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Online Resources
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Shared Google Drive with the corpus, slides, and 
exercices: 

https://drive.google.com/drive/folders/12N9T1k4LbL4
OL23HuFunwGG0fVdx2yy_?usp=sharing 

https://drive.google.com/drive/folders/12N9T1k4LbL4OL23HuFunwGG0fVdx2yy_?usp=sharing
https://drive.google.com/drive/folders/12N9T1k4LbL4OL23HuFunwGG0fVdx2yy_?usp=sharing


Introduction to 
KGs
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Outline
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1. Introduction to Knowledge Graphs (KGs) 

2. Two Popular Knowledge Graph Data Models:
• Resource Description Framework (RDF) (Query language: 

SPARQL)
• Property Graphs (Query language: Cypher)
• Comparison of RDF and Property Graphs

3. Combining KGs and LLMs
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● Represent facts about the world in a 
structured form

● Are directed multi-relational graphs 
composed of:
○ entities as the graph’s nodes 
○ relationships between entities 

as the graph’s edges
○ An organizing principle that 

captures meta-information 
about core concepts 

● Feature information regarding both 
real-world objects and abstract 
concepts structured as triplets 
(head entity, relation, tail entity) or 
(h, r, t) 

https://deeppavlov.ai/research/tpost/bn15u1y4v1-improving-knowledge-graph-completion-wit

Knowledge Graph Definition
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● Expressivity: The standards in the Semantic Web stack – RDF(S) and OWL – 
allow for a fluent representation of various types of data and content: data 
schema, taxonomies and vocabularies, all sorts of metadata, reference and 
master data

● Performance: All the specifications allow for efficient management of graphs 
of  billions of facts and properties

● Interoperability: There is a range of specifications for data serialization, access 
(SPARQL Protocol for end-points), management (SPARQL Graph Store) and 
federation. The use of globally unique identifiers facilitates data integration 
and publishing.

● Standardization through the W3C community process.

Knowledge Graph Advantages 



10https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/ 

Example of Knowledge Graph

https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
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Big Knowledge Graphs



12https://lod-cloud.net/versions/latest/lod-cloud.svg 

DBPedia
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(Knowledge) Graphs: What for?
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Leverage Graph Science

https://neo4j.com/blog/genai/unifying-llm-knowledge-graph/ 

https://neo4j.com/blog/genai/unifying-llm-knowledge-graph/


Outline
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1. Introduction to Knowledge Graphs (KGs) 

2. Two Popular Knowledge Graph Data Models:
• Resource Description Framework (RDF) (Query language: 

SPARQL)
• Property Graphs (Query language: Cypher)
• Comparison of RDF and Property Graphs

3. Combining KGs and LLMs



Resource Description Framework
 

16

● Designed to represent information on the web
● Standardized by World Wide Web (W3C) Consortium
● Triple is the basic unit of representation: Consists of 

subject, predicate, and object

Nodes can be of three types:
● Internationalized Resource Identifiers (IRI)

IRI: https://hi.wikipedia.org/�हन्दी _�व�कपी�डया
● URL: http://www.wikipedia.org
● URI: www.wikipedia.org



Resource Description Framework
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● Designed to represent information on the web
● Standardized by World Wide Web (W3C) Consortium
● Triple is the basic unit of representation: Consists of 

subject, predicate, and object

Nodes:
• Uniquely identifies resources on the web
• Literals
• A value of certain type (integer, string, etc.)
• Blank nodes
• A node with no identifier (anonymous)



Example of RDF Model 
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A brother and sister, Daniel and Sunita. Sunita owns and drives a Volvo she 
purchased on January 10, 2011. Dan has also driven Sunita’s car since March 
15, 2013.

https://neo4j.com/blog/knowledge-graph/rdf-vs-property-graphs-knowledge-graphs/ 

https://neo4j.com/blog/knowledge-graph/rdf-vs-property-graphs-knowledge-graphs/


Simplified Example of RDF
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<http://example.org/maria> 
<http://xmlns.com/foaf/0.1/knows> 
<http://example.org/christophe>

We can define prefixes
@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix ex: <http://example.org/>
ex:maria foaf:knows ex:christophe

maria                knows         christophe



Querying a RDF Dataset
• 
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RDF Dataset
• A collection of RDF graphs with

• Exactly one default graph
• One or more named graphs

Name can be a blank node or an IRI

Query Language: SPARQL
• Simple Protocol and Query Language (pronounced “sparkl”)
• Queries can go across multiple sources
• Full-featured query language
• Required/optional parameters
• Filtering the results
• Results can be graphs



Examples of SPARQL Query (1/2)
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Who are the persons that maria knows?

