric. Update Paired = Paired∪{(IDDA , IDDB)}

The increase in efficiency in this scheme is attained at the
expense of additional data leakage in comparison to Simple
blocking. This scheme divulges all designated categories of
information to Carol. Unlike Simple blocking, Carol deter-
mines DBsize of databases A and B, because an id is cou-
pled with each hash signature that uniquely identifies the
record which it represents. Reclen are also divulged for the
same reasons. As in Simple blocking, V ocabsize and Tokfrq

are revealed. This scheme provides the greatest exposure in
terms of information leaked to Carol.

4.4 Frugal Third Party Blocking
In the previous two schemes, Alice and Bob transmit all of

their blocks to Carol, even if only a fraction of the blocks are
similar. Alternatively, Alice and Bob may find what blocks

Scheme Information Categories
DBsize V ocabsize Reclen tokfrq

Baseline Yes inf inf No
Simple inf Yes inf Yes
Record-aware Yes Yes Yes Yes
Frugal Third Party inf inf No inf

Table 3: Summary of information leakage

they have in common and only transmit those blocks. This
arrangement has the advantage of minimizing communica-
tion size between participants. Further, the amount of data
storage maintained by Carol for the matching problem is
reduced, and Carol is relieved from the task of finding in-
tersection between the blocks, resulting in less blocking and
matching time. Moreover, from a monetary cost standpoint,
any computation performed by Carol is associated with a
much greater price than computations performed by Alice
or Bob. Carol is merely a mediating party which may charge
a significant fee for facilitating matching between collabo-
rating parties. It follows that it may be more cost-effective
for Alice and Bob to perform as much computation as possi-
ble, even if such computation is orders of magnitudes greater
than a logically equivalent computation performed by Carol.

Frugal Third Party blocking employs a secure intersection
algorithm [23, 6] to compute the intersection set size using
commutative one-way hash functions. In our implementa-
tions, we use RSA private keys with a common modulus.
The scheme steps are as follows:

1. For each wi ∈ Ax, Alice computes HSwi(Ax) and
stores the pair [x, HSwi(Ax)] in Rwi , the block of wi.
Similarly, for each wj ∈ By, Bob computes HSwj (By)
and stores the pair [y, HSwj (By)] in Swj , Bob’s block
of wj .

2. Let KeyA → [IDA, BlockA] denote all mappings h(wi) →
Rwi . Let KeyB → [IDB , BlockB] denote all map-
pings h(wj) → Swj . Using the secure intersection al-
gorithm, find KeyA ∩KeyB . Alice transmits to Carol
all w → [IDA, BlockA] and Bob transmit all w →
[IDB , BlockB], such that w ∈ KeyA ∩KeyB .

3. For each w ∈ KeyA ∩KeyB , Carol computes the Jac-
card metric on every pair DA ∈ BlockA and DB ∈
BlockB , such that (IDA, IDB) /∈ Paired. As in Record-
aware, Paired is used to ensure that duplicate distance
metrics on the same pair are not computed

4. Finally, if (IDDA , IDDB) /∈ Paired and Jaccard(DA, DB) >
threshold, DA and DB are paired for computing of the
distance metric. Update Paired = Paired∪{(IDDA , IDDB)}

In this scheme, some additional categories of information
are revealed only to Alice and Bob, while others only to
Carol. Let I3AB denote the additional categories revealed to
Alice and Bob and I3C denote categories revealed to Carol.

Alice and Bob predetermine the blocks which are shared
by them. Hence, I3AB contains V ocabsize, meaning Alice
learns the vocabulary size of database B and Bob learns the
vocabulary size of Alice. Since Carol does not receive all
blocks, I3C includes inf DBsize and inf V ocabsize because
an accurate measure is determined on a subset of the cate-
gories. Further, Carol only determines an accurate Tokfrq

64

(a) Blocks of Simple blocking

(b) Blocks of Record-aware and Frugal Third Party

Figure 4: Blocking Example

ht(‘b’||a)

1 2 3
ht(‘a’||a)

0
weight(a1, ‘b’) 0 0 weight(a1, ’a’)

ht(‘b’||b)

HSa(a1)

HSa(b2)

HSb(a1)

HSb(b1)

HSb(b2)

weight(b2, ‘b’) 0 0 weight(b2, ’a’)

0 weight(a1, ‘b’)weight(a1, ‘a’) 0

0 0 weight(b1, ‘b’) 0

ht(‘a’||b)

0 weight(b2, ‘b’)weight(b2, ‘a’) 0

b’s
Block

a’s
Block

ht(‘c’||c)

HSc(a2)c’s
Block

0 0 weight(a2, c) 0

Figure 5: Hash signature contents

of a subset of all tokens because she only receives a subset
of all blocks, hence inf Tokfrq. However, Carol does not
determine Reclen because an inaccurate measure is possible
on merely a subset of records. The security of this scheme
introduces a level of uncertainty to the categories divulged
to Carol at the cost of increased computational cost and
exposure of some categories to Alice and Bob. From an in-
formation leakage standpoint, Frugal Third Party is more
useful when security with respect to the third party is of
prime concern.

Example 3. Here, we present an example that illustrates
the working of Simple, Record-aware, and Frugal Third Party
blocking schemes. We consider databases A and B as defined
in Table 1.

1. Step 1. Figure 4(a) illustrates how a record’s hash
signature is arranged in blocks that correspond to the
tokens contained in the record. For example, record
a1 contains tokens ‘a’ and ‘b’; hence, it appears in
the block corresponding to a as HSa and the block
corresponding to b as HSb. Notice that a hash signa-
ture representation appears differently depending on
the block where it is stored. This is accomplished by a

Figure 6: Binary representations of hash signatures

concatenation of the block’s token to the hash function
used to generate the hash signature (note a key is also
concatenated).

The blocks of Record-aware and Frugal Third Party
blocking schemes appear a little differently, as illus-
trated in Figure 4(b). As mentioned above, an id is
coupled with each hash signature, so identical pairs
are not matched for similarity multiple times. As-
suming t is 2-bits, and ht(′a′||a) = 3, ht(′b′||a) = 0,
ht(′c′||c) = 2, ht(′a′||b) = 2, ht(′b′||b) = 1, The hash
signatures are computed as shown in Figure 5.

2. Step 2. In Simple and Record-aware blocking, Alice
and Bob readily transmit their blocks of hash signa-
tures computed in the last step to Carol. Alice trans-
mits 3 blocks to Carol, while Bob transmits 2 blocks to
Carol. However, in Frugal Third Party, Alice and Bob
first determine the matching block names using a se-
cure intersection algorithm. It is determined that only
two blocks match, corresponding to a and b. Hence,
Alice and Bob both transmit 2 blocks to Carol.

3. Step 3. Carol computes the distance metric on hash
signatures which appear in common blocks. In Sim-
ple blocking, all records of the parties which appear in
similar blocks are considered. This results in the fol-
lowing pairings: (HSa(a1), HSa(b2)), (HSb(a1), H-
Sb(b2)), and (HSb(a1), HSb(b1)). On the other hand,
Record-aware and Frugal Third Party only pair a1 and
b2 once, instead of twice. Hence, only two pairings are
made: (HSa(a1), HSa(b2)) and (HSb(a1), HSb(b1)).

4. Step 4. The Jaccard metric is computed on a binary
equivalent of each hash signature. Figure 6 illustrates
binary equivalents of the hash signatures. It follows:

• Jaccard(HSa(a1), HSa(b2)) = 1

• Jaccard(HSb(a1), HSb(b2)) = 1

• Jaccard(HSb(a1), HSb(b1)) = .5

In the absence of blocking, 4 distance metrics are cal-
culated. If Jaccard threshold > .5, then 2 distance
metric are calculated in Simple blocking, resulting in
50% reduction ratio. Only 1 metric is calculated in the
Record-aware and Frugal Third Party schemes result-
ing in a reduction ratio of 25%. 2

5. EXPERIMENTAL VALIDATION
We have implemented our schemes based on the Second-

String package [5], and have tested it using a range of datasets

65

Dataset Domain A size B size A ∩ B size # of tokens per record (avg)

BioMed Medicine 5000 5000 2000 25.44
DBLP CompSci 5000 5000 2000 14.68

EconPapers Economics 5000 5000 4000 21.23
e-Print Physics 5000 5000 2000 13.83

Table 4: Experimental Datasets 1

0
50

100
150
200
250
300
350
400
450
500

Record linkage
TFIDF (no blocker)

"baseline" Simple Record-aware Frugal Third Party

Ti
m

e
(s

)

BioMed
DBLP
EconPapers
e-Print

0

0.2

0.4

0.6

0.8

1

Record linkage
TFIDF (no blocker)

"baseline" Simple Record-aware Frugal Third Party

P
re

ci
si

on

BioMed
DBLP
EconPapers
e-Print

(a) Total time (blocking + matching) (b) Precision

Figure 7: Comparison of blocking + matching time of four implementations
.

consisting of citation data. Each citation is parsed as a set
of fields and only a random permuted subset of the fields
are stored to achieve a level of heterogeneity. The choice
of citation data was influenced by Ravikumar et al [6]. As
an evaluation metric, precision is defined as the fraction of
pairs matched by the distance metric that are correct, and
reduction ratio as the ratio between candidate pair count
from blocking and pair count from a pair-wise comparison.

5.1 Blocking
Figure 7(a) proves our claims of increased performance

due to blocking, by comparing the blocking schemes against
the baseline scheme and record linkage TFIDF that doesn’t
use blocking. Note, computation time due to the secure in-
tersection algorithm in the Frugal Third Party scheme has
been factored out. Table 4 lists the datasets used in this ex-
periment and their characteristics. For all cases, the block-
ing techniques require a fraction of the time to solve the
same problem, often at a negligible cost of precision. Fig-
ure 7(b) illustrates the precision observed for each dataset.
The precision observed for the e-Print dataset deviates from
other datasets. However, even in the non-private protocol,
low precision is observed. Nonetheless, this is magnified in
the private record linkage protocols.

Moreover, it is observed that representing records as hash
signatures increases performance. We attribute this to the
way hash signatures are represented, which is more compact
than weight vectors in record linkage.

5.2 Blocking Schemes
To verify the properties of the proposed blocking scheme,

several experiments were conducted using DBLP citations
as in Table 5.

In Figure 8(a), the total time expended by the third party
is measured as a function of dataset used. Simple blocking
is the least efficient for the reason that every pair of records
may be measured for similarity more than once. The total
time expended for Simple and Record-aware blocking does
not follow any specified pattern because of additional fac-

Dataset A size B size A ∩ B size
1 2500 2500 0
2 2500 2500 100
3 2500 2500 250
4 2500 2500 500
5 2500 2500 1000
6 2500 2500 2500

Table 5: Experimental Datasets 2

tors that come into play, such as the total number of blocks
in each database, or the number of shared blocks. On the
other hand, in Frugal Third Party, as the number of shared
records increases, total third party time also increases be-
cause only common blocks are transmitted over to the third
party. Clearly, the number of common blocks is likely to
increase relative to the number of shared blocks. When A
and B have the same records, no third party gains are ob-
served by Frugal Third Party over Record-aware, resulting
in transmission of almost all blocks, congruent to Simple
and Record-aware.

Frugal Third Party reduction of third party time and re-
striction on privacy divulged to third party comes at an
overwhelming cost of collaborating party blocking. Figure
8(b) illustrates the average blocking time of Frugal Third
Party, Simple, and Record-aware schemes. It eludes to 4
orders of magnitude difference in blocking time.

The reduction ratio observed by two phase blocking is de-
pendent on characteristics of the dataset, such as V ocabsize

and Tokfrq. Nonetheless, reduction ratio is directly respon-
sible for the matching time needed to solve the problem.
Figure 9 illustrates the linear relationship between reduc-
tion ratio and matching time.

5.3 Two-phase Blocking
The second phase of blocking, Jaccard metric, depends on

basic set operations to further reduce candidate pairs that
undergo TFIDF scoring. The threshold used for Jaccard

66

(a) Total third party time (b) Blocking time of collaborating parties

Figure 8: Comparison of three blocking alternatives

Figure 9: Relationship between reduction ratio and
matching time

blocking is tunable for enhanced control over the level of
blocking achieved. In Figure 7(a), the gains resultant from
predominantly phase 1 blocking are observed. In practice,
using phase 2 Jaccard, we are able to control the gains by ad-
justing the threshold. Figure 10 illustrates the performance
increase when the Jaccard threshold is increased to .25. Ex-
periments of the previous subsection all used threshold =
.1.

Figure 10: Relationship between reduction ratio and
matching time for Dataset 1-6

6. OTHER ISSUES
The privacy of our protocol can be further increased by us-

ing techniques such as chaffing and winnowing [20]. Chaffing
refers to the act of augmenting data with additional dummy
data, indiscernible from other data, i.e. noise. Winnow-
ing is the reverse process that eliminates dummy from real
data. Chaffing is performed by the collaborating parties
prior to transmitting data to the third party. After the

results are computed and returned to the collaborating par-
ties, all dummy data is winnowed appropriately.

Chaffing and winnowing techniques address the problem
introduced by a Zipf [21] analysis of data blocks that we
identified earlier. The problem is solved by fixing the content
size of each block to make them appear indifferent, through
the addition of noise. Nevertheless, this comes at the ex-
pense of increased cost and memory requirements. Our cur-
rent implementations do not consider chaffing and winnow-
ing.

7. CONCLUSION
In this paper, we described a secure protocol for record

linkage and several schemes that achieve secure blocking. In
the protocol, the collaborating parties use TFIDF to inde-
pendently calculate and generate weight vectors, represented
as hash signatures. This protocol requires a key to be ne-
gotiated by the collaborating parties, unknown to the third
party.

The blocking schemes described are characterized by vary-
ing privacy as per minimum information sharing at the ex-
pense of performance. We define a loose characterization of
information leakage to analyze the privacy of our protocols
as a function of blocking scheme. Simple blocking arranges
hash signatures in blocks, but a pair may be computed for
similarity more than once if they are located in more than
one common block. Record-aware solves this issue by cou-
pling an identifier with every hash signature. Frugal Third
Party provides the highest level of privacy with respect to
information divulged to the third party, but requires the
use of public-key dependent secure intersection algorithm,
resulting in heavy computational costs on the collaborating
parties. The performance of our blocking schemes was fur-
ther enhanced by introducing a second phase of blocking:
Jaccard.

Overall, parallel to record linkage, the use of blocking in
private record linkage to enhance performance is verified us-
ing analytic and empirical validations. In some cases, block-
ing increases the security en lieu of performance of the pro-
tocol.

Future Work. It is interesting to investigate how other
distance metrics and blocking schemes can be ported to the
secure matching arena. In [6], the authors address other
distance metrics and how they may be ported into secure
record linkage. Clearly, similar techniques as described in
this paper may also apply to those metrics.

67

8. REFERENCES
[1] Rakesh Agrawal, Alexandre Evfimievski, and

Ramakrishnan Srikant. Information sharing across
private databases. In Proceedings of ACM SIGMOD,
pages 86–97, 2003.

[2] Rohan Baxter, Peter Christen, and Tim Churches. A
comparison of fast blocking methods for record
linkage. In Proceedings of 9th ACM SIGKDD
Workshop on Data Cleaning, Record Linkage and
Object Consolidation, 2003.

[3] R. Canetti, U. Feige, O. Goldreich, and M. Naor.
Adaptively secure multi-party computation. In STOC
96, pages 639–648, 1996.

[4] Tim Churches and Peter Christen. Some methods for
blindfolded record linkage. BMC Medical Informatics
and Decision Making, 4(9), 2004.

[5] W. Cohen, P. Ravikumar, and S. Fienberg. A
comparison of string distance metrics for matching
names and records. In KDD Workshop on Data
Cleaning, Record Linkage, and Object Consolidation,
2003.

[6] William Cohen, Pradeep Ravikumar, and Stephen E.
Fienberg. A secure protocol for computing string
distance metrics. In Proceedings of ICDM Workshop
on Privacy and Security Aspects of Data Mining, 2004.

[7] W. Du and M. Atallah. Potocols for secure remote
database access with approximate matching. In 1st
Workshop on Security and Privacy in E-Commerce,
2000.

[8] Alexandre Evfimievski, Johannes Gehrke, and
Ramakrishnan Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proceedings of
SIGMOD, 2003.

[9] Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh
Agrawal, and Johannes Gehrke. Privacy preserving
mining of association rules. In Proceedings of 8th ACM
SIGKDD, pages 217–228, 2002.

[10] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64(328):1183–1210, 1969.

[11] Luis Gravano, Panagiotis G. Ipeirotis, Jagadish
Jagadish, Nick Koudas, S. Muthukrishnan, and Divesh
Srivastava. Approximate string joins in a database
(almost) for free. In Proceedings of 27th VLDB, pages
491–500, 2001.

[12] Luis Gravano, Panagiotis G. Ipeirotis, Koudas
Koudas, and Divesh Srivastava. Text joins in an
rdbms for web data integration. In Proceedings of 12th
WWW, January 01 2003.

[13] Mauricio A. Hernández and Salvatore J. Stolfo. The
merge/purge problem for large databases. In
Proceedings of ACM SIGMOD, pages 127–138, 1995.

[14] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar.
Random data perturbation techniques and privacy
preserving data mining. In Proceedings of ICDM,
pages 160–164, 2003.

[15] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and
Yaron Sella. Fairplay — a secure two-party
computation system. In Proceedings of 11th USENIX
Security Symposium, August 2004.

[16] H. Newcombe, J. Kennedy, S. Axford, and A. James.
Automatic linkage of vital records. Science,

130:954–959, 1959.

[17] Huseyin Polat and Wenliang Du. Privacy-preserving
collaborative filtering using randomized perturbation
techniques. In Proceedings of ICDM, 2003.

[18] Catherine Quantin, H. Bouzelat, F. Allaert,
A. Benhamiche, J. Faivre, and L. Dusserre. How to
ensure data security of an epidemiological follow-up:
quality assessment of an anonymous record linkage
procedure. International Journal of Medical
Informatics, 49(1):117–122, 1998.

[19] Catherine Quantin, H. Bouzelat, and L. Dusserre. A
computerized record hash coding and linkage
procedure to warrant epidemiological follow-up data
security. Studies in Health Technology and
Informatics, 43:339–342, 1997.

[20] Ronald Rivest. Chaffing and winnowing:
Confidentiality without encryption. MIT, Internal
Paper, 1998.

[21] Gerard Salton, editor. Automatic Text Processing.
Addison Welsley, 1989.

[22] Sheila Tejada, Craig A. Knoblock, and Steven Minton.
Learning object identification rules for information
integration. Information Systems, 26(8):607–633, 2001.

[23] Jaideep Vaidya and Chris Clifton. Secure set
intersection cardinality with application to associate
rule mining. Journal of Computer Security, 2004. To
Appear.

[24] W. E. Winkler. Matching and record linkage. Business
Survey Methods, pages 355–384, 1995.

[25] L. Xiong, S. Chitti, and L. Liu. Topk queries across
multiple private databases. In 25th ICDCS. To appear,
2005.

[26] Andrew C. Yao. Protocols for secure computations. In
Proceedings of the 23rd Symposium on FOCS, pages
160–164, 1982.

68

Effective and Scalable Solutions for Mixed and Split
Citation Problems in Digital Libraries

Dongwon Lee∗ Byung-Won On Jaewoo Kang Sanghyun Park
Penn State / USA Penn State / USA NCSU / USA Yonsei Univ. / Korea
dongwon@psu.edu on@cse.psu.edu kang@csc.ncsu.edu sanghyun@cs.yonsei.ac.kr

ABSTRACT
In this paper, we consider two important problems that
commonly occur in bibliographic digital libraries, which se-
riously degrade their data qualities: Mixed Citation (MC)
problem (i.e., citations of different scholars with their names
being homonyms are mixed together) and Split Citation
(SC) problem (i.e., citations of the same author appear un-
der different name variants). In particular, we investigate
an effective yet scalable solution since citations in such dig-
ital libraries tend to be large-scale. After formally defin-
ing the problems and accompanying challenges, we present
an effective solution that is based on the state-of-the-art
sampling-based approximate join algorithm. Our claim is
verified through preliminary experimental results.

1. INTRODUCTION
Bibliographic Digital Libraries (DLs), such as DBLP, Cite-

Seer or e-Print arXiv, contain a large number of citation1

records. Such DLs have been an important resource for aca-
demic communities since scholars often try to search for rel-
evant works from DLs. Researchers also use the citation
records in order to measure the publication’s impact in the
research community. In addition, citations are often used
when users search for articles of interest. Therefore, it is
important to keep the citations of DLs consistent and up-
to-date. However, due to data entry errors, imperfect cita-
tion gathering software or common author names, DLs often
have many errors in their citation collections. In particular,
we focus on two problems that commonly occur in many
existing DLs as follows.

First, when two scholars have the same name spellings,
their citation data are mistakenly merged into a single col-
lection, leading to an incorrect citation analysis results. We
call this as Mixed Citation (MC) problem. For instance,

∗The author is partially supported by IBM Eclipse Innova-
tion Award (2004) and Microsoft SciData Award (2005).
1A citation or reference is a bibliographic entity that con-
sists of various fields (e.g., author, title, venue or year).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IQIS2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06 ...$5.00.

Figure 1: Mixed citations of “Dongwon Lee” in
DBLP. Boxed ones are by another “Dongwon Lee.”

Figure 1 illustrates a collection of citation data by one of the
authors, “Dongwon Lee”, in DBLP. Note that two citations
by “another” scholar with the same name spelling are listed
(boxed ones). The reason of this mixture is that there exist
two scholars with the name “Dongwon Lee” – a computer
scientist at Penn State and an MIS scholar at U. Minnesota
– with somewhat overlapping domains of interests.

Second, due to various reasons, DLs tend to keep the ci-
tations of single author under various name variants2. We
call this as Split Citation (SC) problem. For instance,
imagine a scholar “John Doe” has published 100 articles.
However, a DL keeps two separate name variants, “John
Doe” and “J. D. Doe”, each of which contains 50 citations.
In such a case, users searching for all the articles of “John
Doe” will get only 50 of them. Similarly, any bibliomet-
rical study would underestimate the impact of the author
“John Doe”, splitting his fare share into “John Doe” and
“J. D. Doe” incorrectly. Such a problem of ambiguous au-
thor names exists in many of existing DLs, as illustrated in
Figure 2, where a renowned computer scientist “Jeffrey D.
Ullman” appear under 10 different name variants in ACM
Portal’s DL.

In essence, both MC and SC problems cannot be com-
pletely avoided unless each person carries a universal ID.
Note that these problems would still occur even if digital

2In this paper, the name variants refer to the different
spellings of author names that are in fact referring to the
same person.

69

8 variants
under “Ullman”

2 variants
under “Ullmann”

Figure 2: Split citations of “Jeffrey D. Ullman” in
ACM Portal.

object identifier (DOI)3 system is fully adopted, since it usu-
ally does not govern the identity of a person or her name.
In this paper, therefore, we investigate efficient solutions for
these problems.

2. BACKGROUND
Related Work. In [14], we investigated issues related to
system support for both problems, and in [20], we explored
the split citation problem. Han et al. [12] proposed two su-
pervised learning-based approaches for a related problem.
Their problem can be viewed as a kind of the SC prob-
lem in our jargon although they do not explicitly define the
problem. Furthermore, their approach is not scalable to
handle large-scale DLs. On the other hand, we investigate
both the MC and SC problems, and present scalable solu-
tions. Nevertheless, we also tested their ideas of supervised
learning methods in the step 2 of the name disambiguation
algorithm (Section 4.2). The goal of our study is not to com-
pare supervised methods against unsupervised ones, but to
explore the combinations of alternatives that give good scal-
ability/accuracy trade-offs in the two-step approaches. We
recently learned that [2] introduces a clustering-based so-
lution to a problem similar to our MC problem, and the
performance comparison is currently underway. ALIAS sys-
tem in [22] proposes a framework to detect duplicate entities
such as citations or addresses, but its focus is on the learning
aspect.

Since the core technique of our proposals in this paper is
to match two related citations (i.e., citation matching), our
work is closely related to more general class of problems,
known as various names – record linkage (e.g., [10, 3]), ci-
tation matching (e.g., [19]), identity uncertainty (e.g., [21]),
merge-purge (e.g., [13]), object matching (e.g., [5]), dupli-
cate detection (e.g., [22, 1]), approximate string join (e.g., [11])
etc.

String similarity measures used in our work were proposed

3http://www.doi.org/

by Jaro [16] and Winkler [25]. Bilenko et al. have stud-
ied name matching for information integration [3] using
string-based and token-based methods. Cohen et al. have
also compared the efficacy of string-distance metrics, like
JaroWinkler, for the name matching task [6]. In DLs, this
problem is called citation matching. In the citation match-
ing domain, [18] experimented with various distance-based
algorithms with a conclusion that word based matching per-
forms well. We have implemented all these methods in the
second step of your algorithm and compared their efficacy
to other methods.

Before we can process citations, we assume that field seg-
mentation and identification has been completed using some
methods like one in [4]. Blocking was first proposed by Kel-
ley et al. [17] in the record linkage literature. Our sampling
idea can be viewed as a blocking scheme and is also simi-
lar in flavor to the two-step citation matching schemes pro-
posed in [15, 19] where initial rough but fast clustering (or
“Canopy”) is followed by more exhaustive citation matching
step.

Another stream of works that are relevant to our work is
name/entity disambiguation and authority controls in NLP
community. For instance, works done in [24] aim at de-
tecting name variants automatically using data mining or
heuristics techniques, but do not consider the issue of scal-
ability nor in the context of digital libraries. Similarly, [9]
introduces a method to find matching variants of named en-
tity in a given text such as project name (e.g., DBLP vs.
Data Base and Logic Programming). [23] discusses an ef-
fort to standardize author names using a unique number,
called INSAN, and [8] is a recent implementation for name
authority control, called HoPEc. On the contrary, we focus
more on two specific problems relevant to citations of digital
libraries.

Preliminaries. In this Section, we introduce a technique
that our solutions exploit. One of the state-of-the-art sam-
pling techniques that satisfy both criteria (i.e., being fast
and accurate) is the sampling-based join approximation method
recently proposed by [11]. We adopt it to our context as fol-
lows: Their main idea is that if, for each string ni, one is
able to extract a small sample S that contains mostly strings
suspected to be highly similar to ni, then this sample S
serves as a candidate set, and the remaining strings can be
quickly ignored (i.e., pre-filtering). To get the “good” sam-
ple S, imagine each token from all strings has an associated
weight using the TFIDF metric in IR (i.e., common tokens
in strings have lower weights while rare ones have higher
weights). Then, each string t is associated with its token
weight vector vt. Suppose that, for each string tq in a string
set R1, we want to draw a sample of size S from another
string set R2 such that the frequency Ci of string ti ∈ R2 can
be used to approximate sim(vtq , vti) = σi. That is, σi can

be approximated by Ci
S

TV (tq), where TV (tq) =
∑|R2|

i=1 σi.

Then, put ti into a candidate set only if Ci
S

TV (tq) ≥ θ,

where θ is a pre-determined threshold4. This strategy as-
sures that all pairs of strings with similarity of at least θ
survive the pre-filtering stage and put into the candidate
set with a desired probability, as long as the proper sample
size S is given.

4In experimentation, we used the more optimized version of
the sampling-based join approximation with a single scan
from [11].

70

J. Propp, Daniel Ullman Name Disambiguation SIG...

J. D. Ullman X Y Z

Liwei Wang X` Y` Z`

Daniel Ullman X`` Y`` Z``

...

Sampling

Daniel Ullman

J. D. Ullman

...

Labeling

≠

“false” citation

1

2

3

N

Token vectors of coauthors

Token vectors of paper titles

Token vectors of venues

X

Y

Z

J. Propp, Daniel Ullman Name Disambiguation SIG...

J. D. Ullman X Y Z

Liwei Wang X` Y` Z`

Daniel Ullman X`` Y`` Z``

...

Sampling

Daniel Ullman

J. D. Ullman

...

Labeling

≠

“false” citation

1

2

3

N

Token vectors of coauthors

Token vectors of paper titles

Token vectors of venues

X

Y

Z

Figure 3: Overview of our solution to MC problem.

3. THE MIXED CITATION PROBLEM

3.1 Problem Definition & Solution Overview
Problem Definition. We formally define the Mixed Ci-
tation problem as follows:

Given a collection of citations, C, by an author,
ai, can we quickly and accurately identify false
citations by another author aj, when ai and aj

have the identical name spellings?

The challenge here is that since two different authors, ai

and aj , have the “same” name spellings, one cannot easily
distinguish the two by using distance between their names
(e.g., Edit distance). To overcome this difficulty, we propose
to exploit author’s associated information. That is, given
an author ai, we may use additional information such as her
coauthor list, common keywords that she often use in the
titles of articles, or common publication outlets, etc.

Solution Overview. Consider a citation ci with a set of
coauthors A = {a1, ..., an}, a set of keywords from the title
T = {t1, ..., tm}, and a venue name V . Then, after remov-
ing the i-th coauthor ai (∈ A), can we correctly label ci to
ai? That is, when ai is removed from the citation ci, can
we guess back the removed author using associated informa-
tion? Let us call this method as Citation Labeling algorithm.
If we assume that there is a “good” citation labeling func-
tion fcl : ci → aj . Then, using the fcl, the original MC
problem can be solved as follows. Given citations C by an
author a1:

for each citation ci (∈ C)
remove a1 (i.e., original name) from coauthor list of ci;
fcl is applied to get a2 (i.e., guessed name);
if a1 6= a2, then ci is a false citation;
remove ci from C;

At the end, C has only correct citations by a1. Therefore, if
one can find a good citation labeling function fcl, then one
can solve the MC problem.

3.2 Citation Labeling Algorithm
Let us examine fcl more closely. Suppose one wants to

“label” a collection of citations, C, against a set of possible
authors A. A naive algorithm, then, is (let φ be a similarity
measure between a citation ci and an author aj):

for each citation ci (∈ C)

examine all names aj(∈ A);
return aj (∈ A) with MAX φ;

This baseline approach presents two technical challenges:
(1) Since ci and aj are two different entities to compare in
real world, the choice of good similarity measure is critical;
and (2) When a DL has a large number of citations and
authors in the collection, the baseline approach with a time
complexity O(|C||A|) is prohibitively expensive to run (e.g.,
the DBLP has about 0.56 million authors). In order to ad-
dress these challenges, we propose two solutions as follows.

Similarity between Citation and Author. In [12], au-
thors reported a promising result by representing a citation
as 3-tuple of coauthors, titles, and venues. Although pro-
posed for a different problem, the idea of 3-tuple represen-
tation of citations can be adapted to our context as follows:
the similarity between a citation c and an author a (here-
after, sim(c, a)) can be estimated as the similarity between
a 3-tuple representation of c and that of a:

sim(c, a) = α sim(~cc, ~ac) + β sim(~ct, ~at) + γ sim(~cv, ~av)

where α + β + γ = 1 (i.e., weighting factors), ~cc, ~ct, and
~cv are token vectors of coauthors, paper titles, and venues,
respectively, of the citation c, and ~ac, ~at, and ~av are token
vectors of coauthors, paper titles, and venues from “all” ci-
tations of the author a, respectively. In turn, each similarity
measure between two token vectors can be estimated using
the standard IR techniques such as the cosine similarity ,
cos(θ) = ~v·~w

‖~v‖·‖~w‖ , along with TFIDF.

For instance, a citation c “E. F. Codd: A Relational
Model of Data for Large Shared Data Banks. Commun.
ACM 13(6): 377-387 (1970)” is represented as: ~cc = [“E.F.
Codd”], ~ct = [“Relational”, “Model”, “Data”, “Large”, “Shared”,
“Data”, “Banks”], and ~cv = [“Commun.”, “ACM”])5. Simi-
larly, an author “John Doe” with two citations (“John Doe,
John Smith: Data Quality Algorithm, IQIS, 2005”, and
“Dongwon Lee, John Doe, Jaewoo Kang: Data Cleaning
for XML, ACM/IEEE Joint C. on Digital Libraries, 2005”)
is represented as: ~ac=[“John Doe”, “John Smith”, “Dong-
won Lee”, “Jaewoo Kang”], ~at=[“Data”, “Quality”, “Algo-
rithm”, “Cleaning”, “XML”], and ~av=[“IQIS”, “ACM/IEEE”,
“Joint”, “C.”, “Digital”, “Libraries”]. In Section 5, we study
the variance of handling duplicate tokens (in set and bag
models). Then, the similarity of the citation c and an author
“John Doe” is equivalent to: sim(c, a). That is, if sim(c, a)
is beyond some threshold, we “guess” that c is a false cita-
tion and should have been labeled under “John Doe”, not
“E. F. Codd” (false positive case). When there are many
such authors, we label c as the author with the maximum
sim(c, a).

Speed-up through Sampling. In general, the baseline
approach has a quadratic time complexity which is too ex-
pensive for large-size DLs. However, note that for a citation
c, one does not need to check if c can be labeled as an author
a for all authors. If one can quickly determine candidate au-
thor set from all authors (i.e., pre-filtering), then c better
be tested against only the authors in candidate set. We use
the Gravano et al.’s approximate join algorithm introduced
in Section 2 for the pre-filtering. That is,

for each citation ci (∈ C)

5We pre-prune all stopwords from the title.

71

1: Jeffrey Ullman
...

...

...
m: Wei Wang

...
10550: W. Wang

...

150466: Jeffrey D. Ullman
...

351455: Liwei Wang

...
n: J. D. Ullman

X Y

Wei Wang’s
Block

Jeffrey Ullman’s
Block

Measuring
Distances

Measuring
Distances

Wei Wang:

Jeffrey Ullman:

Rank ID Name
--
1 150466 Jeffrey D. Ullman
2 n J. D. Ullman

Figure 4: Overview of our solution to SC problem.

draw a sample set S(⊆ A);
examine all names sj(∈ S);
return sj (∈ S) with MAX φ;

Note that the complexity is reduced to O(|A|+ |C||S|), that
is typically more scalable than O(|C||A|) since |S| � |A|.

4. THE SPLIT CITATION PROBLEM

4.1 Problem Definition & Solution Overview
We formally define the Split Citation problem as follows:

Given two lists of author names, X and Y , for
each author name x (∈ X), find name variants
of x: y1, y2, ..., yn (∈ Y).

The baseline approach to solve the problem is to treat each
author name as a “string”, and perform all pair-wise string
distance using some distance function, dist(x, y):

for each name x (∈ X)
for each name y (∈ Y)

if dist(x, y) < φ, x and y are name variants;

This baseline approach has the limitations similar to the
baseline approach of the MC problem in Section 3. Since the
baseline approach is prohibitively expensive to run for large
DLs (because of its quadratic time complexity, O(|X||Y |))),
there is a need for more scalable algorithms. Furthermore,
many authors from similar cultural or national background
shares similar spellings in their name, those algorithms should
not be too much dependent on the syntactic similarities of
author-name strings.

Solution Overview. Figure 4 illustrates our name disam-
biguation algorithm: (1) Instead of syntactically comparing
two name spellings alone, we use information associated with
the author-name strings like coauthor list, authors’ paper ti-
tles, and venue list. For instance, to identify if “Dongwon
Lee” is the name variant of “D. Lee”, instead of computing
the string edit distance of two names, we may test if there
is any correlation between the coauthor lists of “Dongwon
Lee” and “D. Lee.” In the remainder of the paper, we only
focus on exploiting coauthor information as the only associ-
ated information of an author. Exploiting other associated
information (or even hybrid of them as in [12]) is an inter-

Method Step 1 Step 2
naive 1-N – name

two-step name-name 2-NN name name
two-step name-coauthor 2-NC name coauthor
two-step name-hybrid 2-NH name hybrid

Table 1: Solution space of name disambiguation al-
gorithm.

esting direction for future work; (2) To make the algorithm
scalable, we again borrow the sampling idea.

4.2 Name Disambiguation Algorithm
The name disambiguation algorithm is as follows:

/* let Ca be coauthor information of author a; */
for each name x (∈ X) draw a sample set Sx(∈ S);
for each name y (∈ Y) /* Step 1 */

assign y to all relevant samples Si(∈ S);
for each sample Sx (∈ S) /* Step 2 */

for each name z (∈ Sx)
if dist(Cx, Cz) < φ, x and z are name variants;

Note that the time complexity after sampling becomes O(|X|+
|Y |+C|S|), where C is the average number of names per sam-
ple. In general C|S| � |X||Y |.

Depending on the choices in both Step 1 and 2, four vari-
ations of the name disambiguation algorithm are feasible,
as summarized in Table 1: (1) 1-N is a single-step pair-wise
name matching scheme without using sampling or coauthor
information (i.e., it uses plain pair-wise author name com-
parison); (2) 2-NN uses the two-step approach, but do not
exploit “coauthor” information; (3) 2-NC is the main pro-
posal of ours using the sampling and exploiting “coauthor”
information instead of author names; and (4) 2-NH is the
modification of 2-NC in that in step 2, it combines both au-
thor and coauthor information together with proper weights
(e.g., we used 1/4 and 3/4 for author and coauthor, respec-
tively).

Although using the sampling speeds up the whole process-
ing significantly, another important issues is to find out the
right distance metric to use in Step 2. Since each author is
represented as a potentially very long coauthor list, different
distance metrics tend to show different accuracy/performance
trade-off. To examine this issue, we have considered two
supervised methods (i.e., Naive Bayes Model and Support
Vector Machine) and five unsupervised methods (i.e., cosine,
TFIDF, Jaccard, Jaro and JaroWinkler). In what follows,
we briefly describe each method.

Naive Bayes Model (NBM). In this method, we use
Bayes’ Theorem to measure the similarity between two au-
thor names. For instance, to calculate the similarity between
“Dongwon Lee” and “Lee, D.”, we estimate the probability
per coauthor of “Dongwon Lee” in terms of the Bayes rule
in training, and then calculate the posterior probability of
“Lee, D.” with the coauthors’ probability values of “Dong-
won Lee” in testing. As shown in Figure 4, given a block
corresponding to an author name x in X with the associated
author names yi in Y (i ∈ [1, k], where k is the total num-
ber of author names from Y), we calculate the probability
of each pair of x and yi and find the pair with the maximal
posterior probability as follows:

For training, a collection of coauthor names of x are ran-
domly split, and only the half is used for training. We
estimate each coauthor’s conditional probability P (Am|x)

72

Name Description
x, y coauthor names
Tx all tokens of the coauthor x
Cx all characters of x

CCx,y all characters in x common with y
Xx,y # of transpositions of char. in x relative to y

Table 2: Terms.

conditioned on the event of x from the training data set,
Ai ∈ {A1, ..., Aj , ..., Am} and Aj is the j-th coauthor of x:

P (Aj |x) = P (Aj |Frequent, Coauthor, x)×
P (Frequent|Coauthor, x)× P (Coauthor|x) +

P (Aj |Infrequent, Coauthor, x)×
P (Infrequent|Coauthor, x)× P (Alone|x)

where P (Alone|x) is the probability of x writing a paper
alone, P (Coauthor|x) is the probability of x working for a
paper with coauthors in future, P (Frequent|Coauthor, x)
is the probability of x working for a paper with the coau-
thors, who worked with x at least twice in the training
data, conditioned on the event of x’s past coauthors, and
P (Aj |Frequent, Coauthor, x) is the probability of x work-
ing for a paper with a particular coauthor Aj

For testing, we use the following target function: VNBM =
MAXyi∈N{P (yi)ΠkP (Ak|yi)}, where N denotes is the total
number of author names from Y in the block and Ak is the
k-th coauthor in yi, being the same coauthor as in x.

Support Vector Machines (SVM) is one of the popular
supervised classification methods. In our context, it works
as follows: First, all coauthor information of an author in a
block is transformed into vector-space representation. Au-
thor names in a block are randomly split, and 50% is used for
training, and the other 50% is used for testing. Given train-
ing examples of author names labeled either YES (e.g., “J.
Ullman” and “Jeffrey D. Ullman”) or NO (e.g., “J. Ullman”,
“James Ullmann”), the SVM creates a maximum-margin hy-
perplane that splits the YES and NO training examples. In
testing, given the SVM classifies vectors by mapping them
via kernel trick to a high dimensional space where the two
classes of equivalent pairs and different ones are separated by
a hyperplane, and the corresponding similarity is obtained.
For the SVM prediction, we use the Radial Basis Function

(RBF) kernel [7], K(xi, yi) = e−γ||xi−yi||2 , (γ > 0), among
alternatives (e.g., linear, polynomial, sigmoid kernels).

String-based Distance Metrics. In this scheme, the
distance between two author names are measured by the
distance between their coauthor lists (thus no training is
needed). That is, to measure the distance between “Dong-
won Lee” and “Lee, D.”, instead of computing dist(“Dongwon
Lee”, “Lee, D.”), we compute dist(coauthor-list(“Dongwon
Lee”), coauthor-list(“Lee, D.”)). Among many possible dis-
tance measures, we used two token-based string distances
(e.g., Jaro and TFIDF), and two edit-distance-based ones
(e.g., Jaro and JaroWinkler) that were reported to give a
good performance for the general name matching problem
in [6]. We briefly describe the metrics below. For details of
each metric, refer to [6].

Using the terms of Table 2, the four metrics can be defined

as follows: (1) Jaccard(x,y) =
|Tx

⋂
Ty|

|Tx
⋃

Ty| ; (2) TFIDF(x,y) =∑
w∈Tx∩Ty

V (w, Tx)×V (w, Ty), where V (w, Tx)=log(TFw,Ty+

1)× log(IDFw)√∑
w

′ (log(TFw,Ty +1)×log(IDFw))
(symmetrical for V (w, Ty)),

where TFw,Tx is the frequency of w in Tx, and IDFw is the
inverse of the fraction of names in a corpus containing w; (3)

Jaro(x,y) = 1
3
×(

|CCx,y|
|Cx| +

|CCy,x|
|Cy| +

|CCx,y|−XCCx,y,CCy,x

2|CCx,y|);

(4) JaroWinkler(x,y) = Jaro(x, y) + max(|L|,4)
10

× (1 −
Jaro(x, y)), where L is the longest common prefix of x and
y.

Vector-based Cosine Distance. In this approach, in-
stead of using string distances, we use vector distances to
measure the similarity of the coauthor lists. We model the
coauthor lists as vectors in the vector space, each dimension
of which corresponds to a unique author name appearing in
the citations. To measure the distance between two vectors,
v and w, we use the simple cosine distance, an angle between
two vectors, defined as: cos θ = v·w

‖v‖·‖w‖ .

5. EXPERIMENTAL VALIDATION

5.1 Data Sets and Platform
We have gathered real citation data from four different

domains, as summarized in Table 3. Compared to previous
work, all of the four data sets are substantially “large-scale”
(e.g., DBLP has 360K authors and 560K citations in it).
Different disciplines appear to have slightly different cita-
tion policies and conventions. For instance, Physics and
Medical communities seem to have more number of coau-
thors per article than Economics community. Furthermore,
the conventions of citation also vary. For instance, citations
in e-Print use the first name of authors as only initial, while
ones in DBLP use full names. All four data sets are pre-
segmented (i.e., each field of coauthors, title, and venue are
already known to us).

For the sampling technique, we used the implementation
of [11] with a sample S = 64 and a threshold θ = 0.1. For
the supervised learning methods, citations per author are
randomly split, with half of them used for training, and the
other half for testing. For the implementation of Support
Vector Machines, LIBSVM6 was used. For the string-based
distance functions of the unsupervised learning methods, we
used the implementations of TFIDF, Jaccard, Jaro, and
JaroWinkler from SecondString7. Other remaining meth-
ods were implemented by us in Java. All experimentation
was done using Microsoft SQL Server 2000 on Pentium III
3GHZ/512MB.

5.2 Results for MC Problem
Configuration. For this MC problem, we used two DLs
out of four (due to time constraint) as test-beds: DBLP and
EconPapers. For DBLP (which authors know well), we col-
lected real examples with the MC problem: e.g., Dongwon
Lee, Chen Li, Wei Liu, Prasenjit Mitra, and Wei Wang, etc,
and for EconPapers (which authors do not know well), we
injected an artificial “false citations” into each author’s ci-
tation collection. For both data sets, we tested how to find
the “false citations” from an author’s citations (that is, we
had a solution set for both cases). In constructing token
vectors, we used two models, Set and Bag , depending on

6http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
7http://secondstring.sourceforge.net/

73

Data set Domain # of authors/ # of coauthors per author # of tokens in coauthors per author
of citations (avg/med/std-dev) (avg/med/std-dev)

DBLP CompSci 364,377/562,978 4.9/2/7.8 11.5/6/18
e-Print Physics 94,172/156,627 12.9/4/33.9 33.4/12/98.3
BioMed Medical 24,098/6,169 6.1/4/4.8 13.7/12/11.0

EconPapers Economics 18,399/20,486 1.5/1/1.6 3.7/3/4.1

Table 3: Summary of data sets.

300

600

900

1200

Baseline Sampling

Method

T
im

e
 (

se
c
)

set
bag

Figure 5: Scalability (EconPapers).

the preservation of the multiple occurrences of the same to-
ken. For testing, we used the weights, α = 0.5, β = 0.3, and
γ = 0.2. As evaluation metrics, we used time for scalability,
and percentage/rank ratio for accuracy (i.e., A false citation
cf must be ranked low in sim(cf , a). Thus, we measured
how much percentage of false citations were ranked in the
bottom 10%, 20%, etc).

Results. First, Figure 5 clearly shows the superior scala-
bility of the sampling-based approach over the baseline one
(about 3-4 times faster), regardless of set or bag models.
Since the time complexity of the sampling-based approach
is bounded by S, which was set to 64, for a large C such as
DBLP, the scalability gap between two approaches further
widens. Second, Figure 6(a) illustrates the accuracy of both
approaches for EconPapers. For instance, when there is a
single false citation cf hidden in the 100 citations, the sam-
pling approach with the bag model can identify cf with over
60% accuracy (i.e., rank=0.1/%=64). Furthremore, when it
can return upto 2 citations as answers, its accuracy improves
to over 80% (i.e., rank=0.2/%=82). Since many tokens in
citations tend to co-occur (e.g., same authors tend to use the
same keywords in titles), the bag model that preserves this
property performs better. Finally, Figure 6(b) shows results
on DBLP using only the bag model. Note that some col-
lection has a mixture of “2” authors’ citations while others
have that of “over 3” authors (e.g., there exists more than 3
authors with the same spellings of “Wei Liu”). Intuitively,
collections with more number of authors’ citations mixed are
more difficult to handle. For instance, when 2 authors’ cita-
tions are mixed, 100% of false citations are always ranked in
the lower 30% (i.e., rank=0.3) using the sampling approach.
However, when more than 3 authors’ citations are mixed,
the percentages drop to mere 35% – it is very difficult to
decipher a false citation when it is hidden in a collection
that contains a variety of citations from many authors. We
leave a solution to remedy this problem as a future work.

5.3 Results for SC Problem
Configuration. Ideally, it would be desirable to apply our

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rank

P
e
rc

e
n
ta

g
e
 (

%
)

Baseline (set)

Baseline (bag)

Sampling (set)

Sampling (bag)

(a) EconPapers

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rank

P
e
rc

e
n
ta

g
e
 (

%
)

Baseline (2)

Baseline (over 3)

Sampling (2)

Sampling (over 3)

(b) DBLP

Figure 6: Accuracy (EconPapers and DBLP).

framework to existing DLs to find all real name variants.
However, given a large number of citations that we aim at,
it is not possible nor practical to find a “real” solution set.
For instance, to determine if “A” is indeed a name variant
of “B”, human experts have to trace it carefully. There-
fore, here, we use synthetic solution sets. Nevertheless, in
practice, we envision that our framework be used as a tool
to assist human experts to narrow down candidate name
variants significantly.

To make solution sets, for each data set, we prepare two
initially-empty lists, X and Y . Then, we pick 100 authors
with substantial number of citations (so that supervised
methods can be trained), and put them into X. For each
of 100 original names, xn, in addition, we create an arti-
ficial name variant, yn. Furthermore, citations of each xn

are randomly split into two sets, and assigned to xn and yn,
respectively (i.e., each name carries half of the original cita-
tions). Finally, to make the disambiguation more challeng-
ing, we dump the entire author names into Y . For instance,
for DBLP test case, there are 100 and 364,377 names in X
and Y , respectively. Then, through the proposed two-step
name disambiguation algorithm, for each name in X, we test
if the algorithm is able to find the corresponding “artificial”
name variant in Y (that we generated and thus know what
it is).

74

0.5

0.6

0.7

0.8

0.9

1

NBM SVM Cosine TFIDF Jaccard Jaro JaroWin

Distance metrics

Ac
cu

ra
cy

Figure 7: Accuracy (DBLP).

Note that the way we generate artificial name variants
may affect the performance of sampling. In general, it is
difficult to precisely capture the right percentages of differ-
ent error types in author name variants. For the original
name “Ji-Woo K. Li”, for instance, some of possible error
types are name abbreviation (“J. K. Li”), name alterna-
tion (“Li, Ji-Woo K.”), typo (“Ji-Woo K. Lee” or “Jee-Woo
K. Lee”), contraction (“Jiwoo K. Li”), omission (“Ji-Woo
Li”), or combinations of these. To quantify the effect of
error types on the accuracy of name disambiguation algo-
rithms, we first compared two cases: (1) mixed error types
of abbreviation (30%), alternation (30%), typo (12% each
in first/last name), contraction (2%), omission (4%), and
combination (10%); and (2) abbreviation of the first name
(85%) and typo (15%). The accuracy of the former case
is shown in Figure 7, and that of the latter case is in Fig-
ure 10(a). Note that regardless of the error types or their
percentages, both cases show reasonably similar accuracies
for all seven distance metrics (i.e., 0.8–0.9 accuracy). There-
fore, all subsequent experimentations are done using the lat-
ter case (85%/15%).

Evaluation metrics. To measure how effectively name
variants can be found, we measured the “accuracy” of top-k
as follows. For a name in X, our algorithm finds top-k can-
didate name variants in Y . If the top-k candidates indeed
contain the solution, then it’s match. Otherwise, it is a mis-
match. This is repeated for all 100 names in X. Then, over-
all accuracy is defined as: Accuracy = # of matches

100
. The ac-

curacy was measured for different k values (i.e., k = 1, 5, 10).
For instance, with k = 5 in the DBLP data set, for each au-
thor in X, methods return the top-5 candidate name vari-
ants out of 364,377 authors, and if one of these 5 candidates
is the artificial name variant that we created, then it is a
match. We repeated all of the subsequent experiments for
three window sizes of 1, 5, and 10, and found that accura-
cies with larger window size (k = 10) are about only 10%
higher than those with smaller window size (k = 1). Since
the different is small, in what follows, we present the results
using k = 5.

Results. Figure 8 summarizes the experimental results of
four alternatives using three representative metrics – TFIDF,
Jaccard, and Jaro. In terms of the processing time, 1-N is
the slowest for TFIDF and Jaccard, as expected, due to
its quadratic time complexity (i.e., 100 × 364, 377 times of
pair-wise name comparisons). The other three show similar
performance thanks to the sampling. In terms of accuracy,
both 2-NC and 2-NH shows about 20%-30% improvement,
compared to 1-N and 2-NN, validating the assumption that

0

500

1000

1500

2000

2500

1-N 2-NN 2-NC 2-NH

Method

Ti
m

e
(s

ec
)

TFIDF
Jaccard
Jaro

 (a) Scalability

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-N 2-NN 2-NC 2-NH
Method

A
cc

ur
ac

y

TFIDF
Jaccard
Jaro

 (b) Accuracy

Figure 8: DBLP with k = 1.

0

100

200

300

400

500

600

NBM SVM Cosine TFIDF Jaccard Jaro JaroWin

Distance metrics

Ti
m

e
(s

ec
) DBLP

e-Print
BioMed
EconPapers

Figure 9: Processing time for Step 2.

exploiting additional information (i.e., coauthor) than the
simple name spelling is beneficial. Since 2-NH shows no
noticeable improvements over 2-NC, in the remaining ex-
periments, we use 2-NC as a default scheme.

Next, we measured the processing time for step 2 alone
(distance measure stage) as shown in Figure 9. In general,
token-based distance metrics (e.g., TFIDF, Jaccard) outper-
forms edit distance based metrics (e.g., Jaro, JaroWinkler).
This becomes clearly noticeable for DBLP, but not for Econ-
Papers for its small size. In addition, SVM tends to take
more time than the others since the hyperplane needs to be
split in succession due to SVM’s binary-classifiers.

Figure 10 summarizes the accuracies of our proposal for
all four data sets (with k = 5). In general, the distance met-
rics such as the SVM, cosine, TFIDF and Jaccard perform
much better than the others. For DBLP data set, most dis-
tance metrics achieved upto 0.93 accuracy, finding most of
100 name variants out of 364,377 candidates. For e-Print
data set, the accuracy drops down, except the SVM, and
for BioMed data set, it gets worse (especially for Jaro and
JaroWinkler).

The accuracies of DBLP and e-Print data sets are better
than that of BioMed data set. The poor performance of
BioMed case is mainly due to the small number of citations

75

0.6

0.7

0.8

0.9

1

NBM SVM Cosine TFIDF Jaccard Jaro JaroWin

Distance metrics

A
cc

ur
ac

y

DBLP
e-Print
BioMed
EconPapers

 Figure 10: Accuracy (k = 5).

per authors in data set. Since 2-NC scheme is exploiting
coauthor information of the author in question to find name
variants, the existence of “common” coauthor names is a
must. However, in the BioMed data set, each author has
only a small number of citations, 1.18, on average, and only
small number of coauthors, 6.1, on average, making a to-
tal number of coauthors as 7.19 = 1.18 × 6.1 (assuming all
coauthors are distinct). Therefore, for two arbitrary author
names x and y, the probability of having “common” coau-
thors in BioMed data set is not high. On the other hand, for
the e-Print data set, the average number of citations (resp.
coauthors) per author is higher, 4.27 (resp. 12.94), making a
total number of coauthors as 55.25 = 4.27× 12.94 – roughly
8 times of the BioMed data set.

In general, Jaro or JaroWinkler method in step 2 gave
poorer accuracy than the others. Since they are edit-distance
based methods that are heavily affected by the number of
transpositions, as the length of string to compare increases
(in 2-NC, it is a long coauthor string to compare), its error
rate increases as well. In the e-Print data set, the accuracies
are lower, compared to those of DBLP. This is because most
of citations in e-Print data set use abbreviation for the first
name of authors. Since the sampling technique uses TFIDF
for weighting tokens, common tokens like abbreviated first
name (e.g., “E.” or “P.”) would have lower weight via IDF,
negatively affecting matching process.

6. CONCLUSION
Two interesting and practical problems – Mixed Citation

and Split Citation – are formally introduced and their so-
lutions are explored. Since both problems commonly occur
in many of the existing bibliographic digital libraries, it is
important to devise effective and efficient solutions to them.
By utilizing one of the state-of-the-art sampling-based ap-
proximate join techniques, our solutions are scalable yet
highly effective. Furthermore, our proposals exploit asso-
ciated information of author names (e.g., coauthors, titles,
or venues) than names themselves, achieving 90-93% accu-
racy overall.

As to future direction, in addition to comparing ours against
others (e.g., [2, 22]), we plan to apply our framework to other
domains (e.g., address, movie) to test its generality.

7. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.

“Eliminating Fuzzy Duplicates in Data Warehouses”. In
VLDB, 2002.

[2] I. Bhattacharya and L. Getoor. “Iterative Record Linkage
for Cleaning and Integration”. In ACM SIGMOD

Workshop on Research Issues in Data Mining and
Knowledge Discovery, 2004.

[3] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. “Adaptive Name-Matching in Information
Integration”. IEEE Intelligent System, 18(5):16–23, 2003.

[4] V. R. Borkar, K. Deshmukh, and S. Sarawagi. “Automatic
Segmentation of Text into Structured Records”. In ACM
SIGMOD, 2001.

[5] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
“Robust and Efficient Fuzzy Match for Online Data
Cleaning”. In ACM SIGMOD, 2003.

[6] W. Cohen, P. Ravikumar, and S. Fienberg. “A Comparison
of String Distance Metrics for Name-matching tasks”. In
IIWeb Workshop held in conjunction with IJCAI, 2003.

[7] N. Cristianini and J. Shawe-Taylor. “An Introduction to
Support Vector Machines”. Cambridge U. Press, 2000.