SELECT ?person
WHERE
<http://example.org/maria> <http://xmlns.com/foaf/0.1/knows> ?person



Examples of SPARQL Query (2/2)
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Who are the persons known by the persons that maria knows?
SELECT ?person ?person1
WHERE
<http://example.org/maria> <http://xmlns.com/foaf/0.1/knows> ?person
?person <http://xmlns.com/foaf/0.1/knows> ?person1

or

PREFIX ex: <http://example.org/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?person1
WHERE
ex:maria foaf:knows ?person
?person foaf:knows ?person1



Outline
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1. Introduction to Knowledge Graphs (KGs) 

2. Two Popular Knowledge Graph Data Models:
• Resource Description Framework (RDF) (Query language: 

SPARQL)
• Property Graphs (Query language: Cypher)
• Comparison of RDF and Property Graphs

3. Combining KGs and LLMs



Property Graph Model
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● Do not require a predefined 
schema

● Optimize graph traversals
● Used by many Graph DB
● Based on the ISO standard GQL 

https://www.iso.org/standard/76120.html 

https://www.iso.org/standard/76120.html


Property Graph Model
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• Nodes, relationships and properties
• Each node and a relationship has a label and set of properties
• Properties are key value pairs
• Keys are strings, values can be any data types
• Each relationship has a direction

maria

rachel

rethymno
24

since = 2024



Property Graph Model
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• Nodes, relationships and properties
• Each node and a relationship has a label and set of properties
• Properties are key value pairs
• Keys are strings, values can be any data types
• Each relationship has a direction

maria
rachel

rethymno24

since = 2024



Cypher Queries on Property Graphs
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● Query language for querying graph data
● Being considered for adoption as an ISO Standard
● Supports CRUD operations: Create, read, update, delete

Example:

Which people does maria know?

MATCH (p1:Person {name: maria}) -[:knows]-> (p2: Person)
RETURN p2



Cypher Query Examples
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● Which people does maria know since 2010?

MATCH (p1:Person {name: maria}) -[:knows {since: 2010}]-> (p2: Person)
RETURN p1, p2

● Which people does maria know since 2010?

MATCH (p1:Person {name: maria}) -[:knows {since: Y}]-> (p2: Person)
WHERE Y <= 2010
RETURN p1, p2



RDF vs Property Graphs
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● RDF supports several additional layers
● RDF Schema, Web Ontology, etc.

● Property graph model supports edge properties
● Property graph model does not require IRIs
● Property graph model does not support blank nodes

Property graph RDF triples

Node properties Triples (s,p,o)
Edges Triples
Edge properties   Reified edges + triples

s,o
p



Cypher Query Examples
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● Which people does maria know since 2010?

MATCH (p1:Person {name: maria}) -[:knows {since: 2010}]-> (p2: Person)
RETURN p1, p2

● Which people does maria know since 2010?

MATCH (p1:Person {name: maria}) -[:knows {since: Y}]-> (p2: Person)
WHERE Y <= 2010
RETURN p1, p2



Design a Property Graph
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● Choosing nodes, labels and properties
● When to introduce relationships
● When to introduce relationship properties
● How to handle n-ary relationships



Choose Nodes, labels, and Properties
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● Nodes usually represent entities in a domain
○ How to represent gender?



Choose Nodes, labels, and Properties
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● Nodes usually represent entities in a domain
○ How to represent gender?

● Introduce a new Label
● Labels are like classes
● Labels should be natural
● Labels should not change with time
● Could benefit from indexing



Choose Nodes, labels, and Properties
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● Nodes usually represent entities in a domain
○ How to represent gender?

● Introduce a new node property
● Property should not change with time



Choose Nodes, labels, and Properties
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● Nodes usually represent entities in a domain
○ How to represent gender?



When to introduce a relationship?
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● When efficient access is required



When to introduce a relationship?
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● When efficient access is required



When to introduce relationship properties?
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● Common use cases for relationship properties
○ Time varying relationships
○ Provenance
○ Confidence 
○

● Disadvantages
○ Many systems do not index relationship properties
○ This may not be a problem if relationship properties 

are used in the last stage of query processing
○ For performance sensitive queries, it is better to reify 

the relationship



How to handle n-ary relationships?
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● Reification is a common technique to handle 
relationships with arity higher than 2
○ Create an object representing the relationship
○ Create objects for each argument of the relationship
○ Introduce relationships to connect them



Outline

40

1. Introduction to Knowledge Graphs (KGs) 

2. Two Popular Knowledge Graph Data Models:
• Resource Description Framework (RDF) (Query language: 

SPARQL)
• Property Graphs (Query language: Cypher)
• Comparison of RDF and Property Graphs

3. Combining KGs and LLMs



Generic Data Flow
 

41https://arxiv.org/pdf/2407.06564 

https://arxiv.org/pdf/2407.06564


Use Cases in Cultural Heritage (1/3) 
 

42https://users.ics.forth.gr/~tzitzik/publications/Tzitzikas_2024-MBD.pdf



Use Cases in Cultural Heritage (2/3) 
 

43https://users.ics.forth.gr/~tzitzik/publications/Tzitzikas_2024-MBD.pdf



Use Cases in Cultural Heritage (2/3) 
 

44https://users.ics.forth.gr/~tzitzik/publications/Tzitzikas_2024-MBD.pdf



1
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Introduction to 
LLMs 
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Outline
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1. Introduction to AI and LLMs 

2. Key Elements of LLMs
• Parameters
• Embeddings
• Attention

3. LLMs Architecture
• Types of  architecture
• How LLM works
• How to set the LLM hyperparameters



Brief History of AI

https://ourworldindata.org/brief-history-of-ai
49



History of NLP

50https://blog.dataiku.com/nlp-metamorphosis



Brief History of LLMs 
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https://github.com/zzli2022/Awesome-System2-Reasoning-LLM