[8] J. M. B. Cruz, N. J. R. Klink, and T. Krichel. “Personal
Data in a Large Digital Library”. In ECDL, 2000.

[9] P. T. Davis, D. K. Elson, and J. L. Klavans. “Methods for
Precise Named Entity Matching in Digital Collection”. In
ACM/IEEE JCDL, 2003.

[10] I. P. Fellegi and A. B. Sunter. “A Theory for Record
Linkage”. J. of the American Statistical Society,
64:1183–1210, 1969.

[11] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava.
“Text Joins in an RDBMS for Web Data Integration”. In
WWW, 2003.

[12] H. Han, C. L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis.
“Two Supervised Learning Approaches for Name
Disambiguation in Author Citations”. In ACM/IEEE
JCDL, Jun. 2004.

[13] M. A. Hernandez and S. J. Stolfo. “The Merge/Purge
Problem for Large Databases”. In ACM SIGMOD, 1995.

[14] Y. Hong, B.-W. On, and D. Lee. “System Support for
Name Authority Control Problem in Digital Libraries:
OpenDBLP Approach”. In ECDL, 2004.

[15] J. A. Hylton. “Identifying and Merging Related
Bibliographic Records”. PhD thesis, Dept. of EECS, MIT,
1996. LCS Technical Report MIT/LCS/TR-678.

[16] M. A. Jaro. “Advances in Record-Linkage Methodology as
Applied to Matching the 1985 Census of Tampa, Florida”.
J. of the American Statistical Association, 84(406), 1989.

[17] R. P. Kelley. “Blocking Considerations for Record Linkage
Under Conditions of Uncertainty”. In Proc. of Social
Statistics Section, pages 602–605, 1984.

[18] S. Lawrence, C. L. Giles, and K. Bollacker. “Digital
Libraries and Autonomous Citation Indexing”. IEEE
Computer, 32(6):67–71, 1999.

[19] A. McCallum et al. “Efficient Clustering of
High-Dimensional Data Sets with Application to Reference
Matching”. In ACM KDD, 2000.

[20] B.-W. On, D. Lee, J. Kang, and P. Mitra. “Comparative
Study of Name Disambiguation Problem using a Scalable
Blocking-based Framework”. In ACM/IEEE JCDL, 2005.

[21] H. Pasula et al. “Identity Uncertainty and Citation
Matching”. In Advances in Neural Information Processing
Systems. MIT Press, 2003.

[22] S. Sarawagi and A. Bhamidipaty. “Interactive
Deduplication using Active Learning”. In ACM KDD, 2002.

[23] M. M. M. Synman and M. Rensburg. “Revolutionizing
Name Authority Control”. In ACM DL, 2000.

[24] J. W. Warnner and E. W. Brown. “Automated Name
Authority Control”. In ACM/IEEE JCDL, 2001.

[25] W. E. Winkler and Y. Thibaudeau. “An Application of the
Fellegi-Sunter Model of Record Linkage to the 1990 U.S.
Decennial Census”. Technical report, US Bureau of the
Census, 1991.

76

Appr oximate Matching of Textual Domain Attrib utes for
Information Sour ce Integration

Andreas Koeller
Dept. of Computer Science
Montclair State University

1 Normal Ave, Montclair, NJ, USA

koellera@mail.montclair.edu

Vinay Keelara
Dept. of Computer Science
Montclair State University

1 Normal Ave, Montclair, NJ, USA

vinay keelara@yahoo.com

ABSTRACT
A key problem in the integration of information sources is
the identification of related attributes or objects across in-
dependent sources. Inferring such meta-information from
source data (rather than a-priori available meta-data, such
as attribute names) is sometimes possible. For example, ex-
isting algorithms attempt to integrate information sources
by finding patterns such as Inclusion Dependencies (INDs)
across them. However, INDs are based on exact set inclu-
sion and are thus very strict patterns that rarely hold across
independent real-world databases.

We propose two error-tolerant measures, termed Similar-
ity Score and Distribution Score, that help identify related
attributes across two independent databases, based on sim-
ilarities in their data. Those measures specifically address
the problem of identifying semantic relationships between
textual attributes of databases that have few or no equal
values.

We also present implementations of those measures and
some experimental results.

1. INTRODUCTION
The explosion in the number of data sources on the web

and the proliferation of a wide variety of diverse databases
has demonstrated the wide variations in the representation
of real world entities across data sources. These variations
or discrepancies in the representation of the same or related
real world entities can arise from the different formats used
to store the data, differences in syntax, differences in schema
or just the autonomy of the sources of information (and the
fact that data is entered by humans).

In any large organization, different parts of the organiza-
tion may use different systems to produce and store their
data. This may be because of lack of co-ordination, differ-
ent rates of adopting new technology or because of merg-
ers and acquisitions, in which the new organization inherits
the data of the original entities. It will now have to ac-

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
IQIS2005,June17,2005,Baltimore,MD, USA
Copyright 2005ACM 1-59593-160-0/05/06...$5.00.

cess information from multiple original data sets as well as
consolidate them so as to eliminate duplication. However
the original data sets may not be immediately compatible
with each other because the data may be stored in different
DBMS, in different formats and schemas.

Many organizations now also collect or correlate their data
from autonomous sources within the organization as well as
from external sources, to perform data warehousing, min-
ing and statistical analysis. All these applications rely on
correct information about database relationships to perform
their tasks.

Correlations between the data are typically based on com-
mon domains or ontologies or existence of a global do-
main across the sources. If such meta information is lack-
ing, incomplete, or wrong, it can help to detect relation-
ships between sources from the source data, rather than
schema. While schema-based matching is performed semi-
automatically, and significant human input is often neces-
sary, data comparisons have the potential to be executed
entirely by algorithms, leading to increased efficiency and
potentially new applications in the area of data integration.

This paper addresses the issue of comparing two inde-
pendent databases (i.e., collections of data objects, each of
which has a number of attributes), and discovering sets of
related attributes between them. The approach takes into
account that data is rarely perfect, that data objects repre-
senting the same real-world entity usually do not have equal
values, and also tolerates missing or faulty data. It relies
on the assumption that data is primarily stored in textual
form and that related data objects show at least some tex-
tual similarity. At the basic level, it makes use of the well-
known TF-IDF score for text comparisons, integrating this
score into the novel measures of Similarity Score and Dis-
tribution Score. While the first score measures relatedness
between attributes without duplicates, the second score ex-
plicitly takes duplicate values in attributes into account. In
combination, the two scores give a measure of relatedness of
attributes, in the sense that a high Similarity (or Distribu-
tion) Score between two attributes suggests that those two
attributes likely refer to the same real-world entity type.

Furthermore, our scores are defined on sets of attributes,
which enables us to compare entire relations and identify
sets of related attributes between them. This procedure is
akin to the process of inferring functional dependencies [2]
or inclusion dependencies [5] solely from database data, but
goes beyond those exact patterns. Instead, our scores give
degrees of confidence in the relationship between attributes,

77

making them appropriate for real-world, noisy data.
This paper is organized as follows: Section 2 reviews back-

ground material on the related concept of inclusion depen-
dencies, as well as the TF-IDF text comparison metric. Sec-
tion 3 defines the Similarity and Distribution Scores for pairs
of individual attributes and also introduces an algorithm to
apply those scores to sets of attributes. Section 4 gives a
very brief algorithmic analysis, and Section 5 provides some
experimental results on effectiveness of our scores and the
efficiency of their computation. Section 6 reviews related
work and Section 7 gives conclusions and outlook.

2. BACKGROUND

2.1 SchemaMatching
Schema matching, that is the identification of semanti-

cally related schema elements across independent databases,
is an important task that should be automated as much as
possible. Two basic approaches exist [22]. In schema-only
matching, database fields related to each other are identified
based only on the schema of the data sources considered.
This matching may be implemented for example through
linguistic means on schema element names or through con-
straint matching (e.g., in the ARTEMIS/MOMIS project [3]).
In the second approach, instance-based matching, one con-
siders the properties of the data contained in the database
fields to conclude that two fields are related. Some impor-
tant instance-based matching projects are SemInt [19] and
LSD [10]. Some recent works in database integration in-
volve a combination of both schema level and instance level
matching. The Corpus-based schema matcher [12] incorpo-
rates this approach. A paper by Kang and Naughton [14]
proposes an approach at instance-based matching measuring
entropy and mutual information across attributes.

A promising direction for instance-based matching is
the discovery of Inclusion Dependencies (INDs) between
databases [16, 9].

Definition 1 (Inclusion Dependency). Assume two
relations R and S. An Inclusion Dependency is a rule of the
form

R
[
X

]
⊆ S

[
Y

]
between a set X of attributes from R and a set Y of at-
tributes from S, with

∣∣X∣∣ =
∣∣Y ∣∣ (i.e., with the same number

of attributes in each set).

If an inclusion dependency (IND) of substantial size is
true between two tables R and S, those relations can be
considered related to each other. INDs represent subset-
patterns across relations 1, which might span multiple at-
tributes. For example, a foreign key constraint between two
relations implies an inclusion dependency between the key
and foreign key attributes. However, INDs represent exact
subsets across two relations and are unlikely to be true in
real-world data integration scenarios. INDs cannot model
slight variations in the representation of data or data ex-
tents that overlap only partially.

IND discovery algorithms [16, 9] usually work bottom-up,
first discovering INDs between individual attributes, then

1Note that INDs are not symmetric, i.e., R[X] ⊆ S[Y] does

not imply S[Y] ⊆ R[X]

between pairs of attributes, and so on. While basic levelwise
algorithms akin to the A-priori strategy used in association
rule mining have been proposed [8], the problem’s exponen-
tial nature requires more complex algorithms [16, 9] as well
as heuristic approaches [17]. In general, the discovery of
IND (and other) relationships by comparing the values of
the fields of the database is a very complex process, and the
problem is NP-hard as a function of the number of attributes
in the two relations (since there are 2k possibly related sets
of attributes between two relations with k attributes) [5].

While INDs are defined mainly for relational databases,
the concepts apply to all data models that have the basic
concept of attribute.

2.2 Approximate Matching of Textual Data

Table R
X1 X2
SQL Server Microsoft Labs
Office Microsoft Marketing
Magic Broom American Inc Marketing Research

Labs
Telephone ATT Inc
Pentium Intel Research Labs
Wireless Mouse Microsoft Inc
Relational DB Oracle Labs
Free Phone Plan SBC Inc and SBC Telecom
Personal Computer IBM Research and Marketing
Passenger Airplane Boeing Inc
Wireless Phone ATT Research and ATT Telecom

Table S
Y1 Y2
Wireless Telephone ATT Telecom Research
SQL Server DB Microsoft Research
The Pentium Pro-
cessor

Intel Research Facilities

DB Technology Oracle Research Labs
DB Technology Foxpro International Inc
The Magic Broom American Marketing Research
Almost Free Phone
Plan

SBC Telecom and Labs

Calculator Technol-
ogy

Texas Instruments Labs

Airplane Boeing Corp
Personal Computer
Technology

IBM Inc Marketing

Broom American Marketing Research

Figure 1: Two tables with Related Data

To motivate the need for a relaxation of the strict In-
clusion Dependency idea, consider two attributes from two
different relations, as shown in Fig. 1.

Even though neither of these two sets is a subset of the
other, the data in the first table is clearly related to the data
in the second table when matching attribute X1 to Y 1 and
X2 to Y 2, i.e., R[X1, X2] ≈ S[Y 1, Y 2]. Algorithms trying
to find inclusion dependencies across such databases [16, 9]
will fail to detect relationships in this case.

To approach this problem, we adapt results from the In-
formation Retrieval domain. A useful tool from that do-
main to measure similarity between texts is the TF-IDF
(Term Frequency/Inverse Document Frequency) metric [23].

78

This metric is defined on a collection of documents, each of
which consists of words. In the relational database domain,
documents correspond to individual values in a relational
attribute. This metric would then apply primarily to at-
tributes in textual domains, whose values can be broken
down into words.

The TF-IDF metric defines a distance between individ-
ual strings based on the frequency of their words within the
string and within the collection of documents (values) in
the database [6]. Let C be a collection of documents (cor-
responding to an attribute in the database domain), and T
the dictionary of C (i.e., the union of all words used in all
documents of C). Then, for each word t ∈ T , we define Ct

to be the subset of C whose documents (values) contain the
word t. For each document c ∈ C, we also define a cor-
responding document vector vc ∈ R|T |, whose components
vc,t each correspond to a term t ∈ T . Then, with TFc,t as

the count of t in c and IDFt = |Ct|
|C| , the TF-IDF score of a

component vc,t ∈ vc can be defined [6] as

vc,t =

{
(log(TFc,t) + 1) · log(IDFt) if TFc,t ≥ 1
0 otherwise.

Each vector vc formed from such components is then nor-
malized to unit length. The TF-IDF distance between two
documents c1 and c2 is now defined as the dot-product2 be-
tween the corresponding unit-length document vectors

δ(c1, c2) = vc1 · vc2 .

The intuition behind this definition is that the angle be-
tween two vectors (whose cosine is computed by the dot
product) is a measure of similarity between documents. Lower
angles (i.e., higher TF-IDF values) mean higher similarity.
This metric emphasizes common words between the docu-
ments, and similarities in the relative frequencies of such
words. Furthermore, due to the IDF component in the
IF-IDF score, it weighs rare terms more heavily than fre-
quent terms. This is justified since so-called function words
(prepositions, articles, conjunctions) usually carry less “mean-
ing” than the less frequent nouns and verbs. Similar docu-
ments therefore are those that share many important terms.
Two more observations are that documents with distinct
sets of words are considered unequal (since their vectors’
dot-product is 0) and that the order of the words in the
documents is ignored.

3. DISCOVERING DATABASE SIMILARI-
TIES

In this work, we combine the idea of database integration
through instance matching with the idea of textual similarity
metrics to define measures and algorithms for the integration
of databases with textual attributes.

3.1 Measuring Similarity of Attrib utes
In our approach to integration of heterogeneous databases,

we assume that many domains describing real world entity
types in databases are natural language text. Taking this
further, we see that any textual data within the relations
of the database can be seen as a set of individual name

2~a ·~b =
∑

0≤i<|a|
aibi for unit length vectors.

constants (also represented in natural language text) which
correspond to entities in the real world.

In this scenario, only in very rare cases can we rely on the
equality of tuples or attributes to identify similar relations.
Therefore, we relax the requirement of value equality and
now define the concept of similarity as follows.

Definition 2 (Similarity). Assume two relations R
and S. The similarity of two tuples x ∈ R and y ∈ S is
a measure of confidence in the co-reference between them.
Two tuples are said to be co-referent if they refer to or are
mapped from the same real world entity. We denote similar-
ity of two tuples x and y by sim(x, y), with 0 ≤ sim(x, y) ≤ 1.
A similarity of 1 means certain co-reference, whereas a sim-
ilarity of 0 means unrelated semantics of x and y. For a
given threshold c, x and y are called similar if sim(x, y) > c,
denoted by x ≈ y.

Determining co-reference simply from data is not always
possible, since textual data typically does not carry enough
information to decide co-reference (i.e., while “AT&T Re-
search” is probably co-referent with “AT&T Labs”, the val-
ues “Microsoft Research” and “Microsoft Office” certainly
are not co-referent).

In this paper, we use the TF-IDF score for two documents
as the similarity score for two tuples.

Definition 3 ((Value) Similarity Score). Assume
two attributes X and Y across two databases. The similarity
score between two values x ∈ X and y ∈ Y is defined as

sim(x, y) ≡ δ(x, y)

The document collection as used in the TF-IDF score
is defined as the concatenation of X and Y , i.e,. as a
(multi)set containing all values of X and all values of Y ,
possibly with duplicates. In particular, the size of the docu-
ment collection C is |C| = |X| + |Y |. The dictionary T is
defined by all distinct terms in all values in C.

We now extend the notion of similarity to attributes:

Definition 4 (Attribute Similarity). Assume two
relations R and S. The similarity between an attribute X
from R and an attribute Y from S is a measure of confi-
dence in the co-reference between them. Analogously to value
similarity, we denote attribute similarity by sim(X, Y), with
0 ≤ sim(X, Y) ≤ 1.

We now discuss meaningful ways of computing attribute
similarity, i.e., establishing a similarity measure that pre-
dicts co-reference of attributes.

3.2 Computing Attrib ute Similarity through
ValueSimilarity

In order to compute attribute similarity, we combine indi-
vidual value similarity scores. We begin by defining a vector
carrying information about attribute similarity, using value
similarity as defined above.

Definition 5 (Attribute Similarity Vector).
Assume two attributes X and Y from two relations R and
S. Without loss of generality, furthermore assume that
|R| ≤ |S|. Temporarily fix some order of the tuples in X,
for example x0, x1, . . . , x|R|−1.

79

A
Microsoft Labs
ATT Inc
Oracle Labs
Boeing Inc

B
Microsoft Labs
ATT Inc
Microsoft Labs
Oracle Labs
Oracle Labs
Boeing Inc

C
Microsoft Labs
Oracle Labs
Boeing Inc
ATT Inc
Microsoft Labs
Oracle Labs
SBC Inc
IBM Research
Texas Instruments
Verizon Telecom

Figure 2: Similar attributes with different degrees
of relatedness

The components of the attribute similarity vector VX,Y ∈
R|R| are then defined as vi = max

y∈Y
(sim(xi, y)) with 0 ≤ i <

|R|. That is, for each value (tuple) in attribute X, the vector
contains the best (highest) similarity score with any value
(tuple) in Y .

Note that all components of this vector are numbers be-
tween 0 and 1. A simple measure for attribute similarity can
now easily be defined as the average value of the attribute
similarity vector’s components:

Definition 6 (Similarity Score). The similarity be-
tween two attributes X and Y is defined as

sim(X, Y) =

∑
v∈VX,Y

v

dim(VX,Y)

where dim(V) is the number of components in vector V .

Example With the data as given in Fig. 1, the similarity
scores between each pair of attributes are:

X1 X2 Y 1 Y 2
X1 1 0 0.591 0
X2 1 0 0.712
Y 1 1 0
Y 2 1

This table gives the values for sim(X, Y) where the at-
tribute X is taken from the smaller relation compared to
attribute Y , as required in the definition. 2

In the absence of duplicate values in the attributes com-
pared, the similarity score gives a good first indication of
the attributes’ relatedness.

3.3 RelationshipsbetweenNon-KeyAttrib utes
This paper focuses on inclusion-dependency-like approx-

imate relationships between databases. Such patterns of-
ten include individual attribute pairs with duplicate values.
Consider the example in Fig. 2.

While both A and B are subsets of the attribute C (in
the “relational” sense of the term subset, i.e, after removal
of duplicates), intuitively, attribute B, rather than attribute
A, has a greater degree of similarity with attribute C. For
example, the fact that in attribute B company names repeat
but in attribute A there are no duplicates probably means
they are used in different contexts (and therefore have dif-
ferent semantics). However, the similarity score as defined

above will not capture this difference as is it 1 for all pairings
of attributes A, B, and C.

The higher similarity of A to C can be captured by com-
paring the value distributions of the attributes, rather than
simply comparing their values. Therefore, we define the con-
cept of Approximate Bag Inclusion for attributes, based on
the principles of bag (multi-set) semantics [1]. The concept
of set membership is extended in bag semantics to element
multiplicities, denoted by µ. For example, in the multi-set
A = {1, 1, 2, 3}, µ(A, 1) = 2 and µ(A, 5) = 0. Set member-
ship is naturally defined as a ∈ A ⇐⇒ µ(A, a) ≥ 1. A bag
A is included in a bag B if ∀a ∈ A : µ(A, a) ≤ µ(B, a).

We adapt this definition to our domain of approximate at-
tribute matching to obtain a Distribution Score for the com-
parison of attributes containing duplicates, based on their
value distribution.

First, we define an approximate multiplicity accounting
for the fact that we do not expect to find exact inclusion of
tuples across our source relations, followed by the definition
of a distance measure between such attributes.

Definition 7 (Approximate Multiplicity). Assume
an attribute X from relation R, an attribute Y from relation
S, and a tuple x ∈ X. R and S could be the same relation
and X and Y could be the same attribute. The approximate
multiplicity of x in Y , denoted by µ̃(Y, x) is then defined as
the number of tuples y ∈ Y for which sim(x, y) ≥ c, with c
some constant between 0 and 1.

In our experiments, we empirically found appropriate val-
ues of the similarity parameter c to be 0.95 if X 6= Y and
0.995 if X = Y , reflecting the expectation that values within
the same relation are more likely to be identical if they are
co-referent, since they are controlled by the same data entry
process.

Rather than counting exact duplicates, this method iden-
tifies a number of tuples in attribute Y that are similar to a
given tuple x from an attribute X. If X = Y , the number of
similar tuples to a given x in its own attribute is computed.
Recall that when computing TF-IDF scores across attributes
in distinct relations R and S, the dictionary T of terms is
the union of the individual dictionaries, and the document
collection C is the concatenation of the two attributes.

This definition of multiplicity is heuristic and does not
imply an exact classification. In particular, clusters of “sim-
ilar tuples” can overlap, i.e., tuples can be part of multiple
clusters, such that the sum of all multiplicities of tuples in
a relation could be substantially higher than the number of
tuples in that relation.

Definition 8 (Attribute Distribution Vector).
Assume two attributes X and Y from two relations R and
S. Without loss of generality, furthermore assume that
|R| ≤ |S|. Temporarily fix some order of the tuples in X,
for example x0, x1, . . . , x|R|−1.

Now, for each xi ∈ X use the value similarity scores to
compute max

y∈Y
(sim(xi, y)) and record the tuple y ∈ Y for

which this maximum was obtained. In the case of duplicate
tuples y with the maximum score, use a random such tuple.

The components of the attribute distribution vector DX,Y ∈
R|R| are then defined as

di =

{
µ̃(X,xi)
µ̃(Y,xi)

if µ̃(X, xi) ≤ µ̃(Y, xi)

0 otherwise

80

That is, the distribution score reflects how many dupli-
cates of a value exist in one attribute, relative to the dupli-
cates of its best-matching related value in another attribute.
With this definition, the components of the distribution vec-
tor are between 0 and 1, and are higher if the multiplicity
of a tuple in relation R approaches the multiplicity of the
corresponding tuple in S (if there is any). If the multiplicity
of a tuple in R exceeds the multiplicity of its corresponding
tuple or if there is no corresponding tuple, the value of the
component is 0. This definition reflects the traditional def-
inition of “bag inclusion” (which we use as an analogy to
Inclusion Dependencies) and also captures the notion that
similar value distributions suggest a higher degree of similar-
ity (i.e., more evidence for co-reference) between attributes
than distinct counts. Note that for any xi that has du-
plicates in X, the corresponding value di appears multiple
times in DX,Y .

We now use this distribution vector to define a distribu-
tion score:

Definition 9 (Distribution Score). The distribution
score between two attributes X and Y is defined as

dis(X, Y) =

∑
v∈DX,Y

v

dim(DX,Y)

where dim(V) is the number of components in vector V .

Note that with this definition, the fact that frequent val-
ues xi from X are represented multiple times in DX,Y gives
higher weight to those values in the distribution score. This
is meaningful since values that appear often in a non-key at-
tribute are probably more important to that attribute, such
that their impact on the total score should be higher.

Example In the data from Fig. 2, similarity scores across
each pair of columns are all 1, since the basic data values
are identical. The distribution scores are as follows:

A B C
A 1 3/4 3/4
B 1 1
C 1

Those scores suggest that attributes B and C are closely
related, while attribute A is not as closely related to either
B or C. 2

Analogously to the definition of the similarity score, a
high distribution score between two attributes (i.e., close to
1) suggests high confidence in co-reference between them.

3.4 Discovery acrossMultiple Attrib utes
The similarity score and distribution score can be used to

estimate the probability that two attributes across two rela-
tions are co-referent, i.e., refer to the same real-world entity.
However, if comparing entire relations, each with multiple
attributes, it is also interesting to determine whether there
are sets of attributes across the relations that are co-referent.
This notion is also inspired by the Inclusion Dependency
concept.

The process of discovering multi-attribute relationships
between two relations R and S is carried out in two phases.
In the first phase we exhaustively compare single attributes
from each relation using similarity scores and distribution
scores. Analogously to the procedure determining Attribute

Distribution Vectors, we compute distribution scores for each
pair of attributes and for each attribute X from R find the
attribute Y in S with the highest distribution score relative
to X.

We then attempt to merge the individual attributes to
form multi-attribute patterns. For example, when merging
two attributes X1 and X2 from R, for each tuple t ∈ R,
we “union” the (textual domain) values t[X1] and t[X2], ob-
taining a new, virtual attribute X1,2. We merge the corre-
sponding attributes in S and then compute the distribution
score between those two new attributes.

Note that due to the way the TF-IDF scores are defined,
we can incrementally compute the TF-IDF scores of the
merged attribute values from the TF-IDF scores of the in-
dividual values, without the need for new database queries.

We merge attributes in decreasing order of their individual
distribution scores, stopping when the distribution score of
the merged set of attributes falls below a threshold.

Note that this is a greedy algorithm, which does not guar-
antee an optimal solution. However, this simple strategy
showed very good results in our experiments.

4. ALGORITHMIC ANALYSIS
A simple algorithmic analysis follows. Assume two rela-

tions R and S, with attR and attS the number of attributes
in R and S, respectively. Furthermore, let T be the dic-
tionary of all terms in the union of all (textual domain)
attributes in R and S.

The most time-consuming procedures are the computa-
tion of TF-IDF scores, which requires accessing each tuple
in each table once, and computation of the similarity and
distribution scores, which compares each tuple in R with
each tuple in S. Each individual comparison of two tu-
ples requires multiplying their TF-IDF vectors. While those
vectors are conceptually very long (they have |T | elements),
they are also very sparse (since each individual document
contains only a fraction of all dictionary words), such that
time- and space-efficient storage is possible, for example by
only storing non-zero components of the vectors. We may
assume an average k for the number of distinct words in a
value in a relation.

The time complexity for computing individual similarity
and distribution scores is then in O(k · |R| · |S|), while the
algorithm to compare two entire relations runs in O(k ·attR ·
attS · |R| · |S|).

The largest data structures in this environment are the
arrays storing individual TF-IDF scores. Their unoptimized
size is |R| · |T | and |S| · |T | floating point values, respectively,
although as mentioned above, those are sparse arrays and
sparse matrix storage can be used. Our algorithms in their
current form rely on the ability to store those structures in
memory.

5. EXPERIMENTS

5.1 Experimental Setup
Algorithms to compute the Similarity Score and Dis-

tribution Score were implemented in Java over relational
databases. The testing environment for all our experiments
consisted of two machines; one 2.5-GHz Pentium-4 Windows
based machine with 2 GB memory running Java 1.4.2 and
one 4 Processor 1.2-MHz Sun Fire 880 system with 8 GB

81

memory running various relational database servers.
Test data was obtained from the UC Irvine KDD Archive

(kdd.ics.uci.edu), and the US Census 2000 archives
(ftp://ftp2.census.gov/census 2000/datasets). The
datasets (converted into relational tables) are:

Movies: This dataset contains a list of movie names.
There is information on actors, casts, directors, rating and
remakes etc. Outside of the key fields, missing values and
duplicates are common in this dataset. We have used differ-
ent projections of this relation, to carry out our experiments.

Census: This dataset contains a variety of census data.
It consists of about a 1000 tuples and 41 attributes. The
dataset is mainly used to test the performance of the algo-
rithms.

From these datasets we generated overlapping subsets,
partly through random sampling and partly through selec-
tions.

5.2 Experiment 1: Behavior of Distrib ution
Score—Effect of Non-distinct Values

The purpose of this experiment is to determine the effect
that non-distinct values (duplicates) in a relation have on
the behavior of the distribution score. The average distri-
bution scores obtained in each case will determine whether
two relations can be integrated. The algorithm is run on
two relations R and S, derived from the Movies dataset. R
consists of movie names. For each tuple in R, there is ex-
actly one tuple in S that shares all “meaningful” terms (i.e.
terms with high TF-IDF scores), but has a few additional
“functional words” (i.e. terms with low TF-IDF scores).
The three cases considered are

• All the values in the two relations are distinct.

• There are a few tuples with a random number of du-
plicates.

• There are very few distinct tuples, with each distinct
tuple having a large number of duplicates.

In each of the cases we generate a subset of the relation
R, denoted by R′, through sampling. The size of the subset
R′ varied from 100% to 5% of the original relation. This
procedure ensures that the similarity scores for each of the
following experiments are exactly 1.

Case 1: The results of the initial case, where all the values
are distinct, are shown in Fig. 3. Since every value of the
original Movies relation does exist in relation S, it is detected
as a good approximate match by the similarity algorithm
despite the presence of other function words. Furthermore,
every tuple present in relation R and relation S is distinct,
i.e., they have no duplicates. Recall that the distribution
score measures the number of duplicates for each tuple in
R vs the number of duplicates for the “best matching” tu-
ple in S (see Sec. 3.3). Hence, no matter what the sample
size or the tuples present in R, the distribution scores for
all the tuples will always be equal to 1. Consequently, the
distribution score for the entire relation (the average of the
individual distribution scores) will also always be equal to
1. We can then conclude that when all the tuples in a re-
lation are distinct, a high similarity score alone is sufficient
to detect the inclusion between the two relations.

Case 2: In this experiment, we wanted to verify the hy-
pothesis that distribution score more accurately measures

Figure 3: Distribution Scores for relations with no
duplicate tuples

“integrability” than similarity score. For this purpose we
create a table S with many duplicates and randomly sam-
pled a table R from it. We expect that even if R is small
the similarity score will still be high (since all tuples in R
still have matches in S), but that the distribution score de-
creases since the number of duplicates in R now differs from
the number of duplicates in S.

The distribution scores of the all tuples without duplicates
in R will always be equal to 1 in all the samples, however
the distribution scores of the non-distinct tuples will be less
than 1 since they now have fewer duplicates of each tuple.
Hence the distribution scores of these tuples will tend to
decrease as the sample size decreases.

Figure 4: Distribution Scores for relations with the
presence of duplicate tuples

As seen in Fig. 4, the distribution score for the entire rela-
tion tends to decrease gradually as the sample size decreases,
until a certain sample size is reached (sample size of about
35 % for the dataset considered). At this point the scores
start to decrease sharply. This is because of two reasons.
The sample sizes are now so small that it is less likely that
distinct tuples from the original relation (which would pro-
duce distribution scores of 1) are included in R. The small
sample sizes also mean that non-distinct tuples of S that

82

are included in R have very few or no duplicates within the
sample, leading to lower scores.

This illustrates the fact that even though as in the pre-
vious case, every tuple of any sample of S, i.e. any r ∈ R,
will have a good approximate match in S, this alone will
not give us a good indication of whether the relations can
be integrated, since the attributes’ value distributions may
be different. The use of the distribution score helps in de-
termining if the attributes may be co-referent.

Case 3: In this instance the relations S are formed by
a projection on the Rating attribute of the Movies dataset
(a textual domain attribute), and relation R is obtained by
randomly sampling it. There are only four distinct tuples
in the relations, with a large number of duplicates for each
tuple. This experiment has been carried out to further em-
phasize the differences between the results of the similarity
score and the distribution score.

Figure 5: Comparison of Distribution and Similar-
ity scores for relations with low number of distinct
tuples.

The results for different samples on relation R are depicted
in Fig. 5. Since every value of relation R exists in relation S,
all the tuples in any subset of R of any size will always have
a good similarity score. However, the distribution scores
decrease steadily as the sample size decreases, because the
subsets of R will show value distributions less and less sim-
ilar, with respect to relation S. We see that samples R′ of
a sample size of 50% of S or less are no longer considered
co-referent by our measure, since the distribution of values
in relation R′ no longer matches the distribution in S. This
is not reflected by the by the similarity score at all.

5.3 Experiment 2: Behavior of the Distrib u-
tion Score in the Presenceof Noisedue to
UnrelatedTuples.

In this experiment we verify the hypothesis that the Dis-
tribution Score tolerates noise produced by tuples that do
not find good approximate matches, i.e. tuples with low
score in the Similarity Score Vector, much better than ex-
isting algorithms.

For this experiment we created a relation R from the
Movies dataset. The relation S is obtained by removing the
desired percentage of tuples from R for each of the test cases
considered, ensuring that not all tuples in the “smaller” re-

lation find matches in the “larger” relation S. The compar-
ison is then carried out between a subset sampled from R,
denoted by R′, and relation S.

Figure 6: Effect of noise produced by unrelated tu-
ples

We have considered four test cases. In the initial test (Test
1), about 10% of the values in R do not find good approx-
imate matches in relation S. This number is progressively
increased with each test. In Test 2 15%, in Test 3 20% and
finally in Test 4 almost 50% of the tuples in R do not find
matches in relation S. The experiments are performed on
subsets of R of varying sample sizes in each of the test cases.

We see from results shown in Fig. 6 that the Distribution
Score is still high (close to 1), indicating co-reference (and
thus “integrability”) of the two relations at 10% noise level.
As we increase the noise level to 15 % and then 20% although
the distribution scores decrease correspondingly, the scores
are still high enough for the two relations to be considered
related. However at 50% noise level there is a significant
drop in the distribution scores as indicated by plot for Test
4 compared to the score obtained for 10% noise level in Test
1. Hence at a 50% noise level the relations can no longer be
considered related.

This supports our hypothesis that the Distribution Score
helps to identify related attributes in noisy relations. As
seen from the results of the experiment it detects relation-
ships among database relations at noise levels of up to 20%.
Recall here that there is no need for a single tuple to exist
in both relations, since TF-IDF scores are used for all com-
parisons. Rather, the algorithm is tolerant to non-matching
data values that have high relative TF-IDF scores, as well
as to noisy data, i.e., tuples in R that do not even have high
TF-IDF scores with any data in S.

The distribution score drops (i.e., suggests lack of co-
reference) only at noise levels of almost 50%. This also
represents a successful application of the measure, since a
very high number of mismatches between the tuples of two
relations may indicate that the relations are mapping differ-
ent real world entities and hence cannot be integrated.

5.4 Experiment 3: Effect of Data Sizeon Per-
formance

This experiment has been performed to study the rela-
tionship between the sizes of the relations considered and
the performance of the similarity detection algorithm devel-
oped in the dissertation. The experiments have been carried

83

out in two phases, corresponding to the two phases of multi-
attribute pattern discovery outlined in Sec. 3.4. In the first
phase we test the performance of the algorithm by varying
the tuple sizes of the relations considered. In the second
phase the performance of the algorithm is tested by varying
number of attributes in the underlying relations.

We have used a projection on a single attribute of the
Census dataset to experiment on the first phase (i.e., single
attribute comparison). This relation has twenty distinct val-
ues. The subsets and superset of this relation were formed
by sampling and duplicating the values of the original pro-
jection. The results are as shown in Fig. 7.

Figure 7: Complexity of Distribution Algorithm
with respect to the Number of tuples in the rela-
tions

In the dataset considered the number of unique terms in
both the relations are constant. Fig. 7 shows that the run-
time of the algorithm increases as a quadratic function of
sizes of the relations considered (r2 = 0.9988). We increase
the sizes of both |R| and |S| by the same ratio to obtain
each data point. Since an increase in the size of the rela-
tions means an increase in the number of tuples in both the
underlying relations, we can conclude that the runtime of
the algorithm increases as a linear function of the number
of tuples in each of the two individual underlying relations,
i.e., as a quadratic function of the sum of the relation sizes.

In implementing the second phase of the discovery (merg-
ing attribute for discovery of multi-attribute relationships)
we have used subsets formed by projections on the Cen-
sus dataset. This dataset originally has 41 attributes. The
number of attributes considered therefore varies from 1 to
41. The number of tuples in the dataset is 1000 and remains
a constant in all the subsets. The results of the experiment
are shown in Fig. 8.

Again, the increase in the runtime of the algorithm vs
the increase in the size of the relations follows an almost
quadratic function (r2 = 0.9581). Since an increase in the
size of the relations now means an increase in the number of
attributes in both the underlying relations, we can conclude
that the runtime of the algorithm increases as a linear func-
tion of the number of attributes in each of the two individual
underlying relations. The curve is not perfectly quadratic,
and the correlation is weaker than in the previous case be-
cause of the effect the number of distinct terms has on the
runtime. In the dataset considered, the number of distinct

terms is not a constant.

Figure 8: Complexity of Distribution Algorithm
with respect to the Number of Attributes in the
relations

6. RELATED WORK
The integration of heterogeneous databases is essential in

the face of the wide variety of diverse databases currently
being used. The problem of finding patterns in databases,
and the problem of integrating databases through discovery
of schema mappings have both been widely studied [3, 19,
10, 12].

A prominent example for an schema-based matching project
is Artemis/MOMIS [3], which attempts to integrate schemas
based on attribute name equality, related attribute domains,
attribute name synonyms and hypernyms in a schema ele-
ment hierarchy, and matching of schema sub-structures.

The LSD project [10] integrates a number of different tech-
niques for the discovery of related schema elements. Among
those techniques are attribute name similarity measures and
instance-driven technique based on attribute or domain val-
ues. The LSD project does use a WHIRL-based [6] nearest-
neighbor metric for attribute values which, like our Similar-
ity scores, also builds upon the IF-IDF scores. However in
LSD, this metric is implemented through a machine-learning
algorithm [7], requiring the use of a training set, which is not
needed in our work.

Casanova, Fagin & Papadimitriou [5] give a definition of
the inclusion dependency problem, prove that it is PSPACE
complete, and propose a fundamental axiomatization of IND
inference. Mitchell [21]) developed inference rules to derive
inclusion dependencies from existing inclusion dependencies
and functional dependencies.

de Marchi and Petit [9] as well as Koeller and Runden-
steiner [16] have done the most recent work in using the con-
cept of Inclusion Dependency discovery for the integration
of databases. Both papers propose algorithms for the de-
tection of inclusion dependency patterns across databases.
However, neither paper deals with noise or non-matching
values. More recent work [17] addresses the exponential na-
ture of the IND discovery problem by proposing complexity-
reducing heuristics, but also does not address the problem
of non-equality at the data value level.

Bell and Brockhausen [2], Huhtala et al. [13], Knobbe and
Adriaans [15] and Savnik and Flach [11] have contributed

84

solutions on problems of discovery of functional dependen-
cies in databases. Furthermore, some authors, such as Lim
and Harrison [20] or Wei and Chen [25] address the topic
of discovering functional-dependency-like patterns that are
almost true. This topic is related to our approximate inclu-
sion dependency discovery. However, functional dependen-
cies are a special case of inclusion dependencies, in which the
“right” side of the dependency is a key in its table, i.e., con-
tains no duplicates. The IND discovery problem is more gen-
eral, such that functional dependency discovery algorithms
are not usable for inclusion dependency discovery.

Work on discovery of similarities in databases is not lim-
ited to Inclusion Dependency Discovery. Larson et al. [18]
propose a theory of attribute equivalence in databases, based
on the domains, the minimal and maximal values of the at-
tribute, and constraints imposed by the database. However
they do not examine the data inside the attributes further,
making their proposal very sensitive to the availability and
correctness of database constraints, as well as the availabil-
ity of either global or common domains.

Kang and Naughton [14] propose an instance-based tech-
nique of examining statistical characteristics of data (specif-
ically, mutual information content of attributes) to identify
dependency relationships between data in the attributes of
independent tables. This approach is related to ours, but re-
quires equality of entire data values in each attribute, rather
than looking at individual words as in our work.

Bilenko and Mooney [4], propose learnable text similarity
metrics, to aid in duplicate detection. This approach is un-
related to the duplicate detection mechanism in this paper.
It deals mainly with differences in the spelling of text being
compared. This feature could in the future be integrated
with our similarity measures to increase their applicability.

Schallehn, Sattler, and Saake [24], present an algorithm
for data integration, by proposing variants of the SQL group-
ing and join operators. In fact the authors present an ap-
proach that is also based on the concepts of similarity and
duplicate detection. However, to determine similarity the
authors depend upon similarity predicates, which are ap-
plication specific and user defined. This approach assumes
availability of extensive and accurate knowledge about the
contents of the tables being considered. This is an assump-
tion we do not make in our work, taking into consideration
the real-world applicability of our algorithms.

7. CONCLUSION AND FUTURE WORK
In this paper we have proposed two measures, called Sim-

ilarity Score and Distribution Score to solve some problems
of data integration of heterogeneous databases. With this
approach it is now possible to detect similarities from data in
databases even in the presence of a large amount of “noise”
in the contents of the database.

The implementation of approximate matching of textual
domain attributes addresses the problem of differences in
the representation of real world entities in database systems.
The application of the distribution score for the integration
of databases shifts the focus from discovering Inclusion De-
pendencies which are defined to be set inclusions, to satis-
fying more “fuzzy” patterns. Hence, we move away from a
binary result (i.e., whether two sets of attributes are related
or not), to providing a score that reflects our degree of con-
fidence that attributes are related, i.e., that their relations
can be integrated.

The algorithms implemented have a linear runtime with
respect to the sizes of the databases as well as the num-
ber of attributes in the databases, making them applica-
ble for integration of large database systems and preserving
their relevancy for real world applications. The good run-
time is largely due to the fact that introducing the similarity
and distribution scores for attributes enables us to define a
greedy attribute matching algorithm as opposed to an enu-
meration strategy that is necessary for detection of exact
inclusion dependencies.

While the algorithms provided in this paper advance the
mechanisms for integration of databases, additional work is
necessary before a deployment in the real world can occur.
Some of the improvements that are required are

• Handling data types other than strings such as dates,
numbers

• Reduction of sensitivity to variations in spelling

• Increasing the efficiency of the algorithms by reducing
runtime

• A more comprehensive treatment of value distribu-
tions, beyond simple duplicate counts. Mechanisms
such as χ2 independence tests or Kang/Naughton’s [14]
mutual information content approach might strengthen
our results.

8. REFERENCES
[1] J. Albert. Algebraic properties of bag data types. In

International Conference on Very Large Data Bases,
pages 211–219, 1991.

[2] S. Bell and P. Brockhausen. Discovery of data
dependencies in relational databases. In Y. Kodratoff,
G. Nakhaeizadeh, and C. Taylor, editors, ML-Net
Familiarization Workshop, 1995.

[3] S. Bergamaschi, S. Castano, M. Vincini, and
D. Beneventano. Semantic integration of
heterogeneous information sources. Data and
Knowledge Engineering, 36(3):215–249, 2001.

[4] M. Bilenko and R. J. Mooney. Employing trainable
string similarity metrics for information integration.
In Proc. of IJCAI-03 Workshop on Information
Integration on the Web (IIWeb-03), pages 67–72,
Acapulco, Mexico, 2003.

[5] M. A. Casanova, R. Fagin, and C. H. Papadimitriou.
Inclusion dependencies and their interaction with
functional dependencies. In Proceedings of ACM
Conference on Principles of Database Systems
(PODS), pages 171–176, 1982.

[6] W. W. Cohen. Integration of heterogeneous databases
without common domains using queries based on
textual similarity. SIGMOD Record, 27(2):201–213,
1998.

[7] W. W. Cohen and H. Hirsh. Joins that generalize:
Text classification using WHIRL. In Proc. of 4th Intl.
Conf. on Knowl. Discovery and Data Mining (KDD),
page 1998, New York, August 169–173.

[8] F. de Marchi, S. Lopes, and J.-M. Petit. Efficient
algorithms for mining inclusion dependencies. In
Proceedings of International Conference on Extending
Database Technology (EDBT), pages 464–476, 2002.

85

[9] F. de Marchi and J.-M. Petit. Zigzag: A new
algorithm for mining large inclusion dependencies in
databases. In 3rd Intl. Conf. on Data Mining, pages
27–34, Melbourne, Florida, November 2003. IEEE.

[10] A. Doan, P. Domingos, and A. Halevy. Learning
source description for data integration. In Proceedings
of the Third International Workshop on the Web and
Databases (WebDB), pages 81–86, Dallas, 2000.

[11] P. A. Flach and I. Savnik. Database dependency
discovery: a machine learning approach. AI
Communications, 12(3):139–160, November 1999.

[12] A. Halevy and J. Madhavan. Corpus-based knowledge
representation. In Proc. of 18th Intl. Joint Conf. on
Artificial Intelligence (IJCAI’03), pages 1567–1572,
Acapulco, Mexico, 2003. Morgan Kaufman.

[13] Y. Huhtala, J. Kärkkäinen, P. Porkka, and
H. Toivonen. Efficient discovery of functional and
approximate dependencies using partitions. In
Proceedings of IEEE International Conference on
Data Engineering, pages 392–401, 1998.

[14] J. Kang and J. F. Naughton. On schema matching
with opaque column names and data values.
Proceedings of SIGMOD, pages 205–216, 2003.

[15] A. J. Knobbe and P. W. Adriaans. Discovering foreign
key relations in relational databases. In R. Trappl,
editor, Proceedings of the Thirteenth European
Meeting on Cybernetics and Systems Research,
volume 2, pages 961–966, Vienna, Austria, 1996.
Austrian Soc. Cybernetic Studies, Vienna, Austria.

[16] A. Koeller and E. A. Rundensteiner. Discovery of
high-dimensional inclusion dependencies. In
Proceedings of IEEE International Conference on
Data Engineering, pages 683–685, Bangalore, India,
2003. IEEE.

[17] A. Koeller and E. A. Rundensteiner. Heuristic
strategies for Inclusion Dependency discovery. In Proc.
of 3rd Intl. Conf. on Ontologies, Databases, and
Applications of Semantics (ODBASE’04), volume
3290–3291 of LNCS, pages 891–908, Larnaca, Cyprus,
2004. Springer.

[18] J. A. Larson, S. B. Navathe, and R. Elmasri. A theory
of attribute equivalence in databases with application
to schema integration. IEEE Transactions on Software
Engineering, 15(4):449–463, April 1989.

[19] W. Li and C. Clifton. SemInt: A tool for identifying
attribute correspondences in heterogeneous databases
using neural networks. Data and Knowledge
Engineering, 33(1):49–84, 2000.

[20] W. Lim and J. Harrison. Discovery of constraints from
data for information system reverse engineering. In
Proc. of Australian Software Engineering Conference
(ASWEC ’97), Sydney, Australia, Sep 28–Oct 2 1997.

[21] J. C. Mitchell. Inference rules for functional and
inclusion dependencies. In Proceedings of ACM
Symposium on Principles of Database Systems, pages
58–69, Atlanta, Georgia, 21–23 March 1983.

[22] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB Journal: Very
Large Data Bases, 10(4):334–350, 2001.

[23] G. Salton. Automatic Text Processing: The
Transformation, Analysis, and Retrieval of
Information by Computer. Adison Wesley, New York,

1989.

[24] E. Schallehn, K.-U. Sattler, and G. Saake. Efficient
similarity-based operations for data integration. Data
and Knowledge Engineering, 48(3):361–387, 2004.

[25] Q. Wei and G. Chen. Efficient discovery of functional
dependencies with degrees of satisfaction. Intelligent
Systems, 19(11):1089–1110, September 2004.

86

Clustering Mixed Numerical and Low Quality Categorical
Data: Significance Metrics on a Yeast Example

Bill Andreopoulos
Department of Computer
Science, York University,

Toronto, Canada, M3J1P3

billa@cs.yorku.ca

 Aijun An
Department of Computer
Science, York University,

Toronto, Canada, M3J1P3

aan@cs.yorku.ca

Xiaogang Wang
Department of Mathematics and

Statistics, York University, Toronto,
Canada, M3J1P3

stevenw@mathstat.yorku.ca

ABSTRACT
We present the M-BILCOM algorithm for clustering mixed
numerical and categorical data sets, in which the categorical
attribute values (CAs) are not certain to be correct and have
associated confidence values (CVs) from 0.0 to 1.0 to represent
their certainty of correctness. M-BILCOM performs bi-level
clustering of mixed data sets resembling a Bayesian process. We
have applied M-BILCOM to yeast data sets in which the CAs were
perturbed randomly and CVs were assigned indicating the
confidence of correctness of the CAs. On such mixed data sets M-
BILCOM outperforms other clustering algorithms, such as
AutoClass. We have applied M-BILCOM to real numerical data
sets from gene expression studies on yeast, incorporating CAs
representing Gene Ontology annotations on the genes and CVs
representing Gene Ontology Evidence Codes on the CAs. We
apply novel significance metrics to the CAs in resulting clusters, to
extract the most significant CAs based on their frequencies and
their CVs in the cluster. For genomic data sets, we use the most
significant CAs in a cluster to predict gene function.

1. INTRODUCTION
 Clustering aims to partition a set of objects into clusters, so that
objects with similar characteristics are clustered together and
different clusters contain objects with dissimilar characteristics. A
high quality clustering tool produces clusters with high intra-class
similarity between objects and low inter-class similarity between
objects [11, 13, 15, 17]. Many numerical data sets have CAs
associated with them, but not all CAs are certain to be correct. For
many of these data sets CVs can be extracted on the CAs,
representing the certainty about the CAs’ correctness [8, 20].
 We designed the M-BILCOM clustering tool for numerical data
sets that incorporates in the clustering process CAs and CVs
indicating the confidence that the CAs are correct. M-BILCOM
was mainly inspired by numerical gene expression data sets from
DNA microarray studies, where CAs and CVs can be derived
from Gene Ontology annotations and Evidence Codes [4-10, 12,
14, 21-22]. One of the main advantages of this algorithm is that it
offers the opportunity to apply novel significance metrics for
spotting the most significant CAs in a cluster when analyzing the

results [3]. In genomic data sets, our significance metrics allow
significant CAs to be extracted from a cluster based on their CVs
and their frequencies and to be used for predicting the functions of
other genes in the cluster. This provides a different insight for
predicting gene function by giving the ‘full picture’ of the data
set, because the significant CAs are extracted from genes that may
have been appended to the cluster on the basis of numerical or
categorical similarity or both.
 This approach offers several advantages over other approaches:
• Our clustering algorithm may cluster data sets where all

genes have numerical attribute values but not all genes have
CAs. Each CA has a CV associated - a real number between
0.0 and 1.0 - indicating our confidence about its correctness.

• During the clustering process, this method starts from CAs
and CVs at the lower level and then moves to numerical
clustering at a higher level. The CAs and CVs are actually
used in the clustering process, instead of just annotating the
clusters afterwards [1, 3]. The method of Wu et al. as applied
previously to high-throughput biological data, starts from the
numerical clustering, then adds CAs at a higher level and
finally CVs are calculated (P-values) [25].

• During the clustering process, objects having CAs with high
confidence to be correct, get clustered by emphasizing more
the categorical similarity and less the numerical similarity.
On the other hand, objects having CAs with low confidence
to be correct get clustered by emphasizing more the
numerical similarity [1].

• Our clustering algorithm allows us to define significance
metrics indicating the significance of a CA in a cluster. Such
metrics are calculated on the basis of how frequently a CA
appears in a cluster as well as how strongly the CVs support
the CA’s correctness in that cluster [3].

• For genomic data sets CVs can be derived from GO evidence
codes to point out the most reliable CAs to be used for gene
functional prediction purposes [8, 12]. This is in contrast to
previous methods, where CVs were calculated at the end to
indicate the reliability of a CA’s belonging to a cluster [25].

 Section 2 describes the k-Modes clustering algorithm. Section 3
discusses the M-BILCOM clustering algorithm, which is a
combination of MULICsoft and BILCOM. Section 4 proposes
two significance metrics for the CAs in the resulting clusters and
discusses their utility for gene functional prediction on a real yeast
data set. Sections 5 and 6 describe the results for applying M-
BILCOM to highly noisy yeast data sets and its ability to
reproduce the correct cluster structure. Sections 7 and 8 discuss
implications of the significance metrics for biologists and gene
functional prediction. Finally, Section 9 concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06 $5.00.

87

2. BACKGROUND ON K-MODES
 k-Modes is a clustering algorithm that deals with categorical data
only [18,19]. The k-Modes clustering algorithm requires the user
to specify from the beginning the number of clusters to be
produced and the algorithm builds and refines the specified
number of clusters. Each cluster has a mode associated with it.
Assuming that the objects in the data set are described by m
categorical attributes, the mode of a cluster is a vector Q={q1, q2,
…, qm} where qi is the most frequent value for the ith attribute in
the cluster of objects.
 Given a data set and the number of clusters k, the k-Modes
algorithm clusters the set as follows:

1. Select initial k modes for k clusters.
2. For each object X

a. Calculate the similarity between object X and the modes
of all clusters.

b. Insert object X into the cluster c whose mode is the most
similar to object X.

c. Update the mode of cluster c
3. Retest the similarity of objects against the current modes. If

an object is found to be closer to the mode of another
cluster rather than its own cluster, reallocate the object to
that cluster and update the modes of both clusters.

4. Repeat 3 until no or few objects change clusters after a full
cycle test of all the objects.

 A similarity metric is needed to choose the closest cluster to an
object by computing the similarity between the cluster’s mode and
the object. Let X={x1, x2, … ,xm} be an object, where xi is the
value for the ith attribute, and Q={q1, q2, …, qm} be the mode of a
cluster. The similarity between X and Q can be defined as:

similarity(X , Q)= ∑
=

m

i

ii qx
1

),(δ

where
⎩
⎨
⎧

≠
=

=
).(0
);(1

),(
ii

ii
ii qx

qx
qxδ

 Given the similarity measure and k, the clustering result
produced by the k-Modes algorithm on a set of data depends on
the initial modes and the ordering of the objects presented to k-
Modes. In [18] two methods for selecting the initial modes are
discussed and compared.
 In the descriptions that follow we assume that C represents the
total number of clusters and we use c to index the clusters. We
assume that m represents the number of attributes in an object of
the data set and N represents the number of objects in the data set.

3. THE M-BILCOM CLUSTERING
ALGORITHM
 M-BILCOM is a combination of MULICsoft [2] and BILCOM
[1]. The basic idea of our algorithm is to do clustering at two
levels, where the first level clustering imposes an underlying
framework for the second level clustering, thus simulating a
Bayesian prior as described in [1]. The categorical similarity is
emphasized at the first level and the numerical similarity at the
second level. The level one clusters are given as input to level two
and the level two clusters are the output of the clustering process.
The process looks as in Figure 1. As shown, both level one and
level two involve the same number of clusters, four in this
example. The level two clusters consist of subclusters. Data object

A was assigned to different level one and level two clusters,
because the numerical similarity at the second level was stronger
than the categorical similarity at the first level. Thus, in the case
of Figure 1 the following relationship holds for object A:

)3,(_)3,(_

)2,(_)2,(_

clusterAsimilaritynumericalclusterAsimilaritylcategorica

clusterAsimilaritynumericalclusterAsimilaritylcategorica

+

>+

On the other hand, data object B was assigned to the same clusters
in both levels one and two, because both numerical and
categorical similarity supported this classification. Thus, this
algorithm considers both categorical and numerical similarity of a
data object to the clusters to which it may be allocated.

Figure 1. Overview of M-BILCOM clustering.

 We emphasize that different types of data are used at levels one
and two. At the first level the categorical data used represent
something that has been observed to be true about the data set
objects before the experiment takes place. For example the data at
the first level might look as follows: Class:LIVE; SEX:male;
STEROID:yes; FATIGUE:no; ANOREXIA:no . At the second
level, on the other hand, the numerical data used represent the
results of an experiment involving the data set objects. For
example the data at the second level might look as follows:
BILIRUBIN:0.39; ALBUMIN:2.1; PROTIME:10.
 Our clustering method has the following requirements:
1. The coherence of each cluster should be maximized,
considering both the numerical and categorical similarity of the
objects.
2. Only the objects with highest categorical similarity to a cluster
should form the basis for clustering at the first level.
3. The results of the first level clustering – which is the prior for
the process - should not exert an overly strong effect on the
second level, so that the second level clustering can escape a poor
prior.
4. It should be possible to form a flexible number of clusters.
5. The similarity formula for comparing a mode to an object
should increase an object’s likelihood to be attached to a cluster as
many CAs match the mode and as the CVs of those CAs increase.
 We combined MULICsoft [2] and BILCOM [1] into an
advanced clustering algorithm named M-BILCOM. This
algorithm is similar to BILCOM [1], except that at the first level it
also considers weights between 0.0 and 1.0 on the CAs - which
we refer to as confidence values or CVs. This combined algorithm
is especially useful in cases where the CAs have been perturbed
and a CV between 0.0 and 1.0 has been assigned to each CA to
indicate the certainty of correctness. Alternatively, M-BILCOM
could be used on biological yeast data sets – such as SGD - where
the certainty of correctness that exists on current knowledge is
expressed as GO evidence codes [8, 12, 20].