LLM Evolution 

https://github.com/Mooler0410/LLMsPracticalGuide?tab=readme-ov-file 52



LLM Evolution 

53https://www.researchgate.net/figure/Evolutionary-tree-of-language-and-multimodal-question-answering-QA-in-general-domain_fig2_379393043



Open/Closed LLMs 

54Naveen at al. A Comprehensive Overview of Large Language Models https://arxiv.org/pdf/2307.06435
https://en.wikipedia.org/wiki/List_of_large_language_models 

Open source

Closed source instruction-tuned
pre-trained

https://arxiv.org/pdf/2307.06435
https://en.wikipedia.org/wiki/List_of_large_language_models


LLM Capabilities

https://generativeai.pub/a-taxonomy-of-large-language-models-capabilities-b019d3d582b2 55



Types of Models 

56

● Pretrained LLMs: Model weights are learned from a vast 

repository of knowledge

● Fine-tuned LLMs: The pretrained model weights are used and 

updated from specialized knowledge tailored for specific tasks 

● Instruction-tuned LLMs:  Not only relies on data but also 

adapts the outputs based on provided instructions

● RL-tuned LLMs: Continuous learning and adaptation through 

feedback



LLM Size Evolution

https://www.analyticsvidhya.com/blog/2023/11/the-llm-revolution-transforming-language-models/ 57

DeepSeek R1

 1.3B



Outline
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1. Introduction to AI and LLMs 

2. Key Elements of LLMs
• Parameters
• Embeddings
• Attention

3. LLMs Architecture
• Types of  architecture
• How LLM works
• How to set the LLM hyperparameters



Key elements of LLMs
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LLM Parameters
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Attention weights and embedding vectors are the 
main LLM parameters. 

● The attention mechanism empowers a model to 
selectively zoom into pivotal segments of input, sidelining 
the extraneous bits. The  attention weights dictate this 
selective focus. 

● Embedding vectors transmute textual tokens into arrays 
of numbers encapsulating semantics and context. 



Embeddings

61

Word embeddings are dense, low-dimensional, and continuous vector 
representations of words that capture semantic and syntactic 
information.

If “king” is represented by a vector 
v_king and "queen" by v_queen, the 
relationship between these vectors can 
capture the gender difference, as in
 v_king - v_man + v_woman ≈ v_queen.

Many embeddings 
● Word
● Sentence
● Document
● Image
● Audio
● Context
● User
● etc.

https://medium.com/@vipra_singh/llm-architectures-explained-word-embeddings-part-2-ff6b9cf1d82d



Types of Embeddings
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Attention in LLM

63

Attention mechanisms allows the model to focus on specific parts of the 
input text when generating an output.

Seminal paper “Attention is all you need” https://arxiv.org/abs/1706.03762 

Types of attention

● Self-Attention allows LLMs to understand the context of each word in relation to 
every other word in the sequence, capturing dependencies and relationships across 
long distances. 

● Scaled Dot-Product Attention involves computing the dot product between a query 
vector and a set of key vectors, and then scaling the result by the square root of the 
dimensionality of the key vectors. 

● Multi-Head Attention enhances the model’s ability to process input sequences. 
Instead of relying on a single attention head, which computes weighted sums of 
input elements based on their relevance to a specific context, multi-head attention 
employs multiple attention heads simultaneously. Each head focuses on different 
aspects of the input, such as local dependencies, global context, or specific patterns. 

https://arxiv.org/abs/1706.03762


Simplified Example

64https://www.youtube.com/watch?v=OxCpWwDCDFQ 

https://www.youtube.com/watch?v=OxCpWwDCDFQ


Simplified Example
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Embeddings learn dependencies, proximity of words, and contextual 
similarly based on co-occurence statistics

?



Simplified Example
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Embeddings are learned and updated from the different contexts 

There are many embeddings and 
linear transformations of existing 
embeddings can improve them 



Simplified Example
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Outline

68

1. Introduction to AI and LLMs 

2. Key Elements of LLMs
• Parameters
• Embeddings
• Attention

3. LLMs Architecture
• Types of  architecture
• How LLM works
• How to set the LLM hyperparameters



Types of LLM Architecture: Encoder Only
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Autoencoding Models: BERT family, ROBERTA

Use Cases: Sentiment Analysis, Named Entity Recognition, Topic Classification

Encoder 
only

https://medium.com/the-rag-explorer/3-llm-architectures-f527ed781ba9 

Trained by predicting words from 
surrounding words on both sides

https://medium.com/the-rag-explorer/3-llm-architectures-f527ed781ba9


Types of LLM Architecture: Decoder Only

70

Autoregressive Models: GPT, Claude, Llama, Mistral, Bloom

Decoder 
only

Generate text one token at a time based on the previously generated tokens



Types of LLM Architecture: 
Encoder-Decoder Models

71

Sequence-to-Sequence Models: BART, Flan-T5, Whisper

Use Cases: Translation, Question-Answering, Text summarization

Encoder-
Decoder

Trained to map from one 
sequence to another



How LLMs work?
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Tokenization



How LLMs work?

73

Embedding & Encoding



How LLMs work?
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LLM Calculation



How LLMs work?

75

LLM Calculation

/ T
/ T

temperature



How LLMs work?