88

3.1 First Level Clustering: MULICsoft
 At the first level, clustering is performed using MULICsoft1
which has a special similarity metric that incorporates CVs in the
clustering process. MULICsoft is an extension of the k-Modes
clustering algorithm for categorical data sets [18]. MULICsoft
clusters only a subset of the data set objects. The number of
clusters resulting from this level equals the final number of
clusters desired, as illustrated in Figures 1 and 2.
 The purpose of MULICsoft is to maximize the following
similarity formula at each iteration, while ensuring that all objects
may eventually be inserted in clusters:

),(nn modeobjectsimilarity
where objectn is the nth object in the data set to be clustered and
moden is the mode of the cluster to which objectn is classified.
 MULICsoft starts by reading all objects from the input file and
storing them in a linked list S. The first object is inserted in a new
cluster, the cluster’s mode is set equal to the object’s CAs and the
object is removed from S. Then, it iterates over all objects that
have not been classified in a cluster yet, to find the closest cluster.
The closest cluster is determined for each unclassified object by
comparing all clusters’ modes with the object. The similarity
between a mode and an object is determined using a special
variation of the k-Modes similarity metric [2,18] that incorporates
CVs in the clustering process and is described in Section 3.1.1.
 The variable φ is maintained to indicate how strong the
similarity has to be between an object and the closest cluster’s
mode for the object to be inserted in the cluster – initially φ equals
0, meaning that the similarity has to be very strong between an
object and the closest cluster’s mode. If the number of different
CAs between the object and the closest cluster’s mode are greater
than φ, then, the object is inserted in a new cluster on its own and
the cluster’s mode is set equal to the object’s CAs. If the number
of different CAs between the object and the closest cluster’s mode
are less than or equal to φ, then, the object is inserted in the
closest cluster and the mode is updated.
 At the end of each iteration, all clusters with size one are
removed, so their objects will be re-clustered at the next iteration.
Thus, the clusters that persist are those containing at least two
objects for which the required similarity can be found. Objects
belonging to clusters with size greater than one are removed from
the linked list of objects S, so those objects are not re-clustered.
 At the end of each iteration, if no objects have been placed in
clusters of size greater than one, then, the variable φ is
incremented to represent how many CAs are allowed to differ
next time. Thus, at the next iteration it will be more flexible and
eventually more objects will be placed in clusters. Eventually, all
objects will be given the opportunity to be placed in clusters, even
if the closest cluster is not so similar. The iterative process may
stop when all objects have been placed in clusters of size greater
than one, or when φ is greater than a user-specified threshold.
 The MULICsoft algorithm gives the opportunity for all objects
to be eventually placed in clusters, because φ may continue
increasing until all objects are classified. Even if, in the extreme
case, an object with m CAs has only one or zero CAs similar to
the mode of the closest cluster, it can be classified when φ = m-1
or φ = m, respectively.
 Figure 2 illustrates the results of MULICsoft. Each cluster
consists of many different "layers" of objects. The layer of an
object represents how strong the object's similarity was to the

1 http://www.cs.yorku.ca/~billa/MULIC/

mode of the cluster when the object was inserted. The cluster’s
layer in which an object is inserted depends on the value of φ.
Thus, lower layers have a lower coherence – defined as the
average similarity between all pairs of objects in that layer - and
correspond to higher values of φ and to a more flexible similarity
criterion for insertion. MULICsoft starts by inserting as many
objects as possible at higher layers and then moves to lower
layers, creating them as the need arises. If little similarity exists
between an object and its closest cluster, the object will be
inserted in a lower layer.
 If an unclassified object has equal similarity to the modes of the
two (or more) closest clusters, then the algorithm tries to resolve
this ‘tie’ by comparing the object to the mode of the top layer of
each of these clusters – the top layer of a cluster may be layer 0 or
1 or 2 and so on. Each cluster’s top layer’s mode was stored by
MULICsoft when the cluster was created, so it does not need to be
recomputed. If the object has equal similarity to the modes of the
top layer of all of its closest clusters, the object is assigned to the
cluster with the highest bottom layer. If all clusters have the same
bottom layer then the object is assigned to the first cluster, since
there is insufficient data for selecting the best cluster.

Figure 2. MULICsoft results. Each cluster consists of one or

more different layers representing different similarities of the
objects attached to the cluster.

 The runtime complexity of MULICsoft is O(N2), where N
represents the number of objects in the data set [2]. In most of our
trials the runtime was less than 1 second.
 The question remains of which objects to be clustered at the first
level of M-BILCOM. The first level objects are those whose
comparison to the mode of the closest cluster yields a result that is
greater than or equal to a threshold minimum_mode_similarity.
The rest of the objects are used at the second level, as described in
Section 3.2. For this purpose, the user can specify a maximum
value for φ - a value of m-minimum_mode_similarity, where m is
the total number of categorical attributes in an object. When φ
exceeds this value, any remaining objects are held for
consideration instead in the second level. The reason we choose to
insert in the first level clusters just the objects whose similarity to
the closest mode yields a value higher than a threshold
minimum_mode_similarity is because the objects that yield a low
similarity to the closest mode are more likely to be inserted in the
wrong cluster, as we show in [1,2]. Thus, the objects whose
classification in clusters based on categorical similarity is not
reliable enough, are clustered in the second level instead, where
the numerical similarity of objects to second level clusters is more
influential.

89

3.1.1 The MULICsoft Similarity Metric
 All CAs in an object have "weights" or CVs in the range 0.0 to
1.0 associated with them. We represent the ith weight of an object
as wi, the ith CA of object o as oi and the ith value of mode µ as µi.
The similarity metric used in MULICsoft for computing the
similarity between a mode µ and an object o considers both the
CAs and their weights. Our similarity metric amplifies the object
positions having high weights, at pairs of CAs between an object
o and a mode µ that have identical values.

),(
)4(5

)4(6
),(

1
ii

m

i
i

i o
w

w
osimilarity µσµ ×∑

×−

×−
=

=

where
⎩
⎨
⎧

≠
=

=
).(0
);(1

),(
iio
iio

iio
µ
µ

µσ

 This similarity metric gives more importance to high weights
(1.0) than low weights (0.1) at categorical attributes with identical
values between the object and the mode.
 Figure 3 shows that our similarity formula for comparing a
mode to an object increases an object’s likelihood to be attached
to a cluster as many CAs match the cluster’s mode and as the
weights on those CAs increase. Each object in this example has 10
CAs and “weights” (or CVs). Figure 3 shows that an object will
be much more likely to be assigned to a cluster if all CAs match
the mode with high weights of 1.0, than if all CAs match the
mode with medium weights of 0.5, than if all CAs match the
mode with low weights of 0.1, than if 1 CA matches the mode
with a high weight, than if 1 CA matches the mode with a low
weight.

Figure 3. The function surface of similarity, using values for
the weights between 0.0 and 1.0 as described previously.

3.1.2 Dealing with Outliers
 MULICsoft can, eventually, put all the objects in clusters. When
φ equals the number of attributes m, an unclassified object can be
inserted in the lowest layer m of any existing cluster. This is
undesirable if the object is an outlier and has little similarity with
any cluster. The user can disallow this situation from happening,
by specifying a threshold for φ that is less than the number of CAs
m, so, when this threshold is reached any remaining objects are
not classified and are treated as outliers. As discussed in [2] for
clustering of software systems, the overall quality of the results
often improves by treating the lowest-layer objects as outliers.

3.2 Second Level Clustering: BILCOM
 The first level result is the input to the second level. The second
level clusters all of the data set objects, including the objects
clustered at the first level. The second level uses numerical data
type similarity and the first level result as a prior. The second
level clustering consists of 5 steps, whose rationale is to simulate
maximizing the numerator of the Bayesian equation, as discussed
in Section 3.1. The second level result is the output of the
BILCOM process.
 Step 1. One object in each first level cluster is set as a seed,
while all the rest of the objects in the cluster are set as centers.
The seed is an object that is at the top layer of the cluster – ideally
in layer 0. The reason we choose for seed a top layer object is that
the most influential objects at the second level should be those
that have the minimum average distance to all other objects in the
first level cluster. The MULIC paper [2] showed that objects at
the top layer have a smaller average distance to all other cluster
objects than lower level objects do.
 If the top layer of a cluster is layer 0 then we have no difficulty
in choosing the seed since all objects have the same CAs. If the
top layer of a cluster is not layer 0 and it contains more than one
object, then we choose the seed by comparing all top layer objects
to the cluster’s mode to find the closest object. If this does not
resolve the ambiguity then we compare all top layer objects to the
cluster’s top layer mode – which was stored by MULIC when the
cluster was created - to find the closest object. If all top layer
objects have the same similarities to modes then we assign the
seed to be the first top layer object, since there is insufficient
information for choosing the best seed.
 Step 2. Each seed and center is inserted in a new second level
subcluster. The output of this step is a set of subclusters, referred
to as seed-containing or center-containing subclusters, whose
number equals the number of objects clustered at the first level.
 Step 3. Each object that did not participate at the first level is
inserted into the second level subcluster containing the most
numerically similar seed or center. Numerical similarity for Steps
3-5 is determined by the Pearson correlation coefficient or the
Shrinkage-based similarity metric introduced by Cherepinsky et al
[9].
 Step 4. Each center-containing subcluster is merged with its
most numerically similar seed-containing subcluster. The most
numerically similar seed-containing subcluster is found using our
version of the ROCK goodness measure [14] that is evaluated
between the center-containing subcluster in question and all seed-
containing subclusters:

)()(

],[
),(

CjsizeCisize

CjCilink
CjCiG

×
=

link[Ci,Cj] stores the number of cross links between subclusters Ci
and Cj, by evaluating Σ(oq∈Ci, or∈Cj) link(oq,or). link(oq,or) is a
boolean value specifying whether a link exists between objects oq
and or . A link is set between two objects if the objects’ numerical
similarity is higher than a value minimum_numerical_similarity.
The rationale for using a variation of ROCK’s goodness measure
for this step is that the link-based approach of ROCK adopts a
global approach to the clustering problem, by capturing the global
information about neighboring objects between clusters. It has
been shown to be more robust than methods that adopt a local
approach to clustering, like hierarchical clustering [14].
 Step 5. The loop below refines the step 4 subcluster merges. All
variables take real values in the range 0.0-1.0.

90

repeat {
 foreach (center-containing_subcluster)

if
(numerical_similarity_of_center_subcluster_to_1st_
level_seed_cluster ×
categorical_similarity_of_center_to_seed_of_1st_le
vel_cluster >
numerical_similarity_of_center_subcluster_to_its_n
umerically_similar_2nd_level_cluster ×
categorical_similarity_of_center_to_seed_of_its_nu
merically_similar_2nd_level_cluster)

 merge center-containing_subcluster
to seed-containing_subcluster from 1st_level;
} until (no center-containing_subcluster changes);

 The variable:
categorical_similarity_of_center_to_seed_of_1st_le

vel_cluster
represents the categorical similarity of the center c of a subcluster
C to the seed s, such that c and s were in the same first level
cluster.
 The variable:
categorical_similarity_of_center_to_seed_of_its_nu

merically_similar_2nd_level_cluster
represents the categorical similarity of the center c of a subcluster
C to the seed of C’s most numerically similar seed-containing
subcluster N determined in step 4. The categorical similarity is
computed as follows, where wci is the ith weight of the center and
wsi is the ith weight of the seed:

m

m

i i
ws

i
wc∑

=
××

= 1
)

i
seed,

i
center(

 seed)(center,similarity

σ

where σ(centeri,seedi)= 1 if centeri=seedi , 0 otherwise.

 The variables:
numerical_similarity_of_center_subcluster_to_1st_l

evel_seed_cluster
numerical_similarity_of_center_subcluster_to_its_n

umerically_similar_2nd_level_cluster
represent the numerical similarity of a subcluster C containing
center c to the cluster containing seed s, such that c and s were in
the same first level cluster, and to the cluster containing C’s most
numerically similar seed-containing subcluster N determined in
step 4, respectively. These similarities include the subclusters that
were merged to the clusters in previous iterations of the loop.

Figure 4. Steps 4 and 5 of second level of BILCOM clustering.

 According to this loop, a subcluster C containing center c is
attracted to the subcluster S containing seed s, such that c and s
were in the same first level cluster. The attraction is stronger if
there is high categorical similarity between c and s and lower if

there is low categorical similarity between c and s. The
subclusters C and S get merged if both the categorical similarity
between c and s and numerical similarity between C and S are
high enough. If c is not categorically similar enough to s, then, C
should be likely to remain merged with its most numerically
similar seed-containing subcluster N determined in step 4. Figure
4 shows steps 4 and 5.
 We have done tests to show that BILCOM is able to escape a
poor prior – for instance, if a center c was inserted in a first level
cluster with weak similarity to the cluster mode, or if the
similarity to the mode was erroneously high enough, or if c had
wrong CAs with low confidence to be correct. The categorical
similarity between the center c and the seed s, such that c and s
were in the same first level cluster, is likely to return a low value
when the prior is poor. In this case, the subcluster C containing
center c will be likely to remain merged with its most numerically
similar seed-containing subcluster N determined in step 4, instead
of the subcluster S containing the seed s. Thus, the prior can be
escaped and the data can be clustered correctly. In this case, C
will not be merged to S, unless their numerical similarity is very
high.
 On the other hand, if the subcluster C containing center c is
merged to the subcluster S containing the seed s, such that c and s
were in the same first level cluster, then C must be numerically
similar enough to S. This way we ensure that if a subcluster C is
merged to the subcluster S that is suggested by the results of the
first level clustering, the numerical similarity between C and S is
high enough to support the merging.
 The reason why the inequality comparison in step 5 considers
the seeds of clusters, instead of the cluster modes, is that by
considering similarity to seeds we are effectively giving the
objects a second chance to reorganize and to escape their first
level clustering, if the first level clustering was weak. Since the
first level clustering was based on comparisons to modes that
often yield wrong results and, therefore, objects may be attached
to wrong clusters, the comparison in step 5 allows the similarities
to be reconsidered. We showed in [2] that objects in the top layers
0 and 1 such as seeds have a higher average similarity to all other
cluster objects than do lower layer objects.

4. TWO METHODS FOR IDENTIFYING
SIGNIFICANT CAs IN A CLUSTER
This section first describes the real yeast data on which we
applied the M-BILCOM clustering algorithm. Then, it presents
two significance metrics (SMs) for determining the significance of
a CA in a cluster and for supporting gene functional prediction.

4.1 Description of Real Yeast Data Sets
 This algorithm is designed with the goal of applying it to
numerical data sets for which some CAs exist and the confidence
that the CAs are correct varies. We used numerical data derived
from gene expression studies on the yeast Saccharomyces
cerevisiae. These data sets were produced at Stanford to study the
yeast cell cycle across time and under various experimental
conditions and are available from the SGD database [9, 23]. When
clustering this data set, we consider each gene to be a ‘data
object’. The data set contained 6,200 objects.
 We represented CAs on a gene in terms of Gene Ontology (GO)
and GOSlim annotations. GO is a dynamically controlled
vocabulary that can be applied to many organisms, even as
knowledge of gene and protein roles in cells is changing. GO is

91

organized along the categories of molecular function, biological
process and cellular location [12]. GOSlim are GO annotations
that represent high level knowledge on genes and are also
organized along the categories of function, process and location.
Most of the GO and GOSlim annotations on the yeast genes exist
in the publicly accessible SGD database, along with GO evidence
codes [8, 12, 20]. We created six pools of CAs for each gene and
each pool contained GO annotations of a specific type. Three
pools contained GO annotations for molecular function, biological
process and cellular location of a gene. The other three pools
contained GOSlim annotations for each GO annotation.
 We attached CVs to the CAs to represent the confidence that the
corresponding CA is correct. CVs are real numbers between 0.0
and 1.0, assigned to the CAs of a gene. Besides indicating the
confidence that a CA is correct, the CVs on a gene also specify
how strongly the gene’s CAs should influence the clustering
process. The CVs are also used in the significance metrics that we
define below. We determined the CVs by using GO evidence
codes. GO evidence codes symbolize the evidence that exists for
any particular GO or GOSlim annotation [12].

 GO evidence codes can be thought of in a
loose hierarchy from strong evidence to weak
evidence. For example, ‘TAS’ means
‘Traceable Author Statement’, while ‘NAS’
means ‘Non-traceable Author Statement’ [9].
We assigned a numerical CV to each of the
GO evidence codes based on its location in the
hierarchy, as shown in Figure 5. Section 7
discusses our justifications. NR and ND are
set to 0.0, because they are used for
annotations of ‘unknown’, so the CAs should
not have an effect on the clustering process. In
certain DBs (Swiss-prot-human) only 3 of
these evidence codes are commonly used and
the most commonly used one is TAS, which is
at the top of the hierarchy, meaning that strong
evidence exists [20]. We combined the CAs,
CVs and gene expression data using Perl.

Figure 5.
GO

Evidence
Codes are
mapped to

CVs.

 A CV primarily depends on whether the CA refers to something
that has been observed to be true, as opposed to something that is
just believed to be true. For example, a CA of a “cancerous tissue”
refers to an observed phenomenon with a high CV, while a CA of
a “non-cancerous tissue” refers to something that is just believed
to be true, as the tissue might turn out later to be cancerous.

4.2 First SM: M-values that Consider P1-
values and CVs are Assigned to Cluster CAs
 Given a resulting cluster, we assigned a P1-value to each CA in
the cluster; the term ‘P1-value’ was derived from the statistical ‘P-
value’. A P1-value measures whether a cluster contains a CA of a
particular type more frequently than would be expected by chance
[25]. A P1-value close to 0.0 indicates a frequent occurrence of
the CA in the cluster, while a P1-value close to 1.0 its seldom
occurrence. We multiplied the resulting P1-value with the
reciprocal of the average of all CVs assigned to the CA in the
cluster, 1/avg(CV), thus resulting in what we call an M-value. M-
values allow us to take into consideration the probability that a
particular CA occurs in the cluster more frequently than expected
by chance, in addition to our confidence that the CA is correct in
the cluster. For CAs that occur only once or twice in a cluster, a
high P1-value results with an avg(CV) trivial to estimate.

4.3 Second SM: The Significance of a Second
Level Subcluster’s Classification in a Cluster
 This significance metric was inspired by the loop of step 5 that
refines the subclusters composing a larger second level cluster, as
shown in Section 3.2. Specifically, each subcluster was assigned a
significance number by evaluating a formula that considers both
categorical (CAsimilarity) and numerical (NAsimilarity) similarity
of the subcluster to the larger second level cluster:
 (weight1*CAsimilarity) +(weight2*NAsimilarity)
 The CAsimilarity for a subcluster is computed by evaluating a
categorical variation of ROCK’s goodness measure [16] between
the subcluster and its larger cluster and multiplying the result by
the percentage of genes in the subcluster that were assigned to it
on the basis of categorical similarity (see Section 3.2 step 3). The
NAsimilarity for a subcluster is computed similarly, by evaluating
a numerical variation of ROCK’s goodness measure [16] between
the subcluster and its larger cluster and multiplying the result by
the percentage of genes in the subcluster that were assigned to it
on the basis of numerical similarity (see step 3). We set weight2 in
our trials to be higher than weight1, to ensure proper consideration
of the numerical similarity of a subcluster.
 The subclusters in an overall second level cluster for which the
above metric yields the highest values are used for functional
prediction by identifying and extracting the most significant
genes’ CAs in the cluster with highest avg(CV)s.
 When a subcluster is placed in a larger second level cluster on
the basis of high CA similarity (0.5-1.0) – regardless of whether it
was assigned there at the beginning of the clustering process or
joined it later - this is a factor that increases the significance. The
NAsimilarity on the subcluster might be either high or low:
 - high (0.5-1.0) in which case the significance of its
membership is increased, because both CAs and NAs support the
gene's classification in the cluster.
 - low (0.1-0.4) in which case the significance of its
membership is decreased, because CAs support the gene's
classification in the cluster but NAs do not.
 When a subcluster is placed in a larger second level cluster on
the basis of low CA similarity (0.0-0.4) – regardless of whether it
was assigned there at the beginning of the clustering process or
joined it later - this is a factor that decreases the significance. The
NAsimilarity on the subcluster is:
 - always high (0.7-1.0). However, since the CA similarity is
low the significance of its membership is decreased because NAs
support the gene’s classification in the cluster but CAs do not.

4.4 Functional Prediction for Uncharacterized
Genes
 Both of the above significance metrics (SM) were used for
functional prediction of genes. Section 7 discusses our tests.
 The M-values were used for functional prediction by taking for
each cluster the CAs with the lowest M-values for molecular
function, biological process, cellular location and for the GOSlim
terms. Then, we applied these CAs to genes in the cluster having
CAs labeled as ‘Unknown’. Therefore, the CAs with the lowest
M-values in a cluster were used to predict cellular roles of genes.
 The second SM was used for functional prediction by
identifying the subcluster with the highest significance in a larger
second level cluster and identifying its genes’ CAs with highest
avg(CV)s in the cluster, as these were the most significant ones.
Then, we applied the extracted CAs to other genes in the cluster
having CAs labeled as ‘Unknown’. Therefore, the CAs belonging

92

to the subcluster that had the highest significance were used to
predict cellular roles of genes.

5. EXPERIMENTS ON YEAST DATA
 We have validated M-BILCOM on mixed numerical and
categorical yeast data. We used the yeast data sets shown in Table
1, having mixed categorical and numerical attribute values [7, 9].
However, we perturbed the CAs randomly and assigned statistical
confidence values based on the probability that an attribute was
perturbed or not. Tests and results are described below.
 We represented CAs on a gene in terms of Gene Ontology (GO)
- see Section 4. CAs were perturbed and the attribute values in the
data set were assigned CVs between 0.1 and 1.0. For this purpose,
for each CA we generated a limit in a range from 0.1 to 1.0 and,
then, generated a random number ρ from 0.0 to 1.0. If ρ exceeded
the limit, then we perturbed the CA by assigning it a value taken
randomly from the set of possible values for that CA. The CV for
the CA was set equal to the limit regardless of whether it was
actually perturbed or not. This simulates the uncertainty that exists
on current knowledge and that is expressed in SGD as GO
evidence codes [8, 12, 20]. All attribute values on all objects were
assigned a CV between 0.1 and 1.0 and objects whose CAs had
lower CVs were more likely to have been perturbed than objects
whose attribute values had higher CVs.
 The yeast microorganism performs a constant cell-cycle. The
yeast cell-cycle gene expression program is regulated by the nine
known cell-cycle transcriptional activators, that control the flow
from one stage of the cell-cycle to the next [7]. This serial
regulation of transcriptional activators together with various
functional properties suggests a way of partitioning cell-cycle
genes into nine clusters, each one characterized by a group of
transcriptional activators working together and their functions [7].
Table 1 shows our hypothesis about how the genes should be
correctly grouped by transcriptional activators and cell-cycle
functions. For instance, group 2 is characterized by the activators
Swi6 and Mbp1 and the function involving DNA replication and
repair at the juncture of G1 and S stages.

Table 1. Genes in the data set of Cherepinsky et al. [7]
grouped by functions. This is our hypothesis about the correct

clustering results.
Group Activators Genes Functions
1 Swi4,

Swi6
CLN1, CLN2, GIC1,
MSB2, RSR1, BUD9,
MNN1, OCH1, EXG1,
KRE6, CWP1

Budding

2 Swi6,
Mbp1

CLB5, CLB6, RNR1,
RAD27, CDC21, DUN1,
RAD51, CDC45, MCM2

DNA
replication
and repair

3 Swi4,
Swi6

HTB1, HTB2, HTA1,
HTA2, HTA3, HHO1

Chromatin

4 Fkh1 HHF1, HHT1, TEL2,
ARP7

Chromatin

5 Fkh1 TEM1 Mitosis
control

6 Ndd1,
Fkh2,
Mcm1

CLB2, ACE2, SWI5,
CDC20

Mitosis
control

7 Ace2,
Swi5

CTS1, EGT2 Cytokinesis

8 Mcm1 MCM3, MCM6, CDC6,
CDC46

Prereplicati
on complex
formation

9 Mcm1 STE2, FAR1 Mating
 Cherepinsky et al. [7] defined a notation to represent the
resulting cluster sets and a scoring function to aid in their
comparison. Each cluster set is written as:

where x denotes the group number as described in Table 1, nx is
the number of clusters the members of group x appear in, and for
each cluster j {1,..., nx} there are yj genes from group x and zj
genes from other groups in Table 1. A value of * for zj

 denotes
that cluster j contains additional genes, although none of them are
cell-cycle genes. The cluster set can then be scored as follows:

 We have compared the error rates of M-BILCOM to those of
AutoClass [24] and BILCOM [1] applied to the “perturbed” yeast
data set. First, we applied AutoClass [24] to the mixed categorical
and numerical yeast data set. Table 2 shows the results.

Table 2. Clustering results of AutoClass.
Cluster Genes
1 CLN1, CLN2, GIC1, GIC2, MSB2, RSR1, BUD9,

MNN1, OCH1, EXG1, KRE6, CWP1, CLB5, CLB6,
RAD51, CDC45, HTB1, HTA2, HHO1, TEL2

2 ARP7, TEM1, CLB2, ACE2, SWI5, CDC20, CTS1,
EGT2, MCM3, MCM6, CDC6, CDC46, STE2

3 RNR1, RAD27, CDC21, DUN1, MCM2, HTB2,
HTA1, HHF1, HHT1, FAR1

 Given the hypothesis in Table 1 and the set of AutoClass results
shown in Table 2, the resulting clusters with the error score can be
written as follows, according to the error rate introduced by
Cherepinsky et al. [7]:
{1->{{11,9}},
2->{{4,16},{5,5}},
3->{{3,17},{2,8}},
4->{{1,19},{1,12},{2,8}},
5->{{1,12}},
6->{{4,9}},
7->{{2,11}},
8->{{4,9}},
9->{{1,12},{1,9}} }.

FP = 265
FN = 32
Error = 297

 We have also applied BILCOM [1] to the mixed categorical and
numerical yeast data set. Table 3 shows the results.

Table 3. Clustering results of BILCOM using as numerical
similarity metric between objects the Pearson Correlation

Coefficient [7] and a max value for φ of 7.
Cluster Genes
1 RSR1, HHT1, ARP7, BUD9, CTS1
2 KRE6, CWP1
3 RNR1, CDC45, MCM3, CDC46, MCM2
4 EXG1, EGT2
5 MCM6, CDC6
6 HHF1, HTB2, HTA2
7 HTB1, HTA1, HHO1

93

8 GIC1, TEL2, GIC2, MSB2
9 FAR1, STE2, ACE2, SWI5, TEM1
10 RAD27, CDC21, DUN1
11 CLN2, RAD51, MNN1, CLN1, CLB6, OCH1, CLB5,

CLB2, CDC20
 Given the hypothesis in Table 1 and the set of BILCOM results
shown in Table 3, the resulting clusters with the error score can be
written as follows, according to the error rate introduced by
Cherepinsky et al. [7]:
{1->{{4,4},{1,3},{1,1},{2,1},{2,0}},
2->{{3,0},{3,2},{3,5}},
3->{{3,0},{2,1}},
4->{{2,3},{1,2},{1,4}},
5->{{1,4}},
6->{{2,3},{2,7}},
7->{{1,4},{1,1}},
8->{{2,0},{2,3}},
9->{{2,3}} }.

FP = 49
FN = 47+13+24
Error = 133

 We have also applied M-BILCOM to the mixed categorical and
numerical yeast data set. Table 4 shows the results.
Table 4. Clustering results of M-BILCOM using as numerical
similarity metric between 2 objects the Pearson Correlation

Coefficient [7] and a max value for φ of 7.
Cluster Genes
1 RSR1, BUD9, CTS1
2 KRE6, ARP7, HHT1, CWP1
3 RNR1, CDC45, MCM3, STE2, CDC46, MCM2
4 EXG1, EGT2
5 MCM6, TEM1, CDC6
6 HHF1, HTB2, HTA2
7 HTB1, HHO1, HTA1
8 GIC1, TEL2, GIC2, MSB2
9 FAR1, ACE2, CDC20, SWI5
10 RAD27, CDC21, MNN1, DUN1, RAD51
11 CLN2, CLN1, CLB6, CLB5, OCH1, CLB2
 Given the hypothesis in Table 1 and the set of M-BILCOM
results shown in Table 4, the resulting clusters with the error score
can be written as follows, according to the error rate introduced by
Cherepinsky et al. [7]:
{1->{{3,3},{2,2},{2,1},{1,1},{2,2},{1,4}},
2->{{4,1},{3,3}},
3->{{3,0},{3,0}},
4->{{2,2},{1,2},{1,3}},
5->{{1,2}},
6->{{3,1},{1,5}},
7->{{1,2},{1,1}},
8->{{2,4},{2,1}},
9->{{1,5},{1,3}} }.

FP = 38
FN = 35+49
Error = 122

 The error rates are summarized in table 5 below. The M-
BILCOM error rate is lower than BILCOM and AutoClass.
Table 5. Comparative error rates of algorithms applied to the
“perturbed” yeast data set.
Clustering Tool Cherepinsky Error rate
M-BILCOM 122
BILCOM 133
AutoClass 297

6. EXPERIMENTS ON SIMULATED DATA
 We generated artificial data sets that simulate the results by
Spellman et al [23] who showed that in each cluster there is a
consistent pattern of numerical attribute values (NAs) that appear
frequently and that different CAs are characteristic of different
clusters. We used numerical data derived from gene expression
studies on the yeast Saccharomyces cerevisiae. These data sets
were produced at Stanford to study the yeast cell cycle across time
and under various experimental conditions and are available from
the SGD database [9, 23]. The data set contained 6,200 genes. The
purpose of our simulation was to assign CAs to each gene based
on the numerical gene expression data [9], in such a manner that
the assignment of CAs simulates knowledge about the role of
genes in the yeast cell cycle.
 We assigned 6 CAs on each gene based on the NAs,
representing the genes’ action during cell cycle. The assignment
of the CAs followed a pattern that simulates existing knowledge
on the role of genes in the yeast cell cycle. The assigned CAs split
the objects into a number of well-defined groups, which we
attempt to retrieve using clustering; thus, a different set of
attribute values had to be used for each group. This simulates the
results by Spellman et al, who showed that in each cluster there is
a consistent pattern of NAs that appear frequently and that
different CAs are characteristic of different clusters [23]. We
assigned the 6 CAs using the following strategy: (1) The first CA
split the genes into cell cycle phases and has the values G1, S, G2,
M, M/G1, or unknown. This CA was set for each gene based on
the experimental point at which the gene reaches its peak
expression level, indicating what cell cycle phase it is likely to be
involved in. This simulates the cell cycle phases as they are
derived by Spellman et al and the genes that are likely to be
involved in each phase. (2)(3) The second and third CAs were set
for each gene based on whether the gene’s expression level peaks
at the phase of the cell cycle at which it is active. The second CA,
which can take 6 values (A,B,C,D,E,unknown), simulates an
overall process like DNA replication or transport of essential
minerals and organic compounds across the cell membrane. The
third CA, which can take 11 values
(F,G,H,I,J,K,L,M,N,O,unknown), simulates a more specific
function like DNA polymerases or nucleotide synthesis or
initiation of DNA synthesis. The purpose of the second and third
CAs was to further subdivide the groups created by the first CA
into subgroups. The first three CAs are influential enough to
classify each gene in a cluster. Thus, the clusters that we will
retrieve are based primarily on the first three CAs. (4) The fourth
CA was set for each gene based on whether the gene is observed
to reach its peak expression level right before the G1 stage. This
CA simulates the start of mitosis and can take 3 values
(high,low,unknown). (5) The fifth CA was set for each gene based
on whether the gene is observed to reach its peak expression level
at the end of the cell cycle. This CA simulates the exit from
mitosis and can take 3 values (high,low,unknown). (6) Finally, the
sixth CA was set for each gene based on whether the gene is
observed to reach its peak expression level right before the S
stage. This CA can take 3 values (high,low,unknown). The fourth
to sixth CAs on their own may or may not classify each gene into
a clear group.
 Furthermore, we perturbed the CAs to simulate noise in the
resulting data set. Our aim was to use M-BILCOM to retrieve the
known underlying cluster structure effectively. A significant
outcome of our experiments was to show that given the genes
whose CAs were not perturbed in the simulation (most of which

94

are likely to have high CVs) a fair number of genes were assigned
to the correct clusters to which they were categorically similar and
were not assigned to the incorrect clusters to which they might be
numerically similar. The basis for this is that most of these genes
had a high confidence overall. Another significant outcome of our
experiments was to show that given the genes whose CAs were
perturbed in the simulation (most of which are likely to have low
CVs) a fair number of genes were assigned to the correct clusters
to which they were likely to be numerically similar and were not
assigned to the incorrect clusters to which they were categorically
similar. The basis for this is that most of these genes had a low
confidence overall.
 Many CAs were perturbed and the attribute values in the data
set were assigned CVs between 0.1 and 1.0. For this purpose, for
each CA we generated a limit in a range from 0.4 to 1.0 and then,
generated a random number ρ from 0.0 to 1.0. If ρ exceeded the
limit, then we perturbed the CA by assigning it a value taken
randomly from the set of possible values for that attribute. The
CV for the CA was set equal to the limit, regardless of whether it
was actually perturbed or not. This simulates the uncertainty that
exists on current knowledge and that is expressed in SGD as GO
evidence codes [8, 12, 20]. In the produced data set 2,024 data
objects had their original attribute values modified out of 6100.
All CAs on all data objects were assigned a CV between 0.4 and
1.0 and objects with lower CVs were more likely to have been
modified than objects with higher CVs.
 We clustered the simulated data set into 20 clusters. This
number of clusters was derived from the number of combinations
of values that the first three CAs of each object can take in our
simulated data and because this number of clusters allowed the
algorithm to converge in a reasonable amount of time. Table 6
shows the statistics for all 20 clusters, though we ignore the
results for clusters whose size was too small.
 What is most noteworthy in Table 6 are clusters 8, 11, 15,
because all of their data objects had their CAs modified during
our simulation (see column 4). As can be seen, many of the data
objects in these clusters had original values for their first 3 CAs
consistent with the most representative CAs {A,B,C} for the
cluster (see columns 5,6). Furthermore, all of the objects with
original values for their first 3 CAs equal to the most
representative CAs {A,B,C} for the cluster, were objects whose
CAs had been modified during the simulation to different values
(see column 7).

Table 6. Results for clustering the data set into 20 clusters.
We do not show results for clusters whose size was too small.

1 – Cluster #
2 - Number of objects in the cluster
3 - Most common values {A,B,C} on the objects’ first 3 CAs
4 - Ratio X of objects in the cluster that had CAs modified during
the simulation
5 - Ratio of X that had an original CA very close to {A,B,C}
6 - Ratio P of objects in the cluster that had an original CA very
close to {A,B,C}
7 - Ratio of P that had its CAs modified during the simulation
8 - Number of merged second level subclusters

1 2 3 4 5 6 7 8
1 203

2
{M,D,
L}

616/
2032

217/
616

1047/
2032

217/
1047

537

2 118
6

{MG1,
E,N}

305/
1186

202/
305

1102/
1186

202/
1102

180

3 724 {G2,C,
J}

177/
724

111/
177

672/
724

111/
672

121

4 317 {G1,A,
F}

83/
317

48/
83

302/
317

48/
302

44

5 709 {S,B,H
}

94/
709

24/
94

684/
709

24/
684

183

6 218 {M,D,
M}

50/
218

26/
50

198/
218

26/
198

59

8 66 {MG1,
E,N}

66/66 22/
66

22/ 66 22/22 9

11 71 {MG1,
E,N}

71/71 27/
71

27/ 71 27/27 3

15 74 {MG1,
E,N}

74/74 24/
74

24/ 74 24/24 2

20 333 {S,B,H
} and
{S,B,I}

180/
333

148/
180

260/
333

148/
260

13

 Another interesting result is cluster 2, in which the most
prominent genes are those with the values {MG1, E, N} for their
first 3 CAs. 202/1102 objects had their CAs modified to a totally
different value, but were, nevertheless, assigned to the correct
cluster because they had low CVs (see column 7). This shows that
our algorithm can overcome a poor prior that is likely to be
incorrect and can still produce correct results by using numerical
clustering instead. In this cluster, from all objects assigned to it
that had their CAs modified (305/1186, as shown in column 4)
202/305 had CA values of {MG1, E, N} or {MG1, E, O} (see
column 5). The total cluster size was 1186 and consisted of 180
merged second level subclusters (see column 8). Four of the
merged clusters contained a vast majority of objects with
modified CAs. All of these clusters had a substantial portion - or a
majority - of objects with original CA values of {MG1, E, N}.

7. VALIDATION OF PREDICTIONS
7.1 First Significance Metric
 Our strategy for validating the accuracy of the functional
predictions is to reclassify certain genes' CAs as ‘Unknown’
before the clustering process and we aim to predict the correct
genes’ cellular roles using the cluster CAs pointed out by the SM.
The CAs to be set to ‘Unknown’ were chosen to have a high
average(CV) over all their occurrences in the cluster, because
these are primarily the ones that we would like to be able to
predict correctly. The process described next helps us to
determine how likely genes are to be assigned their correct CAs.
 We iterated over the genes in the cluster with CAs labeled as
‘Unknown’. To assess the effectiveness of the technique, we
verified that the original CAs of these genes correlated better to
the cluster CAs with low M-values - that are pointed out by our
SM - than those with high M-values. This correlation signified the
likelihood that the genes' CAs labeled as ‘Unknown’ would be
assigned their original values, by using CAs with low M-values
that are pointed out by our SM. A relatively large number of
genes' CAs labeled as ‘Unknown’ should be likely to be re-
assigned their original values using CAs with low M-values in the
cluster, because a low M-value indicates that a CA occurs
frequently amongst the cluster’s genes and that a CA is likely to
be correct.
 We initially clustered the yeast data into 5 clusters. Table 7
describes some CAs that were pointed out in all 5 clusters by the

95

SM, after the CAs with the highest average(CV) in each cluster
were set to ‘Unknown’ and the set was clustered.
Table 7. CAs pointed out in 5 clusters as the most significant.
The CAs pointed out in clusters 1-5 as having the lowest M-

values - the most representative ones for the cluster -
correlated with the CAs in the original cluster that were set to

‘Unknown’.
Clu
ster

Some of the CAs pointed out in each cluster as having low
M-values (meaning they occurred frequently and had high
avg(CV)) after the CAs with the highest avg(CV) in each
cluster were set to ‘Unknown’ and the set was clustered.

1 vacuolar membrane, ubiquitin-specific protease, small
nuclear ribonucleoprotein complex, glycolysis, 3'-5'
exoribonuclease, cytosolic small ribosomal subunit, lipid
particle, cytosolic large ribosomal subunit, tricarboxylic
acid cycle

2 rRNA modification, ATP dependent RNA helicase,
nuclear pore, structural molecule, small nucleolar
ribonucleoprotein complex, snoRNA binding, mediator
complex

3 cytosol, proteasome endopeptidase, non-selective vesicle
fusion, translation initiation factor

4 transcription initiation from Pol II promoter, general RNA
polymerase II transcription factor, nucleus

5 endoplasmic reticulum membrane,
component:endoplasmic reticulum

 We have also performed these tests on the yeast data producing
35 and 71 clusters. We provide a concrete example of the utility
of our technique for 35 clusters, by focusing on the second cluster
having 224 genes. In the original clustering, the following CAs
were pointed out as having the lowest M-values:
function:transcription regulator, component:nucleus,
process:transport, process:cell growth and/or maintenance,
process:metabolism, function:transporter, nucleus(a specific,
granular annotation). We focus on the 2 most significant
(representative) CAs for the cluster:
1) component:nucleus occurred in 160 genes in this cluster and

had an average(CV) of 1.0 across all genes. Some genes with
this annotation were YOR064C, YBR247C, YDR205W,
YDR206W, YFR023W, YKL117W, YPR196W, YOR141C,
YOL116W, YOR294W, YDR076W, YFR037C, YNL148C,
YDR510W, YLR074C, YPL049C, YDL064W, YML109W,
YNL016W.

2) nucleus(a specific, granular annotation) occurred in 82
genes in this cluster and had an average(CV) of 0.904878
across all genes. Some genes with this annotation were
YBR247C, YDR205W, YDR206W, YFR023W, YKL117W,
YPR196W, YOL116W, YOR294W, YDR076W, YFR037C,
YNL148C, YLR074C.

 In different trials we set all CAs of many genes in which these
two values occurred originally to ‘Unknown’ and then re-
clustered the data set into 35 clusters. Using the results, we were
able to predict correctly that these genes should be annotated as
either component:nucleus or nucleus(a granular annotation) by
extracting the CAs with lowest M-values. This means that the SM
predicted these genes to have their original correct CAs, after
setting them to ‘Unknown’, re-clustering the data set and
extracting the CAs with lowest M-values.
 Figure 6 illustrates the results obtained for a CA with value A
(component:nucleus) that initially occurred in 160 objects in the
cluster. As an increasing number of occurrences of value A in the
cluster were set to ‘Unknown’ and the set was re-clustered, the

same value A still qualified as one of the most significant values
in the cluster and remained applicable to a relatively large number
of objects (i.e. genes).

Initial # of objects in cluster having an annotation A
(component:nucleus) = 160

150
130

110
90

70

9
28

45
61

79

0
20
40
60
80

100
120
140
160

10 30 50 70 90
of objects in cluster having their original
annotation A set to "Unknown", before re-

clustering

of occurrences of
annotation A in cluster,
before re-clustering

of objects in cluster to
which predicted
annotation A can be
correctly applied, after
re-clustering

Figure 6. Results for different trials of setting occurrences of
‘component:nucleus’ to ‘Unknown’ and re-clustering the set.

7.2 Second Significance Metric
 Our strategy for validating the accuracy of the functional
predictions was to reclassify the CAs of certain genes as
‘Unknown’ before the clustering process and attempt to predict
the correct genes’ cellular roles using the cluster CAs pointed out
by the SM. The CAs set to ‘Unknown’ were primarily ones with a
high average(CV) over all their occurrences in the cluster, because
these were primarily the ones that we would like to be able to
predict correctly. The process described next helped us to
determine how likely genes were to be assigned their correct CAs.
 We iterated over the CAs in the cluster that were labeled as
‘Unknown’. To assess the effectiveness of the technique, we
verified that the original CAs of these genes correlated better to
the cluster CAs pointed out as having the highest significance.
CAs pointed out as highly significant were ones occurring
frequently across the cluster’s genes with high avg(CV). This
correlation signified the likelihood that the genes' CAs labeled as
‘Unknown’ would be re-assigned their original values, by using
CAs that were pointed out by the SM. A reasonable number of
genes' CAs should be likely to be assigned their original values
using the CAs pointed out by the SM.
 We initially clustered the yeast data into 35 clusters, each of
which contained a number of smaller subclusters. The second
level subclusters pointed out by the SM as significant enough
were those containing genes:
1) YHR053C (SM>1 ; 80% of genes not having CV high

enough ; 23 genes total),
2) YDL179W (SM>1 ; 96% of genes not having CV high

enough ; 104 genes total),
3) YKL182W (SM>0.58 ; 94% of genes not having CV high

enough ; 210 genes total),
4) YKR075C (SM>0.44 ; 96% of genes not having CV high

enough ; 27 genes total),
5) YLR342W (SM>0.10 ; 91% of genes not having CV high

enough ; 22 genes total),
6) YMR246W (SM>0.88 ; 75% of genes not having CV high

enough ; 61 genes total),
7) YJL079C (SM>0.06 ; 75% of genes not having CV high

enough ; 4 genes total),
8) YCR005C (SM>0.58 ; 63% of genes not having CV high

enough ; 470 genes total),

96

9) YMR186W (SM>0.06 ; 50% of genes not having CV high
enough ; 8 genes total),

10) YBR029C (SM>1 ; 0% of genes not having CV high enough;
1 gene total),

 The reason other subclusters yielded low significance was
because a majority of their genes had high average(CV) over their
CAs, so most genes were assigned on the basis of categorical
similarity rather than on the basis of numerical similarity. Thus
the dominant factor in the significance metric was low and the
overall result was low.
 We next needed to identify the CAs in these clusters with the
highest average(CV) throughout the entire cluster. We identified
the following CAs, for each of the subclusters listed above:
1) copper binding, avg(CV) 0.5 ; cytosol, avg(CV) 1.0
2) cell cycle, avg(CV) 0.5
3) fatty-acid synthase complex, avg(CV) 1.0 ; fatty acid

biosynthesis, avg(CV) 1.0 ; vacuole (sensu Fungi), avg(CV)
0.8 ; vacuole inheritance, avg(CV) 0.8 ; thiol-disulfide
exchange intermediate, avg(CV) 0.5 ; plasma membrane,
avg(CV) 1.0 ; tricarboxylic acid cycle, avg(CV) 1.0

4) cytoplasm, avg(CV) 1.0
5) 1,3-beta-glucan synthase, avg(CV) 0.55
6) long-chain-fatty-acid-CoA-ligase, avg(CV) 0.55 ; lipid

metabolism, avg(CV) 0.75 ; lipid particle, avg(CV) 1.0
7) nuclear membrane, avg(CV) 1.0
8) glyoxylate cycle, avg(CV) 1.0 ; peroxisomal matrix, avg(CV)

0.95 ; folic acid and derivative biosynthesis, avg(CV) 0.95 ;
pantothenate biosynthesis, avg(CV) 0.8 ; allantoin
catabolism, avg(CV) 0.8 ; purine nucleotide biosynthesis,
avg(CV) 0.95 ; helicase, avg(CV) 0.5 ; spore wall assembly,
avg(CV) 0.8 ; RAB-protein geranylgeranyltransferase,
avg(CV) 0.55 ; protein amino acid geranylgeranylation,
avg(CV) 1.0 ; RAB-protein geranylgeranyltransferase
complex, avg(CV) 1.0

9) response to stress, avg(CV) 0.75
10) phosphatidate cytidylyltransferase, avg(CV) 1.0 ;

phosphatidylserine metabolism, avg(CV) 1.0 ;
mitochondrion, avg(CV) 1.0

 In different trials we set the CAs of many genes in which these
values originally occurred to ‘Unknown’ in each of these clusters
and re-clustered the entire data set. The same values were still
pointed out by the SM as highly significant in the corresponding
clusters. This encouraged us to re-assign the original values to the
genes whose CAs were set to ‘Unknown’, which we interpret as a
success of our approach.

7.3 Assessment of Clustering Stability
 The GO Evidence Codes (GOECs) form a loose hierarchy from
strong evidence to weak evidence. The top GOECs in the
hierarchy represented by ‘TAS’ and ‘IDA’ are mapped to a CV of
1.0 while the bottom GOECs ‘ND’ and ‘NR’ are mapped to 0.0.
We want to show that all other GOECs falling between these
extremes in the hierarchy are assigned a CV that allows objects to
be partitioned the best way in the clustering process. We used the
simulated yeast data set from Section 6 to determine how sensitive
the final results are to changes in the spacing between the CVs.
 We did a trial using GOECs from the top 3 hierarchy scales:
TAS/IDI, IMP/IGI/IPI, ISS/IEP. We set a randomly chosen 1/3 of
the CVs in the data set to TAS/IDI, 1/3 to IMP/IGI/IPI and 1/3 to
ISS/IEP. Then we set all CVs of objects falling in 5 classes A-E in
the data set to the middle GOEC of IMP/IGI/IPI. By mapping this
set of GOECs to corresponding CVs of 1.0, 0.8, 0.5, the objects

belonging in classes A-E were slightly better partitioned from
other objects than when mapping to CVs of 1.0, 0.9, 0.6.
 Then we repeated this trial by using GOECs from the bottom 3
hierarchy scales: ISS/IEP, NAS, IEA. By mapping this set of
GOECs to corresponding CVs of 0.5, 0.2, 0.1, the objects
belonging in classes A-E were slightly better partitioned from
other objects than when mapping to CVs of 0.5, 0.3, 0.2.
 We also assess the stability of the clustering to perturbations in
the data, to determine the reproducibility of the results [26, 27].
Our ‘perturbed’ data includes changes in the spacing between the
CVs and different perturbations of the simulated yeast data set.
We then re-cluster the perturbed data and compute indices - such
as R-index and D-index [27] - to determine how much the
clustering has changed. R-index measures the proportion of pairs
of objects within a cluster for which the members of the pair
remain together in the perturbed re-clustered data [27]. D-index
measures the number of omissions and additions comparing an
original cluster to a best-matching cluster in the perturbed re-
clustered data [27]. The R-index values were greater than 0.97 and
the D-index values were less than 4.5, for several trials involving
different mappings of GOECs to CVs and different perturbations
of the simulated yeast data set. This indicates high reproducibility
of the clustering results.

8. DISCUSSION: USING SIGNIFICANCE
METRICS FOR DERIVING POTENTIAL
GENE FUNCTIONS
 Biologists will find this method useful for deriving hints about
potential functions of genes or proteins. The hints that are derived
as to a gene’s function can later be validated experimentally. This
will save time and money from the experimentalists’ side. In our
experiments with the yeast cell cycle data set, the utility of the
significance metrics (SMs) is especially evident from the fact that
the vast majority of genes in each cluster or subcluster analyzed
had all CAs set to ‘Unknown’ meaning that no knowledge exists.
For example, when analyzing the subcluster containing YHR053C
using the second SM, only 6 out of 20 genes had some kind of
CA, while the other 14 genes had CAs set to ‘Unknown’. Our SM
could point out the most representative CAs that are likely to be
applicable to the other 14 genes and these functional hints can be
tested experimentally.
 M-values are useful for identifying the most representative CAs
in clusters with a plethora of CAs that have high CVs. M-values
allow one to identify the CAs in this pool that appear frequently
(with a low P1-value) so as to apply them to other genes. In our
experiments with the yeast cell cycle data set we realised that
although 1185 second level subclusters had been produced in
total, most of those (1175 = 1185-10 subclusters) had a majority
of genes with an average CV over their CAs that was considered
high. These genes were assigned to the clusters on the basis of
categorical rather than numerical similarity, according to step 3.
M-values could be utilized on these 1175 subclusters, or could be
utilized on the overall clusters produced as an end result by the
algorithm (the total number of clusters was 5, 35 and 71).
 The second SM applies primarily for identifying the most
representative CAs in clusters with a plethora of CAs that have
low CVs. The second SM allows us to identify the few CAs that
have high CVs in these clusters, so as to apply them to other
genes. In our experiments, only 10 second level subclusters out of
1185 in total, had a majority of genes with an average CV across
their CAs that was considered low enough. These genes were

97

assigned to the clusters on the basis of numerical rather than
categorical similarity, according to step 3. The second SM could
be utilized on these 10 subclusters.
 Future work will include justifying on a theoretical basis the
mapping of GO Evidence Codes to CVs. We will be applying this
algorithm to more gene expression data sets for organisms on
which low quality CAs exist. Furthermore, we will be developing
more significance metrics for the M-BILCOM clustering results.

9. CONCLUSION
 When clustering low quality data with uncertainties about the
data’s correctness, we need to develop our ability to integrate data
from various sources, including numerical data and categorical
data. Furthermore, we need to be able to claim that what we see in
a clustering analysis is more reliable or less reliable and,
therefore, may or may not be a strong basis for making decisions.
In this paper we have described the novel M-BILCOM clustering
algorithm for mixed numerical and uncertain categorical data sets
that incorporates CAs and CVs representing certainty about the
correctness of the CAs. This clustering algorithm inspired us to
define two new significance metrics for extracting from each
cluster the most significant CAs, that form a strong basis for
deriving conclusions about the CAs of other objects in the cluster.
We showed that these significance metrics can be successfully
used for finding the most significant CAs in a cluster. For
genomic data sets we applied the significant CAs to other genes in
the cluster for functional prediction. We experimented with this
clustering tool on highly noisy yeast data sets for which the
correct results were known. We showed that M-BILCOM can
reliably identify the cluster structure in simulated data sets.

10. REFERENCES
[1] Andreopoulos, B., An, A. and Wang, X. (2005) BILCOM:

Bi-level Clustering of Mixed Categorical and Numerical
Biological Data. Technical report CS-2005-01. York
University. http://www.cs.yorku.ca/techreports/

[2] Andreopoulos, B., An, A. and Wang, X. (2004) MULIC:
Multi-Layer Increasing Coherence Clustering of Categorical
Data Sets. Technical report CS-2004-07. York University.

[3] Andreopoulos, B., An, A. and Wang, X. (2003) Significance
Metrics for Clusters of Mixed Numerical and Categorical
Yeast Data. Technical report CS-2003-12. York University.

[4] Adryan B. and Schuh R. (2004) Gene ontology-based
clustering of gene expression data, Bioinformatics, Nov
2004; 20: 2851 - 2852.

[5] Ben-Dor A., Shamir R., Yakhini Z. (1999) Clustering Gene
Expression Patterns. Journal of Computational Biology
6(3/4): 281-297.

[6] Brown M.P.S. Grundy W.N., Lin D., Cristianini N., Sugnet
C.W., Furey T.S., Manuel A., Haussler D. Knowledge-based
analysis of microarray gene expression data by using support
vector machines. PNAS 97(1), 262-267, 2000.

[7] Cherepinsky V., Feng J., Rejali M. and Mishra B. (2003)
Shrinkage-Based Similarity Metric for Cluster Analysis of
Microarray Data. PNAS 100(17): 9668-9673.

[8] Dwight SS, Harris MA, Dolinski K, Ball CA, Binkley G,
Christie KR, Fisk DG, Issel-Tarver L, Schroeder M, Sherlock
G, Sethuraman A, Weng S, Botstein D, Cherry JM. (2002)
Saccharomyces Genome Database provides secondary gene
annotation using the Gene Ontology. Nucleic Acids Research
30: 69-72.

[9] Eisen, M.B. & Brown, P.O. (1999) DNA arrays for analysis of
gene expression. Methods Enzymol. 303, 179-205.

[10] Eisen MB, Spellman PT, Brown PO, Botstein D. (1998)
Cluster analysis and display of genome-wide expression
patterns. Proc Natl Acad Sci USA. 95(25):14863-8, 1998.

[11] Fasulo D. (1999) An Analysis of Recent Work on Clustering
Algorithms, Technical Report # 01-03-02, Department of
Computer Science & Engineering, University of Washington.

[12] The Gene Ontology Consortium (2001). Creating the gene
ontology resource: design and implementation. Genome
Research 11: 1425-1433.

[13] Goebel, M. & Gruenwald, Le (1999). A survey of data
mining and knowledge discovery software tools. ACM
SIGKDD Explorations 1, 20-33 .

[14] Golub, T. R. et al. (1999) Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring. Science 286, 531-537.

[15] Grambeier J., Rudolph A. (2002) Techniques of Cluster
Algorithms in Data Mining. Data Mining and Knowledge
Discovery 6: 303-360.

[16] Guha S., Rastogi R., Shim K. (2000). ROCK: A Robust
Clustering Algorithm for Categorical Attributes. Information
Systems 25(5): 345-366.

[17] Hartigan, J. A. (1975) Clustering algorithms. (John Wiley
and Sons, New York, 1975).

[18] Huang Z. (1998) Extensions to the k-Means Algorithm for
Clustering Large Data Sets with Categorical Values. Data
Mining and Knowledge Discovery 2(3): 283-304.

[19] Huang, Z. (1997) Clustering Large Data Sets with Mixed
Numeric and Categorical Values. Knowledge discovery and
data mining: techniques and applications. World Scientific.

[20] Lord P.W., Stevens R.D., Brass A. and Goble C.A. (2003).
Investigating semantic similarity measures across the Gene
Ontology: the relationship between sequence and annotation.
Bioinformatics 19: 1275-83.

[21] Pasquier C., Girardot F., Jevardat de Fombelle K., and
Christen R. (2004) THEA: Ontology driven analysis of
microarray data. Bioinformatics, Nov 2004; 20: 2636 - 2643.

[22] Slonim D.K., Tamayo P., Mesirov J.P., Golub T.R., and
Lander E.S. Class prediction and discovery using gene
expression data. Proceedings of the Fourth Annual Conf. on
Computational Molecular Biol. (RECOMB) 2000, 263-272.