76

Output



LLM Hyperparameters: Temperature

77

Controls how deterministic or creative the responses are 
by adjusting the probability distribution of the next word 
predicted.

● High Temperature (e.g., 0.8–1.0): Increases randomness and 
creativity. Useful for open-ended tasks like storytelling or 
brainstorming.

● Low Temperature (e.g., 0.0–0.4): Produces more deterministic 
and focused outputs. Suitable for factual or technical tasks.

● Medium Temperature (e.g., 0.5–0.7): Balances randomness and 
determinism, often a good starting point for general purposes.



LLM Hyperparameters: Temperature

78https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086 

https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086


LLM Hyperparameters: Temperature

79https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086 

https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086


LLM Hyperparameters: Temperature

80https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086 

https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086


LLM Temperature: Examples (1/3)

81

Creative Writing (High Temperature)
Prompt: "Once upon a time in a galaxy far, far away,"

Temperature = 1.0: "Once upon a time in a galaxy far, far away, a talking 
nebula named Zorbo set out to collect cosmic dust to brew the 
universe’s most powerful elixir. But little did Zorbo know, the dust was 
guarded by ancient star dragons."

Explanation: At a high temperature, the model generates imaginative 
and unpredictable ideas, ideal for creative storytelling.



LLM Temperature: Examples (2/3)

82

Technical Explanation (Low Temperature)

Prompt: "Explain Newton's second law of motion."

Temperature = 0.2: "Newton's second law of motion states that the 
force acting on an object is equal to the mass of the object multiplied 
by its acceleration. Mathematically, F = ma."

Explanation: At a low temperature, the model provides precise and 
reliable information with minimal deviation from established facts.



LLM Temperature: Examples (3/3)

83

Conversational Tone (Medium Temperature)
Prompt: "How do I bake a chocolate cake?"

Temperature = 0.6: "To bake a chocolate cake, start by preheating your 
oven to 350°F. Mix flour, sugar, cocoa powder, and baking powder in a 
bowl. In another bowl, whisk eggs, milk, and melted butter. Combine 
the wet and dry ingredients, pour into a greased pan, and bake for 30 
minutes. Cool before serving."

Explanation: A medium temperature generates a coherent response 
that is both informative and conversational.



Best Practices for LLM Temperature
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Recommendations

● Factual Answers 0.0–0.3 Deterministic, avoids creative deviations 
● Code Generation 0.2–0.4 Predictable and accurate outputs 
● Creative Writing 0.7–1.0 Diverse and imaginative results 
● Brainstorming 0.8–1.0 Generates unique ideas 
● Conversational Agents 0.5–0.7 Balanced and engaging dialogue

Best Practices for Experimentation

● Start Simple: Begin with a medium temperature (e.g., 0.7) and adjust 
based on the desired outcome.

● Test Iteratively: Evaluate outputs with different temperatures for the same 
prompt.

● Combine with other  hyperparameters: Use temperature alongside 
parameters like top-k or top-p sampling for finer control over the output.



LLM Hyperparameters: Top-K
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Sampling strategy used to generate text from a language 
model by selecting the next word in a sequence from the 
top K most probable words, rather than considering all 
possible words. 

● Use low K values (10–50) when you want to restrict the model to 
only the most likely words, useful for focused, deterministic 
outputs

● Use higher K values (100–1000) to allow more diversity while still 
preventing the selection of highly improbable tokens

● Top-K is particularly effective for maintaining output quality in 
shorter sequences



Combining Temperature and Top-K

86

● Pairing these methods can offer fine-grained control over both 
the diversity and quality of generated text.

● Use a moderate K value (e.g., 50–100) to filter out unlikely tokens, 
then apply temperature to control randomness within this subset

● This combination is often more stable than using either method 
alone, especially for longer generation tasks

Guidelines for combined use

1. Start with a moderate K value (e.g., 50) and temperature (e.g., 0.7).
2. If outputs are too random or off-topic, decrease K or lower the temperature.
3. If outputs are too repetitive or predictable, increase K or raise the temperature.
4. Fine-tune based on your specific use case and desired output characteristics.



Other LLM Hyperparameters: Top-p

87

Top-p, aka nucleus sampling influences the randomness of 
LLM output. Top-p determines the threshold probability for 
including tokens in a candidate set used by the LLM to 
generate output. 

Top-p

● Top-p parameter to 0.1 leads to deterministic and focused 
output

● Increasing Top-p to 0.8 allows for less constrained and more 
creative responses.



Other LLM Hyperparameters

88

Max Tokens & Context Window

● Context window and max tokens parameters  add constraints on the 
size of the input accepted or the output generated by the model, 
directly affecting LLM performance and data processing capabilities.

● The context window, measured in tokens (which can be whole words, 
subwords, or characters), determines the number of words an LLM 
can process at once. 

● Max tokens parameter sets the upper limit for the total number of 
tokens, encompassing both the input provided to the LLM as a 
prompt and the output tokens generated by the LLM in response to 
that prompt.



Context Window Effect

89

● If the input exceeds the context window, the model starts to 
“forget” earlier information, potentially resulting in less relevant 
and lower-quality output.

● Context window places constraints on prompt engineering 
techniques. Methods like Tree-of-Thoughts or Retrieval 
Augmented Generation (RAG) require large context windows to 
be effective

● Context window limits
○ GPT-4: 8,192 tokens, 
○ GPT-4 Turbo: 128K tokens. 
○ Claude from 9,000 tokens to 200K tokens in the Claude 2.1 

version.



2
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Further Reading

91

So many courses and resources on LLMs… 
https://gist.github.com/veekaybee/be375ab33085102f9027853128dc5f0e
https://github.com/Jason2Brownlee/awesome-llm-books 
https://github.com/mlabonne/llm-course 
https://github.com/Hannibal046/Awesome-LLM

The Llama 3 Herd of Models
Qwen2.5 Technical Report
DeepSeek-V3 Technical Report
Mistral 7B
Llama 2: Open Foundation and Fine-Tuned Chat Models

https://gist.github.com/veekaybee/be375ab33085102f9027853128dc5f0e
https://github.com/Jason2Brownlee/awesome-llm-books
https://github.com/mlabonne/llm-course
https://github.com/Hannibal046/Awesome-LLM
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.19437v1
https://arxiv.org/pdf/2310.06825.pdf
https://arxiv.org/pdf/2307.09288.pdf


Prompting

92



Outline

93

1. Definition, Principles & Structure
2. Main Techniques

• Zero-shot Prompting
• Few-shot Prompting
• Chain-of-Thoughts Prompting
• Meta Prompting
• Self-Consistency Prompting
• Contrastive CoT Prompting
• Tree-of-Thoughts Prompting
• Multi-Chain-Reasoning

3. Prompting Frameworks
• CO-STAR
• AUTOMAT



What is Prompt Engineering?

94

Prompt engineering is the process of structuring 
or crafting an instruction in order to produce the 
best possible output from a generative artificial 
intelligence model. A prompt is natural language 
text describing the task that an AI should perform.

https://spectrum.ieee.org/prompt-engineering-is-dead 

https://spectrum.ieee.org/prompt-engineering-is-dead


Prompt Principles
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Bsharat et al. defined 26 ordered prompt principles, which can be 
organized into five distinct categories:

1. Prompt Structure and Clarity: Integrate the intended audience in 
the prompt.

2. Specificity and Information: Implement example-driven prompting 
(Use few-shot prompting)

3. User Interaction and Engagement: Allow the model to ask precise 
details and requirements until it has enough information to provide 
the needed response

4. Content and Language Style: Instruct the tone and style of 
response

5. Complex Tasks and Coding Prompts: Break down complex tasks 
into a sequence of simpler steps as prompts

https://arxiv.org/pdf/2312.16171.pdf


Basic Prompt Structure
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A well-crafted prompt typically consists of:

● Examples: Sample inputs/outputs to guide the expected response.
● Role (Persona): The perspective or tone the AI should adopt.
● The Directive: The main instruction or task.
● Output Formatting: Specifications for how the response should be 

structured.
● Additional Information: Background or context that informs the task.

Role-based prompting assigns a specific 
persona to the AI, such as a doctor or 
historian, to tailor the response’s tone, 
style, and content. This helps ensure the 
output matches the intended context or 
professional setting.

One-shot prompting involves 
giving the AI a single example 
before the task. This clarifies 
the expected output and can 
improve accuracy for tasks that 
benefit from a sample 
demonstration.



Techniques of Prompt Engineering 

97
Sahoo et al. A Systematic Survey of Prompt Engineering in Large Language Models:
Techniques and Applications https://arxiv.org/pdf/2402.07927
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Zero-shot Prompting

99

Technique that instructs an LLM to perform a task without providing any 
examples within the prompt. A zero-shot prompt relies on the LLM's ability to 
understand the task based on the instructions alone, leveraging the vast 
amount of data it has been trained on.

Example for a sentiment analysis task:

> Classify the following text as neutral, negative, or positive.
> Text: I think the vacation was okay. Sentiment:  

Tasks: Translation, summarization, or content moderation, where pre-defined 
examples are not always available or even necessary. Massive training and perhaps 
fine-tuning, combined with an easy-to-understand zero-shot prompt, enable the 
LLM to perform these tasks accurately.

Best practice: If zero-shot prompting proves insufficient, switching to few-shot 
prompting might help.



Few-shot Prompting
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Technique where examples are included in the prompt to facilitate learning. 

Example of task: using a new word correctly in a sentence

> An example of a sentence using the word flamingo is: We saw many 
red flamingos on our trip to Florida. 

> Write a short story about a flamingo that found itself on a ship 
bound for California .

Tasks: Text generation, summarization

Best practice: For more complex tasks, few-shot prompting may be insufficient, 
requiring more advanced techniques like chain-of-thought prompting.



Chain-of-Thoughts (CoT) Prompting
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Technique that enhances the reasoning abilities of LLMs by breaking down 
complex tasks into simpler sub-steps. It instructs LLMs to solve a given 
problem step-by-step, enabling them to field more intricate questions.

Example of reasoning task

> I started out with 8 marbles. I gave 3 to a friend, and then 
found 4 more. How many marbles do I have now? Think step by step . 

Tasks: Reasoning, explanation

Best practice: CoT prompting includes providing clear logical steps in the 
prompt as well as a few examples to guide the model. Combining CoT with 
few-shot prompting can be particularly effective for complex tasks.