[23] Spellman, P.T. et al. Comprehensive identification of cell
cycle-regulated genes of the yeast Saccharomyces Cerevisiae
by microarray hybridization. Mol Biol Cell 9, 3273-97, 1998.

[24] Stutz J. and Cheeseman P. (1995) Bayesian
Classification(AutoClass): Theory and results. Advances in
Knowledge Discovery and Data Mining, 153-180, Menlo
Park, CA, AAAI Press.

[25] Wu L.F., Hughes T.R., Davierwala A.P., Robinson M.D.,
Stoughton R. and Altschuler S.J. (2002). Large-scale
Prediction of Saccharomyces Cerevisiae Gene Function
Using Overlapping Transcriptional Clusters. Nature Genetics
31:255-265.

[26] Kerr MK, Churchill GA. Bootstrapping cluster analysis:
assessing the reliability of conclusions from microarray

experiments. Proc Natl Acad Sci USA. 2001 July;
98(16):8961-5.

[27] McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC,
Simon R. Methods for assessing reproducibility of clustering
patterns observed in analyses of microarray data.
Bioinformatics. 2002 Nov;18(11):1462-9.

98

Data Cleaning Using Belief Propagation

Fang Chu Yizhou Wang D.Stott Parker Carlo Zaniolo

University of California, Los Angeles
Computer Science Department

{fchu,wangyz,stott,zaniolo}@cs.ucla.edu

ABSTRACT
Effective data cleaning is critical in many applications where
the quality of data is poor due to missing values or inaccu-
rate values. Fortunately, a wide spectrum of applications ex-
hibit strong dependencies between data samples, and such
dependencies can be used very effectively for cleaning the
data. For example, the readings of nearby sensors are gen-
erally correlated, and proteins interact with each other when
performing crucial functions. We propose a data clean-
ing approach, based on modeling data dependencies with
Markov networks. Belief propagation is used to efficiently
compute the marginal or maximum posterior probabilities,
so as to infer missing values or to correct errors. To illus-
trate the benefits and generality of the technique, we discuss
its use in several applications and report on the data quality
and improvements so obtained.

1. INTRODUCTION
Improving data quality is the key for the success of many

applications including data mining. This paper focuses on
two data cleaning tasks: filling in missing values and dis-
ambiguating. These two tasks can be treated in a unified
framework using belief propagation.

The observation essential to the solution is that a wide
spectrum of scenarios exhibit dependencies between data
samples. For example, the readings of nearby sensors are
generally correlated, and proteins interact with each other
when performing crucial functions. Such dependencies can
be exploited for cleaning the data. We illustrate this using
two cases.

Incomplete Data

In sensor networks, where probing has to be minimized
due to power restrictions, data is often incomplete or some-
what outdated. For popular queries such as maximum/average
sensor readings, we need a cost-efficient way to infer un-
known or out-of-date values while probing the sensors as
little as possible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA
Copyright 2005 ACM 1-59593-160-0 /05/06$5.00.

To solve this problem, we can leverage the neighborhood
relationship, since sensor readings are correlated if the sen-
sors are geographically close. Even knowledge of far-away
sensors helps, because that knowledge can be propagated
via sensors deployed in between. By exploiting sensor cor-
relation, unprobed sensors can be accurately inferred, and
thus data quality can be improved.

Inaccurate Data

An example of inaccurate data is encountered in opti-
cal character recognition (OCR), a technique that trans-
lates pictures of characters into a machine readable encod-
ing scheme. Current OCR algorithms often translate two
adjacent letters “ ff ” into a “# ” sign, or incur similar
systematic errors.

In the OCR problem, the objective is not to ignore or
discard noisy input, but to disambiguate legal words from
recognition errors. The error patterns in OCR may be re-
lated to the shape of individual characters, the adjacency of
characters, or illumination and positions. It is thus possible
to correct a substantial number of errors with the knowledge
of neighboring characters.

A common characteristic of the above two scenarios is
the presence of data dependency. We propose a unified ap-
proach that infers missing values or disambiguating by ex-
ploiting this data dependency. We first model local data
dependency by means of a graphical model, and then use
Belief Propagation [12] for efficient inference.

In section 2, we briefly describe a special form of graphi-
cal models, pairwise Markov network, and how to do infer-
ence using belief propagation. Then we address the above-
mentioned examples in sections 3 and 4. Paper concludes
with related work and discussions in Section 5.

2. BELIEF PROPAGATION ON MARKOV
NETWORK

Markov networks have been successfully applied to many
problems in different fields, such as artificial intelligence [7]
and image analysis [10]. In this paper, we show that they
can also provide very useful tools for data cleaning.

2.1 Markov Network
The Markov network is a type of graphical models suitable

for modeling local dependencies. The Markov property [2]
ensures that the joint probability can be factored—a criti-
cal property of Markov networks since it leads to efficient
computations.

99

In many practical problems, we are mainly interested in
are pairwise relationships among the variables. For this cat-
egory of problem pairwise Markov networks can be used,
and the joint probability of a graph configuration can be
factored into:

P ({x}, {y}) =
1

Z

Y
(i,j)

ψij(xi, xj)
Y

i

φi(xi, yi) (1)

where {xi} are random variables denoted by nodes in the
Markov network, {yi} the evidence of the corresponding
random variables, Z a normalization factor. Compatibility
function ψij(xi, xj) captures the “internal binding” between
two neighboring nodes i and j, and compatibility function
φi(xi, yi) can be interpreted as “external potential” from the
external field. The product over (i, j) runs over all compat-
ible neighbors.

Solving a Markov network involves two phases:

• The learning phase, a phase that builds up the graph
structure of the Markov network, and learns the two
types of potential functions, φ()’s and ψ()’s, from the
training data.

• The inference phase, a phase that estimates the mar-
ginal posterior probabilities or the local maximum pos-
terior probabilities for each random variable, such that
the joint posterior probability is maximized.

The inference phase can be solved using a number of
methods, such as simulated annealing [4], mean-field
annealing [8]. These methods either take an unaccept-
ably long time to converge, or make oversimplified as-
sumptions such as total independence between vari-
ables. We choose to use the Belief Propagation (BP)
method, which has a computation complexity propor-
tional to the number of nodes in the network, assumes
only local dependencies, and has proved to be effective
on a broad range of Markov networks.

2.2 Inference by Belief Propagation
Belief propagation (BP) is a powerful inference tool on

Markov networks. For Markov chains and Markov networks
without loops, BP is an exact inference method. Even for
loopy networks, BP has been successfully used in a wide
range of applications [5]. We give a short description of BP
in this subsection.

The BP algorithm iteratively propagates “messages” in
the network. Messages are passed between neighboring nodes
only, ensuring the local constraints, as shown in Figure 1.
The message from node i to node j is denoted as mij(xj),
which intuitively tells how likely node i thinks that node j
is in state xj . The message mij(xj) is a vector of the same
dimensionality as xj .

There are two types of message passing rules:

• SUM-product rule, that computes the marginal poste-
rior probability.

• MAX-product rule, that computes the maximum a pos-
teriori probability.

For discrete variables, messages are updated using the

Figure 1: Message passing in a Markov network.
Messages are defined by Eqs.(2) or (3) under two
types of rules, respectively.

SUM-product rule:

m
t+1
ij (xj) =

X
xi

φi(xi, yi)ψij(xi, xj)
Y

k∈N(i),k 6=j

m
t
ki(xi) (2)

or the MAX-product rule,

m
t+1
ij (xj) = max

xi

φi(xi, yi)ψij(xi, xj)
Y

k∈N(i),k 6=j

m
t
ki(xi) (3)

where mt
ki(xi) is the message computed in the last iteration

of BP, k runs over all neighbor nodes of i except node j.
BP is an iterative algorithm. When messages converge,

the final belief b(xi) is computed. With the SUM-product
rule, b(xi) approximates the marginal probability p(xi), de-
fined to be proportional to the product of the local com-
patibility at node i (φ(xi)), and messages coming from all
neighbors of node i:

bi(xi)SUM = xiφi(xi, yi)
Y

j∈N(i)

mji(xi) (4)

where N(i) is the neighboring nodes of i.
If using the MAX-product rule, b(xi) approximates the

maximum a posterior probability:

bi(xi)MAX = arg max
xi

φi(xi, yi)
Y

j∈N(i)

mji(xi) (5)

For more theoretical details of the belief propagation and
its generalization, we refer the reader to [12].

3. COST-EFFICIENT SENSOR PROBING
A key research issue in sensor networks is how to minimize

communication. The challenge is how to probe a small num-
ber of sensors, and to effectively infer the unprobed sensors
from the known ones.

Our approach here is to model a sensor network with a
pairwise Markov network, and use BP to do inference. Each
sensor is represented by a random variable in the Markov
network. Sensor neighborhood relationships are determined
by spatial positions. For example, one can specify a distance
threshold so that sensors within the range are neighbors.
Neighbors are connected by edges in the network.

In the rest of this section, we study a rainfall sensornet
distributed over Washington and Oregon [6]. The sensor
recordings were collected during 1949-1994. We use 167 sen-
sor stations which have collected complete recordings during
that period.

100

3.1 Problem Description
Since rain is a seasonal phenomena, we split the data by

week and build a Markov network for each week.
We need to design the potential functions φi(xi, yi) and

ψij(xi, xj) in Eq. (1) in order to use belief propagation. One
can use Gaussian or its variants to compute the potential
functions. But, in the sensornet we study, we find that the
sensor readings are overwhelmed by zeroes, while non-zero
values span a wide range. Clearly Gaussian is not a good
choice for modeling such skewed data. Neither are mixtures
of gaussian, due to limited data. Instead, we prefer to use
discrete sensor readings in the computation. The way we
discretize data is given in section 3.3.

The φ() functions should tell how likely we observe a read-
ing yi for a given sensor xi. It is natural to use the likelihood
function:

φi(xi, yi) = P (yi|xi) (6)

The ψ() functions specify the dependence of sensor xj ’s
reading on its neighbor xi.

ψij(xi, xj) = P (xj |xi) (7)

3.2 Problem Formulation
We give a theoretical analysis of the problem here. As we

will see shortly, the problem fits well into the maximum a
posteriori (MAP) estimation on a Markov chain solvable by
belief propagation.

Objective: MAP

Let X to be the collection of all underlying sensor read-
ings, Y the collection of all probed sensors. Using Bayes’
rule, the joint posterior probability of X given Y is:

P (X|Y) =
P (Y |X)P (X)

P (Y)
(8)

Since P (Y) is a constant over all possible X, we can sim-
plify this problem of maximizing the posterior probability
to be maximizing the joint probability

P (X,Y) = P (Y |X)P (X) (9)

Eq.(9) is the objective function to be maximized, which
is proportional to the maximum a posteriori probability.

Likelihood

In a Markov network, the likelihood of the readings Y
only depends on the variables they directly connect to:

P (Y |X) =
mY

i=1

P (yi|xi) (10)

where m is the number of probed sensors.

Prior

Priors shall be defined to capture the constraints between
neighboring sensor readings. By exploiting the Markov prop-
erty of the sensors, we define the prior to involve only the
first order neighborhood. Thus, the prior of a sensor is pro-
portional to the product of the compatibility between all

neighboring sensors:

P (X) ∝
Y
(i,j)

P (xj |xi) (11)

Solvable by BP

By replacing Eqs.(10) and (11) into the objective Eq.(9),
we have the joint probability to be maximized:

P (X,Y) =
1

Z

Y
(i,j)

P (xj |xi)

NY
i=1

P (yi|xi) (12)

Looking back at the φ() and ψ() functions defined in
Eqs.(6) and (7), we see that the objective function is of the
form:

P (X,Y) =
1

Z

Y
(i,j)

ψ(xi, xj)
NY

i=1

φ(xi, yi) (13)

where Z is a normalizing constant.
This is exactly the form in Eq.(1), where the joint prob-

ability over the pairwise Markov network is factorized into
products of localized potential functions. Therefore, it is
clear that the problem can be solved by belief propagation.

3.3 Learning and Inference
The learning part is to find the φ() and ψ() functions for

each sensor, as defined in Eqs.(6) and (7). The learning is
straight-forward. We discretize the sensor readings in the
past 46 years, use the first 30 years for training and the rest
16 years for testing. In the discrete space, we simply count
the frequency of each value a sensor could possibly take,
which is the φ(), and the conditional frequencies of sensor
values given its neighbors, which is the ψ().

We use a simple discretization with a fixed number of
bins, 11 bins in our case, for each sensor. The first bin is
dedicated to zeroes, which consistently counts for over 50%
of the populations. The 11 bins are assigned in a way that
give roughly balanced number of readings in each bin. This
very simple discretization method has been shown to work
well in the sensor experiments. More elaborated techniques
can be used which may further boost the performance, such
as histogram equalization that gives balanced bin population
with adaptive bin numbers.

For inference, belief propagation does not guarantee to
give the exact maximum a posteriori distribution, as there
are loops in the Markov network. However, loopy belief
propagation still gives satisfactory results, as we will see
shortly.

3.4 Experimental Results
Evaluation experiments are conducted on two popular

types of aggregate queries: Top-K and Average. A Top-
K query asks for the K sensors with the highest values,
and Average asks for the averaging value of all sensor read-
ings. These are not only popular aggregation queries that
the sensor community is interested in, but also provide a
good metric for probing strategies since the exact answer
requires contacting all sensors.

We design probing strategies for Top-K and Average in
which sensors are picked for probing based on their local
maximum a posteriori probability computed by belief prop-
agation. For comparison purposes, we also experiment with
naive probing strategies that rely solely on historic statistics.

101

0.2

0.4

0.6

0.8

1

10 20 30 40 50

52 weeks

Probing Ratio
Top 10 recall on Raw data

Top 10 recall on Discrete data

0.2

0.4

0.6

0.8

1

10 20 30 40 50

52 weeks

Probing Ratio
Top 10 recall on Raw data

Top 10 recall on Discrete data

(a) BP-based Top-K queries. (b) Naive Top-K queries.

Figure 2: Top-K recall rates vs. probing ratios. On average, BP-based approach probed 8% less, achieves
13.6% higher recall rate for raw values, and 7.7% higher recall rate for discrete values.

• BP-based Top-K probing: Initially, a small num-
ber of sensors with the highest expected readings are
probed, based on historic statistics. After probing, all
sensor reading expectations are updated using belief
propagation. Then, top sensors are selected among
the unprobed sensors, based on updated expectations.
This updating-probing procedure iterates until beliefs
of the network converge, or more than 25% of the sen-
sors have been probed. The top K with the highest
expectation (or known readings) are returned.

• Naive Top-K probing: The top 25% sensors are
probed, based on historic statistics. The top K among
these probed sensors are returned.

• BP-based Average probing: Initially, a small num-
ber of sensors with the largest variation are probed,
based on historic statistics. After probing, all sensor
reading expectations are updated using belief propa-
gation. Then, sensors having the largest variations are
selected among the unprobed sensors, based on up-
dated expectations. This updating-probing procedure
iterates until more than 25% of the sensors have been
probed. Average is computed based on the final ex-
pectations and the probed readings.

• Naive Top-K probing: The 25% sensors with the
largest variations are probed, based on historic statis-
tics. The average is computed based on historic ex-
pectations and the probed readings.

Top-K query results are compared in Figure 2 (a) and
(b). Experimental results are obtained for each testing day,
and daily results are grouped and averaged for all days that
fall into the same week of year. The results shown are for
K = 10, but the relative performance remains the same
for other values of K. In each diagram, the bottom curve
shows the probing ratio, and the top two curves show the
recall rates for raw values and discrete values. Discrete recall
demonstrates the effectiveness of BP, while raw recall may
be of more interest for real application needs. We use the
standard formula to compute recall rate. Let S denotes the
top-K sensor set returned, and T the true top-K set, then:
Recall=

|S T |

|T |
.

Figure 2 shows clearly that the BP-based approach out-
performs the naive approach in terms of both recall rates,
while requiring less probing. On average, the BP-based ap-
proach has a discrete recall of 88% and a raw recall of 78.2%,
after probing only 17.5% sensors. The naive recall has a dis-
crete recall of only 79.3%, a raw recall of only 64.6%, after
probing 25% sensors.

Average query results are compared in Figure 3 (a) and
(b). In each diagram, the true means and the estimated
means are shown, with error bars indicating one standard
deviation away from the estimation in both directions. The
results are obtained on discrete sensor readings which range
from 0 to 11. On average, BP-based estimation has an error
of −0.75 and deviation of 0.79, while Naive estimation has
an error of −1.39 and deviation of 1.35. BP-based strat-
egy is clearly much more effective at pinpointing the most
uncertain sensors for probing, thus yielding more accurate
results.

4. SEQUENCE DATA DISAMBIGUATING
Sequences are ordered lists of elements, such as text strings,

DNA sequences, or binary codes in channel transmission.
This type of data often exhibits dependencies between ad-
jacent elements. For example, there are rich dependencies
embedded in English text. This sequence data can be mod-
eled using Markov chains—a degenerate form of Markov net-
works.

Moreover, errors in sequence data often have neighbor-
hood patterns. OCR discussed in Section 1 gives an example
where errors are related to the shapes of characters and to
their relative positions. The mutation of a nucleotide is also
influenced by its nearby bases. The fact that the Markov
property is satisfied by both the sequence data itself and by
errors strongly suggests that belief propagation is effective
for sequence data denoising. Actually for Markov chains,
belief propagation is theoretically guaranteed to give exact
marginal or maximum a posteriori probabilities.

In the rest of the section, we study a problem of correct-
ing errors in noisy documents. Despite a simple problem,
it exemplifies many basic characteristics in sequence data
denoising.

102

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50

m
ea

n

52 weeks

BP estimation
true expectation

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50

m
ea

n

52 weeks

Naive estimation
true expectation

(a) BP-based Average queries. (b) Naive Average queries.

Figure 3: Average estimation error bars, on discrete sensor readings (0−11). On average, BP-based estimation
has an error of −0.75 and deviation of 0.79, while Naive estimation has an error of −1.39 and deviation of 1.35.

4.1 Problem Description
A document is a text sequence consisting of characters

from an alphabet, while a noisy document is the result from
some recognizer with systemic errors. We split the sequence
into small segments, each having n characters, and let neigh-
boring segments overlap by m characters, m < n. We

use a random variable xi = (x
(1)
i , · · · , x(n)

i) to represent
each underlying clean segment i. The corresponding ob-
served segment in the noisy document is denoted as yi =

(y
(1)
i , · · · , y(n)

i). Each segment, except those that start or
end the sequence, has a neighbor segment on both sides.

Now we design the potential functions φi(xi, yi) and
ψij(xi, xj). For φ(), the definition should specify how likely
we observe yi given xi. A natural choice is to define φ() to
be a likelihood function

φi(xi, yi) = P (yi|xi) (14)

For a short segment, we can assume independence between
characters. Thus, φ() can be written as

φi(xi, yi) =
nY

l=1

P (y
(l)
i |x(l)

i) (15)

For ψ(), the definition should specify how compatible two
neighboring segments xi and xj are. Again, we can assume
independence between the characters in the two segments,
except for those in the overlapping part. Consider two over-

lapping characters, x
(k)
i and x

(l)
j . If the probability is zero

that x
(k)
i will change to x

(l)
j or vice versa, then the two seg-

ments, xi and xj , are incompatible. The resulting mutation
probability of the overlapping segment quantifies the com-
patibility of two neighboring segments. Non-adjacent seg-
ments are incompatible. Formally, we define an asymmetric
ψ() function on xi and xj , when xi is the left neighbor of
xj :

ψij(xi, xj) =
mY

l=1

P (x
(l)
j |x(n−m+l)

i) (16)

4.2 Learning and Inference
The objective of the learning phase is to find the φ() and

ψ() functions. For this purpose, we build a mutation ma-
trix M . Each matrix element m(i, j) is the unconditional
mutation probability from the i-th character to the j-th:
m(i, j) = P (chj |chi). This can be easily computed from
the training set, which consists of pairs of clean and noisy
documents.

We partition the clean document and the noisy documents
in the same way. The φ() of each pair of clean and observed
segments is given in Eq.(14), and the ψ() of each pair of
neighboring clean segments is given in Eq.(16).

In inference, a subproblem is to find candidate underlying
segments for a given observed segment. One can enumer-
ate all possible candidates using the mutation matrix. But
this method not only can generate too many candidates,
but also ignores the following valuable information from the
training data: only certain combinations of segments are
possible. We restrict the candidates to be the top matches
among all training segments. When the number of matches
is too small, we generate some extras using the transition
matrix. By doing so, we actually explore the intra-segment
constraints, which are fine details that the Markov chains
cannot model, as they are on the scale of segments.

4.3 Experimental Results
We choose two CVPR conference papers on the same

topic: motion modeling. Both documents are distorted, us-
ing the probabilistic mutation rules in Table 1, to form pairs
that consist of a clean document and a noisy document. One
pair is used to train the potential functions, while the other
is used for testing. For simplicity, we change all capitals into
lower-case letters, replace all punctuation marks other than
commas and periods into commas, and remove all figures,
tables and equations. The transformed documents belongs
to an alphabet of size 38 (consisting of 26 letters, 10 digits,
a comma and a period).

A variety of distortion rules are used: unconditional muta-
tion rules and k-order conditional mutation rules, k = 1, 2, 3.
(A k-order conditional mutation depends on k neighbors on
either side.) To compute the potential functions, all we need
to learn is a 38 by 38 mutation matrix M for unconditional

103

rule mutation prob. # errors % corrected

x → k 100% 56 91%

f → f 42% - -
f → d 30% 123 92%
f → z 28% 118 87%

th → th 48% - -
th → tn 52% 220 96%

se → se 36% - -
se → ue 18% 51 93%
se → le 25% 69 94%
se → ie 21% 58 95%

tio → tio 29% - -
tio → tho 20% 35 100%
tio → txo 20% 35 100%
tio → two 31% 57 98%

total words/errors: 3459/822 overall accuracy: 94%

Table 1: Distortion rules and error correction re-
sults. Columns 1 and 2 give the rule and mutation
rate, column 3 the actual number of times a rule ap-
plies, and column 4 the percentage corrected by BP
inference.

mutation rates only. Yet, we are able to catch and to correct
most of the mutation errors, including the higher order con-
ditional errors. The overall correction rate is 94%, and the
correction rates for high-order conditional errors are even
higher, as shown in Table 1.

To help give an intuitive idea about how dependencies
between text segments can be used effectively for error cor-
rection, we enclose a paragraph of distorted text here, fol-
lowed by the corrected version. The misspelled words are
underlined.

Distorted text:

introductxon. natural scenes contain rich stochastic mothon
patterns which are characterized by the movement od a large
number od distinguishable or indistinguishable elements, such
as falling snow, zlock of birds, river waves, etc. tnele mothon
patterns, called tektured, motion temporal tekture and dy-
namic tektures in the literature, cannot be analyzed by
conventwonal optical zlow dields and have stimulated grow-
ing interests in both graphics and vision.

Text after disambiguating:

introduction. natural scenes contain rich stochastic mo-
tion patterns which are characterized by the movement of
a large number of distinguishable or indistinguishable ele-
ments, such as falling snow, zlock of birds, river waves, etc.
tnese motion patterns, called textured motion, temporal tex-
ture and dynamic tektures in the literature, cannot be ana-
lyzed by conventional optical flow fields, and have stimulated
growing interests in both graphics and vision.

5. RELATED WORK AND DISCUSSIONS
Techniques for improving data quality proposed in the

literature have addressed a wide range of problems caused
by noise and missing data. For better information retrieval
from text, data is usually filtered to remove noise defined by

grammatical errors [9]. In data warehouses, there has been
work on noisy class label and noisy attribute detection based
on classification rules [13] [11], as well as learning from both
labeled and unlabeled data by assigning pseudo-classes for
the unlabeled data [1] using boosting ensembles. Most of
this previous work has its own niche concerning data qual-
ity. Our work is more general in that it exploits local data
constraints using Markov networks and belief propagation.

A pioneering work in sensor networks, the BBQ system
[3] has studied the problem of cost-efficient probing. How-
ever, their method relies on a global multivariate Gaussian
distribution. Global constraints are very strict assumptions,
and are not appropriate in many practical scenarios.

The primary contribution of this paper is to propose a uni-
fied approach to filling in missing values and disambiguating,
by exploiting extensive data dependencies that are present
in practical problems. The techniques here proposed can be
very useful for data-intensive systems, as demonstrated by
our studies of real-life applications.

6. REFERENCES
[1] K. Bennett, A. Demiriz, and R. Maclin. Exploiting

unlabeled data in ensemble methods. In Proc. of the
8th ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining, pp. 289-296, 2002.

[2] R. Chellappa and A. Jain. Markov Random Fields:
Theory and Application. Academic Pr., 1993.

[3] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. In Proc. of the 30th Int’l Conf. on Very
Large Data Bases (VLDB 04), 2004.

[4] S. Kirkpatrick, C. Gelatt, and M. Vecchi.
Optimization by simulated annealing. In Science, vol.
220, no.4598, 1983.

[5] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief
propagation for approximate inference: an empiricial
study. In Proc. Uncertainty in AI, 1999.

[6] University of Washington.
http://www.jisao.washington.edu/data sets/widmann/.

[7] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann
publishers, 1988.

[8] C. Peterson and J. Anderson. A mean-field theory
learning algorithm for neural networks. In Complex
Systems, vol.1, 1987.

[9] G. Salton and M. McGill. Introduction to modern
information retrieval. McGraw Hill, 1983.

[10] R. Schultz and R. Stevenson. A bayesian approach to
image expansion for improved definition. In IEEE
Trans. Image Processing, 3(3), pp. 233-242, 1994.

[11] Y. Yang, X. Wu, and X. Zhu. Dealing with
predictive-but-unpredictable attributes in noisy data
sources. In Proc. of the 8th European Conf. on
Principles and Practice of Knowledge Discovery in
Databases (PKDD 04), 2004.

[12] J. Yedidia, W. Freeman, and Y. Weiss. Generalized
belief propagation. In Advances in Neural Information
Processing Systems (NIPS), Vol 13, pp. 689-695, 2000.

[13] X. Zhu, X. Wu, and Q. Chen. Eliminating class noise
in large datasets. In Proc. of the 20th Int’l Conf.
Machine Learning (ICML 03), 2003.

104

 Data Quality Inference
Raymond K. Pon and Alfonso F. Cárdenas

UCLA Computer Science
Boelter Hall 4829

Los Angeles, CA 90095
(310) 825-1770

{rpon, cardenas}@cs.ucla.edu

ABSTRACT
In the field of sensor networks, data integration and collaboration,
and intelligence gathering efforts, information on the quality of
data sources are important but are often not available. We
describe a technique to rank data sources by observing and
comparing their behavior (i.e., the data produced by data sources)
to rank. Intuitively, our measure characterizes data sources that
agree with accurate or high-quality data sources as likely accurate.
Furthermore, our measure includes a temporal component that
takes into account a data source’s past accuracy in evaluating its
current accuracy. Initial experimental results based on simulation
data to support our hypothesis demonstrate high precision and
recall on identifying the most accurate data sources.

1. INTRODUCTION
A major aspect of data provenance is the ability to track the
quality of data as it is processed by various transformations, each
with an associated computational or intrinsic data collection error.
It is important to choose trustworthy data sources when querying
over multiple data sources [1]. Users of data warehouses regard
the quality of information as important and as a factor in
measuring the utility of a data warehouse [2]. Furthermore, the
inclusion of data quality information has an impact on decision-
making and decision-support systems as well [3, 4]. Also data
conflicts, occurring when heterogeneous data sources are
integrated, can be resolved by considering the quality of the data
sources involved [5]. The accuracy of data can also be used to
rank query results as well (as opposed to the relevance of query
results to the query) [6]. Clearly, this trustworthiness and quality
information should be stored as part of a data item’s provenance.
The following is a general query in which data quality can be used
to answer:

Query 1: “Given many genomic databases where data has been
collected by various means and institutions, find a DNA sequence
that satisfies a condition C.” In this query, collections of data sets
(i.e., DNA sequences) have been collected by different
instruments and/or possibly derived by various and possibly
multiple transformations. Each of these instruments and
transformations has a different degree of reliability and error.
Additionally, the data sets that are relevant to the query may be
numerous, so it is necessary to rank data sets by their “quality” or

trustworthiness (i.e., how reliable the data sets are).