Few-shot vs CoT Prompting
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Few-shot Prompting



Meta-Prompting
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Focuses on structuring and guiding LLM responses in a more organized and 
efficient manner. Unlike few-shot prompting, which relies on detailed 
examples to steer the model, meta prompting is a more abstract approach 
that emphasizes the format and logic of queries.

Example of task for solving a math problem 

> Step 1: Define the variables.  
> Step 2: Apply the relevant formula.  
> Step 3: Simplify and solve.

Tasks: Code generation

Best practices: focusing on logical structures, keeping prompts abstract, and 
ensuring the task’s format is clearly defined. The meta prompt engineering 
technique is especially useful for token efficiency and for tasks where traditional 
few-shot examples can lead to biases or inconsistencies.



Self-consistency Prompting
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Improves the accuracy of CoT reasoning. Instead of relying on a single, 
potentially flawed flow of logic, self-consistency generates multiple 
reasoning paths and then selects the most consistent answer from them. 

Example of reasoning task

> When I was 6, my sister was half my age. 
> Now I’m 70. How old is my sister?

A LLM might answer 35 (half one’s age) but, with self-consistency prompting, the model 
generates additional reasoning paths, such as:  

> When you were 6, your sister was 3.
> The difference in your ages is 3 years and that doesn’t vary.
> Now that you’re 70, she must be 67.

Best practice: Useful for improving model performance on complex reasoning 
tasks and can be applied to a variety of domains, from arithmetic problems to 
real-world decision-making

https://www.k2view.com/blog/chain-of-thought-reasoning/
https://www.k2view.com/blog/chain-of-thought-reasoning/


Self-consistency vs CoT Prompting
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Contrastive CoT Prompting

106https://arxiv.org/pdf/2311.09277 

CCoT employs negative examples along with positive ones to 
enhance the reasoning capabilities of language models. 

https://arxiv.org/pdf/2311.09277


Tree-of-Thought Prompting (ToT)

107https://arxiv.org/pdf/2305.10601

ToT enables problem solving with the generation and evaluation of thoughts, then 
combined with search algorithms (e.g., breadth-first search and depth-first search) 
to enable systematic exploration of thoughts with lookahead and backtracking



Multi-Chain Reasoning (MCR)

108Yoran, O., Wolfson, T., Bogin, B., Katz, U., Deutch, D., & Berant, J. (2024). Answering Questions by 
Meta-Reasoning over Multiple Chains of Thought. https://arxiv.org/abs/2304.13007 ↩

https://arxiv.org/abs/2304.13007
https://learnprompting.org/docs/advanced/ensembling/multi-chain-reasoning#user-content-fnref-1


Other Chain-of-* Prompting 
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ReAct Prompting 

110https://react-lm.github.io/ 

Generates reasoning traces allowing the model to induce, track, and 
update action plans, and handle exceptions. 

https://react-lm.github.io/
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CO-STAR Framework

112

● Context: Set the scene! Provide background details for the LLM to 
understand the situation.

● Objective: What do you want to achieve? Clearly define the task for 
focused results.

● Style & Tone: Dress it up! Specify the desired writing style and emotional 
tone for your LLM’s response.

● Audience: Know your reader. Identify who you’re targeting to tailor the 
LLM’s output.

● Response: Pick your format. Define the output format (text, code, etc.) for 
the LLM’s response.

https://towardsdatascience.com/how-i-won-singapores-gpt-4-prompt-engineering-competition-34c195a93d41/#10b2 

https://towardsdatascience.com/how-i-won-singapores-gpt-4-prompt-engineering-competition-34c195a93d41/#10b2


Example of CO-STAR 
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https://medium.com/the-modern-scientist/best-prompt-techniques-for-best-llm-responses-24d2ff4f6bca 

https://medium.com/the-modern-scientist/best-prompt-techniques-for-best-llm-responses-24d2ff4f6bca


AUTOMAT Framework
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1. Act as a Particular persona (Who is the bot impersonating?)
2. User Persona & Audience (Who is the bot talking to?)
3. Targeted Action (What do you want the bot to do?)
4. Output Definition (How should the bot’s response be 

structured?)
5. Mode / Tonality / Style (How should its response be 

communicated?)
6. Atypical Cases (Are there edge cases where the bot should react 

differently?)
7. Topic Whitelisting (What relevant topics can the bot talk about?)

https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba 

https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba


AUTOMAT Framework

115https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba 

https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba


AUTOMAT Framework
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https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba 

https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba


AUTOMAT Framework

117
https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba 

https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba
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Further Reading
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● https://learnprompting.org/docs/introduction 
● https://medium.com/the-generator/the-perfect-prompt-prompt-eng

ineering-cheat-sheet-d0b9c62a2bba 
● OpenAI Cookbook has many in-depth examples for how to utilize 

LLM efficiently.
● Prompt Engineering Guide repo contains a pretty comprehensive 

collection of education materials on prompt engineering.
● https://github.com/dmatrix/genai-cookbook/blob/main/llm-prompts

/README.md 
● learnprompting.org
● PromptPerfect
● Semantic Kernel

https://learnprompting.org/docs/introduction
https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba
https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba
https://github.com/openai/openai-cookbook
https://github.com/dair-ai/Prompt-Engineering-Guide
https://github.com/dmatrix/genai-cookbook/blob/main/llm-prompts/README.md
https://github.com/dmatrix/genai-cookbook/blob/main/llm-prompts/README.md
https://learnprompting.org/docs/intro
https://promptperfect.jina.ai
https://github.com/microsoft/semantic-kernel
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What is RAG?

122

Retrieved Augmented Generation is a technique that 
allows generative AI models to search and incorporate new 
additional external data and knowledge that are relevant to 
create more accurate domain-specific content without 
needing further training.



RAG & Prompting Evolution

123https://cobusgreyling.medium.com/updated-emerging-rag-prompt-engineering-architectures-for-llms-17ee62e5cbd9 

https://cobusgreyling.medium.com/updated-emerging-rag-prompt-engineering-architectures-for-llms-17ee62e5cbd9


When to Choose RAG

124

Use Prompt Engineering:

● You need a quick, low-resource solution.
● The task doesn’t require access to external or updated information.

Use Fine-Tuning:

● You have a large, domain-specific dataset.
● High accuracy is critical, and you have the computational resources.

Use RAG:

● Your application requires up-to-date or specialized knowledge.
● You want to minimize hallucinations by grounding responses in 

external data.
● You need a balance between performance and resource efficiency.



Best Practices for Implementing RAG

125

● Maintain a High-Quality Knowledge Base
Ensure that the documents used for retrieval are accurate, 
relevant, and up-to-date.

● Optimize Retrieval Mechanisms
Use effective embedding models and similarity measures to 
improve the relevance of retrieved documents.

● Monitor and Evaluate Performance
Regularly assess the system’s responses for accuracy and 
relevance, and adjust components as needed.

● Ensure Data Privacy and Security
Implement appropriate measures to protect sensitive 
information in your knowledge base.
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Basic RAG pipeline 

127https://learn.deeplearning.ai/courses/building-evaluating-advanced-rag/lesson/nwy74/introduction 

https://learn.deeplearning.ai/courses/building-evaluating-advanced-rag/lesson/nwy74/introduction


Main Chunking Strategies (1/2) 
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Fixed-size chunking

● The most common and straightforward approach
● decide the number of tokens in our chunk and, optionally, whether there should be any 

overlap between them.
● overlap between chunks to make sure that the semantic context doesn’t get lost 

between chunks. 
● computationally cheap and simple to use since it doesn’t require the use of any NLP 

libraries.

Recursive Chunking

○ It divides the input text into smaller chunks in a hierarchical and iterative manner 
using a set of separators. 

○ If the initial attempt at splitting the text doesn’t produce chunks of the desired 
size or structure, the method recursively calls itself on the resulting chunks with a 
different separator or criterion until the desired chunk size or structure is 
achieved. 

Specialized chunking

Markdown and LaTeX are two examples of structured and formatted content you might run into. In 
these cases, you can use specialized chunking methods to preserve the original structure of the 
content during the chunking process.

Ingestion



Main Chunking Strategies (2/2)
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Semantic Chunking

1. Split the documents into sentences based on separators(.,?,!)
2. Index each sentence based on position.
3. Group: Choose how many sentences to be on either side. Add a buffer of 

sentences on either side of our selected sentence.
4. Calculate distance between group of sentences.
5. Merge groups based on similarity i.e. keep similar sentences together.
6. Split the sentences that are not similar.

Ingestion



Regular vs Semantic Chunking 

130

Scientific 
papers

Ingestion



Chunk Size Matters

131

Choosing the right chunk_size can influence the efficiency and accuracy of a RAG 
system in several ways:

1. Relevance and Granularity:
○ A small chunk_size, like 128, yields more granular chunks. This granularity, however, 

presents a risk: vital information might not be among the top retrieved chunks, 
especially if the similarity_top_k setting is as restrictive as 2. 

○ Conversely, a chunk size of 512 is likely to encompass all necessary information within 
the top chunks, ensuring that answers to queries are readily available. To navigate this, 
we employ the Faithfulness and Relevancy metrics. These measure the absence of 
‘hallucinations’ and the ‘relevancy’ of responses based on the query and the retrieved 
contexts respectively.

2. Response Generation Time
○ As the chunk_size increases, so does the volume of information directed into the LLM 

to generate an answer. This might also slow down the system. Ensuring that the added 
depth doesn't compromise the system's responsiveness is crucial.

Ingestion



Basic RAG pipeline 

132https://learn.deeplearning.ai/courses/building-evaluating-advanced-rag/lesson/nwy74/introduction 

https://learn.deeplearning.ai/courses/building-evaluating-advanced-rag/lesson/nwy74/introduction


Lexical Retrieval

133

Traditional approach to information retrieval based on exact word matches and 
term frequency. 

Main Approaches
○ TF-IDF (Term Frequency-Inverse Document Frequency) evaluates the importance of a word 

in a document relative to a corpus. It increases proportionally with the number of times a word 
appears in the document but is offset by how frequently the word appears across all 
documents.

○ BM25 (Best Matching 25). A more refined version of TF-IDF. It introduces term frequency 
saturation and document length normalization, improving relevance scoring.

Advantages of Lexical Retrieval

○ Fast and computationally efficient.
○ Easy to interpret and implement.
○ Works well when exact keyword matching is important.