However, it is unclear as to where metadata regarding data quality
comes from. User-provided ratings of data sets or sources can be
used to rate the quality of data sources [1], but is clearly a
subjective measure and would require large samples to get any
meaningful results. Error measures can be provided by data
sources providers along with data sets, but may be inaccurate,
difficult to use, incomplete, or untrustworthy [7]. Thus, we
describe a technique to rank data sources by observing and
comparing the behavior (i.e., the data produced by data sources)
to rank them in terms of their quality. Intuitively, in our measure,
data sources that agree with accurate data sources are likely to be
accurate. Furthermore, in our measure, data sources that have
been accurate in the past are also likely to be accurate in the
future. We provide some initial experimental results based on
simulation data to support our hypothesis. The following sub-
sections discuss motivations for this work and the related works.
In section 2, we describe our technique for data source ranking. In
section 3 and 4, we present our initial experimental results and
possible roads of future research, respectively.

1.1 Motivation
We describe three possible application areas in which the
modeling of data accuracy and trustworthiness are important.

Application 1: Sensor networks are becoming increasingly
prevalent in observing wildlife, monitoring environmental
conditions, monitoring of soldiers in the field, and the detection of
harmful biological and chemical agents, with practical
applications in homeland security [8]. The effectiveness of these
sensor networks is highly dependent on the accuracy of the
networks, which is a function of the current battery level of the
device, interference, and intrinsic error in data collection. For
example, in the near future, soldiers may be equipped with data
capturing devices, making each soldier a sensor [9], to give field
commanders current battlefield status reports. Data captured by
soldiers may be conflicting and/or erroneous because of the
human element involved in the data capturing process. It would be
advantageous to be able to determine the more trustworthy
“sensors” in capturing the current situation to filter out noisy data
and to reduce the consumption of resources (e.g., manpower,
time, and battery-life).

Application 2: In biomedical research, research facilities
frequently collaborate with each other, sharing experimental data
and results. In particular, comparing genome sequences from
different species has become an important tool for identifying
functions of genes [10]. This necessitates dynamically integrating
different databases or warehousing them into a single repository.
Scientists need to know how reliable the data is if they are to base
their research on it. Pursuing incorrect theories cost time and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IQIS 2005, June 17, 2005, Baltimore, MD, USA.
Copyright 2005 ACM 1-59593-160-0/05/06 $5.00.

105

money. The obvious solution to ensure data quality is curation,
but data sources are autonomous and as a result sources may
provide excellent reliability in one area, but not in all data
provided, and curation slows the incorporation of data. Data
providers will not directly support data quality evaluations to the
same degree since there is no equal motivation for them to and
there are no standards in place for evaluating and comparing data
quality [7]. Thus, automatic, impartial, and independent data
quality evaluation would be needed.

Application 3: In intelligence gathering efforts, data is often
collected from many heterogeneous data sources, such as
satellites, human assets, transcripts, wiretaps, etc. It is obvious
that each of these data sources have different degrees of quality
and trust. And with the multitude of data sources to incorporate, it
is currently time-consuming to sift through each of these data
sources to determine which the most accurate sources are. To
make the correct decisions based on the intelligence available in a
timely manner, we will need an automatic means to determine
accurate data sources and to be able to detect malicious or
compromised data sources to prevent them from influencing
decision-making processes.

1.2 Related Works
There has been a significant amount of work in the area of
information quality, ranging from techniques in assessing
information quality and accuracy to building large-scale data
integration systems over heterogeneous data sources. For
example, the DaQuinCIS system [11-13] is a cooperative
information system where data source providers are evaluated by
data source users in a peer-to-peer system. Unfortunately, such a
system relies heavily on the participation of users in the review of
the quality of data in the system, which may not be practical in
real-life environments. Users may not reliably or consistent in
evaluating data sources.

Other works have taken other approaches in modeling and
capturing data quality. Some have developed data models to
model data quality but rely on data quality metadata being
available, such as data sources publishing such information [14-
19]. Unfortunately, these approaches rely on precise and accurate
metadata. However, such metadata are not always available [7]
and there is no single agreed upon standard in describing data
lineage. Additionally, it may be possible for malicious processes
to corrupt or “spam” query results by providing false metadata.
There has also been work in methodologies in assessing of the
quality of data in databases [20-23]. However, such
methodologies rely on human assessment of the data, which is
often time-consuming and possibly error-prone.

Previous works have assumed that the metadata regarding the
quality of data is available, accurate, and unbiased, either
published by the data providers themselves or provided by user-
rankings of the data sources. Our contribution is that we do not
assume that such metadata is available and reliable. Rather, our
automated approach examines how well the data sets produced by
data sources agree with one another, and infer the rankings of the
data sources in terms of their accuracy. We take an approach
similar to Google’s PageRank [24]. Instead of evaluating the
popularity of web sites by measuring how many other popular
websites link to them as in PageRank’s approach, we evaluate the
accuracy of data sources by measuring how well other data
sources agree with the data they produce. This approach is

automated, does not rely on possibly faulty and limited metadata,
and does not require human assessment.

2. DATA SOURCE RANKING
Traditionally, the ranking of query results was based on the
relevance of a user’s query. However, the quality of the results
could be improved if we incorporated a data quality measure in
addition to their relevance to the user’s query.
We wish to do following in general:

1. Rank the data sets or data sources in order of their
accuracies.

2. Determine the top-k accurate data sets or data sources.

This ordering is important particularly in data integration systems,
where there are numerous data sources available of varying
accuracy that changes dynamically across time. Ideally, given a
query, we would like to contact each data source; however, this
may be prohibitively expensive if there are budget constraints
such as time and network resources. Such applications can be
found in sensor networks, where battery-life is limited, and
intelligence-gathering efforts, where manpower and time are
limited. Thus, it would be advantageous to determine the most
accurate set of data sources, so that they can be contacted in
answering a query. Additionally, this methodology could be used
for identifying malicious or compromised data sources that are
attempting to feed false information into the data integration
system. We provide the following framework for ranking the
accuracy or trustworthiness of data sources based on observing
and comparing data source behavior without any a priori
knowledge of their relative accuracies to help solve the problem.
In our model, we assume that schema and data heterogeneity have
been reconciled, which is beyond the scope of this work.

2.1 General Framework
Let D be a set of data sources. A data source

i
d D! generates a

table (,)t

i
T k v for a query Q where t is the time index, k is the key

column, and v is the value column of the table. We want to derive
a metric [0,1]

t

i
A ! that measures the relative accuracy of data

source di at time t such that t t

i jA A< if di is less accurate than dj at
time t. We define such a metric as the weighted average of the
previous accuracy estimate at time index 1t ! and the accuracy
estimate derived by observing the data generated by data sources
in D:

A

i

t
= h(t)A

i

t!1
+ (1! h(t))c(i,t) (1)

The intuition behind t

i
A is that a data source’s accuracy should be

a function of its past accuracy (i.e., reputation) and its current
behavior. The function h(t), where 0 () 1h t! ! , is the historical
weight function that determines the contribution of the accuracy
estimate at the previous time index. The intuition behind the
historical component of the accuracy measure is that a data source
that has been accurate (or inaccurate) in the past should also be
accurate (or inaccurate) in the near future. For simplicity, the
above historical component assumes a Markovian behavior in the
evolution of the data sources, where the accuracy at time t is only
dependent on the value at t-1. However, it will be interesting to
see if we can improve the quality of our estimation by taking into

106

account a sliding window of size w:

[A

i

t
, A

i

t!1
,…, A

i

t!w
] . Thus, the

historical component would consist of a weighted sum of all
accuracy estimates within the last w time indexes, where each
estimate is weighted with a decaying weight function. The
decaying weight function would assign a higher weight to more
recent estimates than older estimates. A sliding window version of
the equation (1) would be of the following form, where w(j, t – 1)
is the decaying weight function:

A
i

t
= h(t) w(j,t !1)

j=t!w

t!1

" A
i

j
+ (1! h(t))c(i,t) (2)

However, we leave this issue to future research, where we will
study the most appropriate decaying weight function and the
optimal sliding window size.

The cohesion function c(i,t) determines the new accuracy estimate
by observing data generated by data sources in D at the current
time index and how well each data source agrees with one
another. The cohesion function c(i,t) that we propose is the
following:

c(i,t) = f (i,t)+
(1! f (i,t))

| D |!1
a(i, j,t)c(j,t)

d
j
"D!{d

i
}

(3)

The function a(i,j,t) is the agreement function, which outputs 0
when data sources di and dj are in strong disagreement regarding
the data in t

i
T and t

j
T , and outputs 1 when di and dj strongly

agree, and values between 0 and 1 for other levels of agreement.
The intuition behind c(i,t) is:

• If a data source agrees with an accurate data source, it
should also be accurate.

• If a data source agrees with an inaccurate data source, it
should also be inaccurate.

• A data source has a probability f(i,t) of being absolutely
accurate independent of any agreement/disagreement
with the other data sources.

Thus, given a system of equations of |D| equations and |D|
variables, it is possible to determine c(i,t) for all

i
d D! . The

function f(i,t) is the dampening factor function (similar to that
defined in Google’s PageRank algorithm [24]). In addition to
being the probability that a data source di is absolutely accurate
independent of its agreement with the other data sources, the
function f(i,t) will prevent the solution to the system of equations
from consisting of entirely zeroes for all c(i,t).

2.2 Agreement Functions
There are several possible definitions for a(i, j, t), such as the
tupleOverlap function, which measures the proportion of tuples in
approximate agreement (within some allowable difference !) in
the set of tuples whose key values are generated by both data
sources di and dj:

. .

. .

. .

| |

(, ,)
| |

t t
i j
t t
i j

t t
i j

t t

i j
T k T k

T v T v

t t

i j
T k T k

T T

tupleOverlap i j t
T T

=

!

=

=

!"

!"
 (4)

Another possible definition for a(i,j,t) is the cosineOverlap
function, which measures the complement of the cosine distance

of two sets of data over the same key values generated by di and
dj:

 (, ,) (, ,)
(, ,)

| (, ,) || (, ,) |

TV i j t V j i t
cosineOverlap i j t

V i j t V j i t
= (5)

The vector V(i,j,t) can be roughly defined as

.
. .

(, ,) ()t
t ti
i j

t t

i jT v
T k T k

V i j t T T!
=

= !" , except it is an ordered vector in

which the values stored in the vector are ordered by their
corresponding key values in t

i
T . There is also a Euclidian-based

function for a(i, j, t), which we will discuss in further detail later.

Given this system of |D| equations and |D| variables, we can
arrange the equations to the following form:

 () * () ()A t C t F t= (6)

A(t) is defined as the following matrix:

| | 1
(1,2,) (1,| |,)

() 1

| | 1
(2,1,) (2,| |,)() 1

() 1()
| | 1

| | 1
(| |,1,) (| |,2,)

() 1

D
a t a D t

f t

D
a t a D tf t

f tA t
D

D
a D t a D t

f t

!" #
$ %!
$ %
$ %!

! $ %!= $ %!
$ %
$ %

!$ %
$ %!& '

!

…

" " # "

!

C(t) and F(t) are also defined as the following matrices:

(1,) 1

(2,) 1
() , () ()

(| |,) 1

c t

c t
C t F t f t

c D t

! " ! "
$ # $
$ # $= =
$ # $
$ # $
% & % &

! !

The solution to equation (6), C(t), is a vector where each entry
C(t)i estimates the accuracy of data source di. The matrix A(t) can
also be normalized with respect to maximum or sum of the entries
in each of the rows (horizontal normalization) or in each of the
columns (vertical normalization). We can horizontally normalize
the matrix A(t) by performing the following division on every
entry A(t)i,j in row i, column j, except for entries where i = j:

,
,

()
'()

(,)
i j

i j

A t
A t

Hor t i
=

Hor(t,i) can either be the sum or the maximum value of all the
entries in row i excluding the entry A(t)i,i. We can also similarly
define a function Ver(t,j) for vertical normalization

(,
,

()
()

(,)
i j

i j

A t
A t

Ver t j
=) to be either the sum or the maximum

value of all entries in column j excluding the entry A(t)j,j.
Given our normalization techniques, we can now discuss in
further detail the Euclidian-based function for a(i, j, t) mentioned
briefly before. Because Euclidian-distance is unbounded,
normalization would be required to describe the amount of
overlap or agreement. We define the Euclidian-based function
eOverlap for a(i, j, t):

 (, ,) 1 '((, ,), (, ,))eOverlap i j t eDist V i j t V j i t= ! (7)

The function 'eDist is simply the Euclidian distance of the
vectors V(i,j,t) and V(j, i, t), normalized in a similar manner as
described above.

107

3. EXPERIMENTAL RESULTS
We hypothesize that the above framework can be used as a
springboard in solving the general problem of identifying accurate
data sources. To do so, we will need to identify adequate h(t),
a(i,j,t), and f(i,t) functions through experimentation. Our initial
experiments examine the cohesion function c(i,t) with a
dampening factor f independent of time (i.e., the probability of a
data source being absolutely accurate independent of all other data
sources is constant), and excluding incorporation of the historical
component. As a result, the combination of equations (1) and (3)
reduces to the following:

A
i

t
= c(i, t) = f +

1! f

n !1
a(i, j, t)c(j, t)

d
j
"D!{d

i
}

(8)

We implemented a Java prototype, using JAMA (Java Matrix
Package) [25] for solving the system of equations, and
experimented on simulation data consisting of 100 data sources,
each producing 20 different tuples, each consisting of a key (of
type integer) and a value (of type double). In each run, a data set,
consisting of 20 keys and values randomly assigned to each key
with a uniform distribution, represent the “actual” data that each
data source will attempt to report. Additionally, in each run, each
data source was randomly assigned positive error values
according to a Gaussian distribution with an average of 0 and a
standard deviation of 1.0. For each run, we ran five iterations,
where each data source produced a data set, consisting of values
for each key, where each value is randomly generated with a

Gaussian distribution with a standard deviation equal to that of the
data source’s error value and an average equal to that of the
“actual” data item’s value, essentially perturbing each data item’s
value with data source’s error value. Data sources with large error
values will generally generate values farther away from the
“actual” value than data sources with smaller error values. We ran
a total of five runs, consisting of five iterations, and averaged the
results.

Figure 1 shows the precision and recall of the various agreement
functions and normalizations as the dampening factor f is varied.
Note that the overlap-based functions are using a difference
margin ε = 0.1. The figure clearly shows that the dampening
factor has very little effect in identifying the top 10 most accurate
data sources. However, the figure does show that the vertical
normalization with respect to the maximal value of the column
yields the best performance. Additionally, the figure shows that
the overlap-based functions perform the worse, with the cosine-
based functions performing well and the Euclidian-based
functions performing even better with a precision and recall of
over 90%. The overlap-based functions suffer from having a fixed
allowable difference margin that is difficult to estimate without
knowing the nature of the data and the data sources a priori. The
cosine-based functions perform better than the overlap-based
functions because no such assumption is needed but does not
accurately capture the amount of distance/overlap as Euclidian-
based functions do.
To summarize, Figure 2 shows the performance of the three
agreement functions with various normalizations using a fixed

 (a) (b)

(c)

Figure 1: The precision and recall for identifying the top 10 most accurate data sources with (a) the Euclidian-based agreement
functions, (b) the Cosine-based agreement functions, and (c) the Overlap-based agreement functions with ε = 0.1.

108

dampening factor of 0.5 (since current results do not definitively
indicate the best value for f, we selected a mid-range value for f).
The figure clearly shows that the Euclidian-based agreement
function with vertical max and sum normalizations performs the
best with a precision and recall of over 90%.

4. FUTURE WORK
One of the caveats of the current technique is that it relies on data
sources reporting on the same set of data items. Often, it may be
the case where data sources will report about different data items.
Future study will have to be done to evaluate the current
technique’s effectiveness over incomplete and heterogeneous data
sources. Additionally, the current technique may suffer from
possibly expensive polling of all data sources. In future work, we
will need to devise an efficient and intelligent sampling technique
to alleviate such a problem while still preventing the staleness of
estimates. One obvious possibility is to use the data gathered
during a query (which is essentially free from the point of view of
the quality estimator since such a cost will need to be incurred
anyway to answer the query) to estimate a new relative accuracy
measure than can be used for the next query. However, only data
sources with high accuracy estimates will have their estimates
updated and the estimates of data sources of low accuracy will
become stale, since accurate data sources are the only data sources
consistently being probed since they are selected to the answer the
query. Thus, we will need to explore additional sampling
techniques [26], such as polling for only small subsets of data
from a majority of data sources, to solve this problem and to be
able to associate a confidence metric in the ranking generated by
our methodology.
Additionally, computing the solution to a set of n c(i,t) equations
with n variables may be computationally expensive if n is very

large. Thus, we will also explore techniques to speed up this
computation with an acceptable margin of error, such as using an
iterative approach, using old c(j,t-1) values for computing the
new c(i,t) value in equation (3). Figure 3 shows promising
preliminary results regarding the performance of the iterative
solution, indicating that we can arrive to a reasonably good
estimation in very few iterations and that the dampening factor
has some effect on how fast we can arrive to a solution. We use an
initial estimate of c(i,-1) = 1 for all data sources and use the
Euclidian-based agreement function with vertical sum
normalization while varying the dampening factor. Future work
will further explore the effect of the dampening factor.

In this preliminary study, we randomly assign error values to the

Figure 2: The precision and recall for identifying the top 10, 15, 20, 25, and 50 most accurate data sources with a dampening factor
of 0.5

Figure 3: Performance of attaining an iterative solution using
c(i,-1) = 1 and the Euclidian-based agreement function with
vertical sum normalization.

109

data sources with a Gaussian distribution. Additional research will
include further study on how well our cohesive function performs
with other probability distributions, such as uniform distributions.
We also hypothesize that such a technique can be used to
automatically identify faulty or failing data sources dynamically,
such as a sensor or an intelligence asset. We will need to
experiment with the historical component of our accuracy
measure. We will study how robust and reactive our accuracy
measure will be when the accuracy of data sources becomes
dynamic, as opposed to being static as in the case of this
preliminary study.

Although we have experimented with an overlap-based function
using a difference margin ε = 0.1 and could have used other
values for ε to see the effect on the precision and recall of
identifying the top-k most accurate data sources, the results
indicate that that the overlap-based function performs poorly
compared to the Euclidian and cosine-based functions with this
value for ε. Another value for ε would have probably been better,
but we hypothesize that the optimal ε is dependent upon the
domain application of the data. In later work, we will examine the
effect of ε when real-life data (e.g., sensor data) becomes readily
available.

Currently, our accuracy measure evaluates the accuracy of data
sources based a single domain of data (i.e., a single topic).
However, data sources may provide data for multiple domains
(i.e., multiple topics) and may be more accurate in one domain
than another. There are two possible attitudes in approaching this
problem. A “suspicious” attitude would suspect all data
(regardless of topic) provided by a data source if a data source
contradicts a more trustworthy data source. A “trusting” attitude
would only suspect a minimal set of data (i.e., data from the
contradicting topic) that contradicts a more trustworthy data
source, which is a similar attitude taken in [27]. Future research
will examine how these attitudes can be incorporated into the
overall accuracy measure.

We also envision that this technique can be used to identify
communities of data sources in which members of the community
share common “beliefs.” In Figure 4, a graph generated with
JUNG (Java Universal Network/Graph Framework) [28]
consisting of 50 nodes, each representing a data source, are
connected by edges, whose lengths are the Euclidian-distance of
the data sets generated by the connecting nodes. It is clear from
the graph that nodes that are in high agreement with one another
are clustered very closely with each other; whereas, outliers in the
graph disagree with the cluster and can be considered as
inaccurate. Future work will include studies how clustering
techniques can be used to identify communities of data sources,
such as that from social network analysis [29].

5. CONCLUSION
We have presented an automated technique for inferring the
quality of data sources without the luxury of metadata. Our main
contribution is a framework to capture the historical accuracy of
data sources and the relationship of data sources in how well they
agree with one another (i.e., the cohesive function). Our second
contribution is a preliminary study of the cohesive function,
examining the precision and recall of identifying the top-k most
accurate data sources with various agreement functions and
normalizations. We have shown that the Euclidian-based
agreement function vertically normalized performs the best.

We have also identified several significant challenges and future
roads of research, including performance optimizations, exploring
various sampling techniques, developing robust yet reactive
accuracy estimations, and identifying communities of data
sources.

6. ACKNOWLEDGMENT
The authors would like to thank Roderick Son, from the UCLA
Medical Imaging Informatics Group, Terence Critchlow and
David Buttler from the Lawrence Livermore National Laboratory,
and the anonymous reviewers for their invaluable inspiration and
input for this work. This work is partially funded by the National
Foundation Grant # IIS 0140384.

7. REFERENCE
[1] D. Buttler, M. Coleman, T. Critchlow, R. Fileto, W. Han, C.

Pu, D. Rocco, and L. Xiong, "Querying multiple
bioinformatics information sources: can semantic web
research help?" SIGMOD Record, vol. 31, pp. 59-64, 2002.

[2] A. Rudra and E. Yeo, "Issues in user perceptions of data
quality and satisfaction in using a data warehouse-an
Australian experience," presented at 33rd Annual Hawaii
International Conference on System Sciences, 2000.

[3] I. N. Chengular-Smith, D. P. Ballou, and H. L. Pazer, "The
impact of data quality information on decision making: an
exploratory analysis," IEEE Transactions on Knowledge and
Data Engineering, vol. 11, pp. 853-864, 1999.

[4] R. A. Dillard, "Using data quality measures in decision-
making algorithms," IEEE Expert, vol. 7, pp. 63-72, 1992.

[5] F. Naumann, "From databases to information systems -
information quality makes the difference," presented at the
International Conference on Information Quality (IQ 2001),
Cambridge, MA, 2001.

[6] M. Gertz, M. T. Ozsu, G. Saake, and K. U. Sattler, "Report
on the Dagstuhl seminar: 'data quality on the web',"
SIGMOD Record, vol. 33, pp. 127-132, 2004.

Figure 4: Network of agreeing data sources

110

[7] T. Critchlow, L. Liu, D. Buttler, D. Rocco, and C. Pu,
"Towards Automatic Discovery and Identification of
Bioinformatics Web Interfaces," [Online] Available:
http://sirius.cs.ucdavis.edu/Dagstuhl03/presentations/03362.
CritchlowTerence.Slides.ppt, 2003.

[8] V. Kumar (editor), "Special Issue on Sensor Network
Technology and Sensor Data Management," SIGMOD
Record, vol. 32, 2003.

[9] F. Donovan, "Army to deploy hand-held devices to make
every soldier into a sensor," [Online] Available:
http://www.aviationnow.com/avnow/news/channel_netdefen
se_story.jsp?id=news/arm04294.xml, 2004.

[10] F. S. Collins, E. D. Green, A. E. Guttmacher, and M. S.
Guyer, "A vision for the future of genomics research,"
Nature, vol. 422, pp. 835-847, 2003.

[11] M. Mecella, M. Scannapieco, A. Virgillito, R. Baldoni, T.
Catarci, and C. Batini, "Managing data quality in cooperative
information systems," in Lecture Notes in Computer Science
2519, 2002, pp. 486-502.

[12] M. Scannapieco, A. Virgillito, C. Marchetti, M. Mecella, and
R. Baldoni, "The DaQuinCIS architecture: a platform for
exchanging and improving data quality in cooperative
information systems," Information Systems, vol. 29, pp. 551-
582, 2004.

[13] L. D. Santis, M. Scannapieco, and T. Catarci, "Trusting data
quality in cooperative information systems," presented at
CoopIS 2003, 2003.

[14] J. Widom, "Trio: a system for integrated management of
data, accuracy, and lineage," presented at CIDR 2005,
Pacific Grove, California, 2005.

[15] G. A. Mihaila, L. Raschid, and M.-E. Vidal, "Using quality
of data metadata for source selection and ranking," presented
at Third International Workshop on the Web and Databases,
WebDB'2000, Dallax, TX, 2000.

[16] G. A. Mihaila, L. Raschid, and M.-E. Vidal, "Source
selection and ranking in the websemantics architecture using
quality of data metadata," Advances in Computers, vol. 55,
pp. 87-118, 2002.

[17] M. Gertz, "Managing data quality and integrity in federated
databases," presented at IFIP TC11 Working Group 11.5,
Second Working Conference on Integrity and Internal
Control in Information Systems: Bridging Business
Requirements and Research Results, 1998.

[18] F. Naumann, J. C. Freytag, and U. Leser, "Completeness of
integrated information sources," Information Systems, vol.
29, pp. 583-615, 2004.

[19] F. Naumann, "Quality-Driven Query Answering for
Integrated Information Systems," in Lecture Notes in
Computer Science, G. Goos, J. Hartmanis, and J. v.
Leeuwen, Eds. Berlin, Germany: Springer-Verlag, 2002, pp.
166.

[20] A. Motro and I. Rakov, "Estimating the quality of
databases," presented at 1996 Conference on Information
Quality, Cambridge, MA, 1996.

[21] M. Bobrowski, M. Marre, and D. Yankelevich, "A
homogeneous framework to measure data quality," presented
at IQ 1999, Cambridge, MA, 1999.

[22] B. Pernici and M. Scannapieco, "Data quality in web
information systems," presented at ER 2002, 2002.

[23] Y. W. Lee, D. M. Strong, B. K. Kahn, and R. Y. Wang,
"AIMQ: a methodology for information quality assessment,"
Information Systems, vol. 29, pp. 133-146, 2004.

[24] S. Brin and L. Page, "The anatomy of a large-scale
hypertextual web search engine," presented at 7th World
Wide Web Conference (WWW7), 1998.

[25] J. Hicklin, C. Moler, P. Webb, R. F. Boisvert, B. Miller, R.
Pozo, and K. Remington, "JAMA: Java Matrix Package,"
[Online] Available: http://math.nist.gov/javanumerics/jama/,
2005.

[26] J. Cho and A. Ntoulas, "Effective Change Detection using
Sampling," presented at VLDB Conference, Hong Kong,
China, 2002.

[27] L. Cholvy and C. Garion, "Querying several conflicting
databases," presented at ECSQARU-03 Workshop
Uncertainity, Incompleteness, Imprecision, and Conflict in
Multiple Data Sources, Aalborg, 2003.

[28] Jung Framework Development Team, "JUNG: Java
Universal Network/Graph Framework," [Online] Available:
http://jung.sourceforge.net/index.html, 2005.

[29] S. Staab, P. Domingos, P. Mika, J. Golbeck, L. Ding, T.
Finin, A. Joshi, A. Nowak, and R. R. Vallacher, "Social
Networks Applied," Intelligent Systems, IEEE [see also
IEEE Expert], vol. 20, pp. 80-93, 2005.

111

Author Index

Al-Lawati, Ali . 59
An, Aijun . 87
Andreopoulos, Bill . 87
Bugajski, Joseph . 40
Cardenas, Alfonso F. 105
Chen, Zhaori . 47
Chu, Fang . 99
Embury, Suzanne . 5
Garcia-Molina, Hector . 1
Grossman, Robert L. 40
Hammer, Joachim . 16
Kalashnikov, Dimitri V. 47
Kang, Jaewoo . 69
Karakasidis, Alexandros . 28
Keelara, Vinay . 77
Koeller, Andreas .77
Lee, Dongwon . 59, 69

Martinez, Alexandra . 16
McDaniel, Patrick . 59
Mehrotra, Sharad .47
Missier, Paolo . 5
On, Byung-Won . 69
Park, Sanghyun . 69
Parker, D. Stott . 99
Pitoura, Evaggelia . 28
Pon, Raymond K. 105
Sumner, Eric . 40
Tang, Zhao . 40
Vassiliadis, Panos . 28
Wang, Xiaogang . 87
Wang, Yizhou . 99
Winkler, William E. 3
Zaniolo, Carlo . 99

113

	martinez_post_firstPage.pdf
	INTRODUCTION
	RELATED WORK

	2-martinezA-28.pdf
	INTRODUCTION
	RELATED WORK
	APPROACH
	Measuring the Quality of Data
	Primary Measures
	Derived Measures

	Integrating Quality Metadata and Data
	Choosing the right Data Model
	Augmenting the Data Model with Quality Metadata
	Computing the Score of the Quality Measures

	Updating the Quality Measures under the Data Operations
	Navigating to a node n and returning its content
	Inserting a new node n
	Updating a node n
	Deleting a node n

	EXAMPLES
	FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