Limitations

○ Cannot handle synonyms or paraphrased queries effectively.
○ Limited ability to capture semantic meaning.

Retrieval



Semantic Retrieval

134

Use neural networks to embed both queries and documents into a shared vector 
space, where semantic similarity can be calculated using metrics like cosine similarity.

● How it works
○ Vector Encoding: Both queries and documents are transformed into dense vectors 

using pre-trained or fine-tuned encoders. These encoders are typically trained on large 
datasets, enabling them to capture semantic nuances beyond surface-level keyword 
overlap.

○ Semantic Matching: Vectors are compared to identify the most semantically relevant 
documents, even if they don’t share explicit terms with the query.

● Advantages of Semantic Retrieval
○ Handles paraphrasing, synonyms, and conceptual similarity effectively.
○ Supports more natural and conversational queries.
○ Multilingual capabilities are often built-in.

● Challenges and Considerations
○ Requires significant computational resources.
○ Retrieval quality is sensitive to training data and may reflect biases.
○ Updating document embeddings for dynamic content can be complex.

Retrieval



Hybrid Retrieval: Lexical + Semantic

135

Reciprocal Rank Fusion (RRF) merges the rankings from different retrieval 
models (e.g., BM25 and a neural retriever) by assigning higher scores to 
documents that consistently rank well across systems.

How RRF works: Each document receives a score based on its position in the ranked 
lists from multiple retrieval methods.

Benefits of Hybrid Retrieval:

○ Increases recall by retrieving relevant documents that either lexical or 
semantic methods might miss individually.

○ Balances precision and coverage.
○ Makes the retrieval system more resilient to query variations and noise.

Retrieval



RAG Retriever
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Retriever here could be any of the following depending on the need for 
semantic retrieval or not:

● Vector database: Typically, queries are embedded using models like BERT 
for generating dense vector embeddings. Alternatively, traditional methods 
like TF-IDF can be used for sparse embeddings. The search is then 
conducted based on term frequency or semantic similarity.

● Graph database: Constructs a knowledge base from extracted entity 
relationships within the text. This approach is precise but may require exact 
query matching, which could be restrictive in some applications.

● Regular SQL database: Offers structured data storage and retrieval but 
might lack the semantic flexibility of vector databases.

rRetrieval



Vector DB vs Graph DB 
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r

https://www.linkedin.com/posts/da
mienbenveniste_machinelearning-d
atascience-artificialintelligence-activ
ity-7119708674868051969-5HA1/?utm
_source=share&utm_medium=mem
ber_desktop 

Retrieval

https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop


Choice of Vector Database
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Retrieval

https://www.vecdbs.com/ 

https://www.vecdbs.com/


Re-Ranking
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Re-ranking in RAG refers to the process of evaluating and sorting the retrieved 
documents or info snippets based on their relevance to the given query or task.

● Lexical Re-Ranking: Based on lexical similarity between the query and the retrieved 
documents. Common Methods: BM25 or cosine similarity with TF-IDF 

● Semantic Re-Ranking: Uses semantic understanding to judge the relevance of 
documents. It often involves neural models like BERT or other transformer-based 
models to understand the context and meaning beyond mere word overlap.

● Learning-to-Rank (LTR) Methods: Involve training a model specifically for the task 
of ranking documents (point-wise, pair-wise, and list-wise) based on features 
extracted from both the query and the documents. This can include a mix of lexical, 
semantic, and other features.

● Hybrid Methods: These combine lexical and semantic approaches, possibly with 
other signals like user feedback or domain-specific features, to improve re-ranking.

Retrieval
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RAG vs LLM
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RAG vs Fine-tuning
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https://arxiv.org/pdf/2312.10997v1 

https://arxiv.org/pdf/2312.10997v1


Efficiency Comparison
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RAG
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Further Reading
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● Fan et al., 2024. A Survey on RAG Meeting LLMs: Towards 
Retrieval-Augmented Large Language Models. KDD 2024 
https://arxiv.org/pdf/2405.06211

● Gao et al. 2024 Retrieval-Augmented Generation for Large Language 
Models: A Survey https://arxiv.org/abs/2312.10997 

● Retrieval Augmented Generation. https://aman.ai/primers/ai/RAG/
● Everything you need to know about Vector Databases — A Deep Dive. 

https://generativeai.pub/everything-you-need-to-know-about-vector-datab
ases-a-deep-dive-4903a40e67a9 

● https://github.com/Danielskry/Awesome-RAG?tab=readme-ov-file 
● https://medium.com/@OpenRAG/modular-rag-and-rag-flow-part-%E2%85

%B0-e69b32dc13a3 

https://arxiv.org/pdf/2405.06211
https://arxiv.org/abs/2312.10997
https://aman.ai/primers/ai/RAG/
https://generativeai.pub/everything-you-need-to-know-about-vector-databases-a-deep-dive-4903a40e67a9
https://generativeai.pub/everything-you-need-to-know-about-vector-databases-a-deep-dive-4903a40e67a9
https://github.com/Danielskry/Awesome-RAG?tab=readme-ov-file
https://medium.com/@OpenRAG/modular-rag-and-rag-flow-part-%E2%85%B0-e69b32dc13a3
https://medium.com/@OpenRAG/modular-rag-and-rag-flow-part-%E2%85%B0-e69b32dc13a3
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