
Generating Knowledge Graphs with LLMS, prompt engineering, and RAG

TOTH 2025 Training

Hands-on Tutorial

Dr Laure Berti-Equille, IRD (France)
Rafail Giannadakis, University of Crete, TALOS AI for SSH (Greece)
Rachel Milio, University of Crete, TALOS AI for SSH (Greece)

http://toth.condillac.org/training-2025-ai
https://laureberti.github.io/website/
https://crete.academia.edu/RafailGiannadakis
https://talos-ai4ssh.uoc.gr/talos-centre/team/rachel-milio/

Meet The Team

Rafail Giannadakis
Research Assistant at
TALOS-AI4SSH (UoC)

Digital Humanities & Classics
https://crete.academia.edu/RafailGiannadakis

Dr Laure Berti-Equille
Research Director
Computer Science, AI

Rachel Milio
PhD Candidate at
TALOS-AI4SSH (UoC)
https://orcid.org/0009-0000-0420-4711

https://laureberti.github.io/website/
2

https://crete.academia.edu/RafailGiannadakis
https://orcid.org/0009-0000-0420-4711

Agenda

Small description about the
agenda.

Session 3 Session 4Session 1

Introduction to
Knowledge Graphs &
LLMs

Session 2

Day 2 - June 4th, 2025Day 1 - June 3rd, 2025

LLMs & Prompt
Engineering

Knowledge Graph
Creation with GPT4

Introduction to RAG

3

DAY
TIME

Schedule

9:00 am -
10:00 am

10:00 am -
 10:20 am

10:20 am -
12:30 pm

12:30 pm -
2:00 pm

2:00 pm -
3:00 pm

Day 1

Day 2 Prompting Coffee Break

LLMs

Hands-on (3) Lunch RAG

3:00 pm -
5:00 pm

Hands-on (4)

Knowledge
Graphs Coffee Break Hands-on (1) Lunch Hands-on (2)

4

Online Resources

5

Shared Google Drive with the corpus, slides, and
exercices:

https://drive.google.com/drive/folders/12N9T1k4LbL4
OL23HuFunwGG0fVdx2yy_?usp=sharing

https://drive.google.com/drive/folders/12N9T1k4LbL4OL23HuFunwGG0fVdx2yy_?usp=sharing
https://drive.google.com/drive/folders/12N9T1k4LbL4OL23HuFunwGG0fVdx2yy_?usp=sharing

Introduction to
KGs

6

Outline

7

1. Introduction to Knowledge Graphs (KGs)

2. Two Popular Knowledge Graph Data Models:
• Resource Description Framework (RDF) (Query language:

SPARQL)
• Property Graphs (Query language: Cypher)
• Comparison of RDF and Property Graphs

3. Combining KGs and LLMs

8

● Represent facts about the world in a
structured form

● Are directed multi-relational graphs
composed of:
○ entities as the graph’s nodes
○ relationships between entities

as the graph’s edges
○ An organizing principle that

captures meta-information
about core concepts

● Feature information regarding both
real-world objects and abstract
concepts structured as triplets
(head entity, relation, tail entity) or
(h, r, t)

https://deeppavlov.ai/research/tpost/bn15u1y4v1-improving-knowledge-graph-completion-wit

Knowledge Graph Definition

9

● Expressivity: The standards in the Semantic Web stack – RDF(S) and OWL –
allow for a fluent representation of various types of data and content: data
schema, taxonomies and vocabularies, all sorts of metadata, reference and
master data

● Performance: All the specifications allow for efficient management of graphs
of billions of facts and properties

● Interoperability: There is a range of specifications for data serialization, access
(SPARQL Protocol for end-points), management (SPARQL Graph Store) and
federation. The use of globally unique identifiers facilitates data integration
and publishing.

● Standardization through the W3C community process.

Knowledge Graph Advantages

10https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/

Example of Knowledge Graph

https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/

11

Big Knowledge Graphs

12https://lod-cloud.net/versions/latest/lod-cloud.svg

DBPedia

13

(Knowledge) Graphs: What for?

14

Leverage Graph Science

https://neo4j.com/blog/genai/unifying-llm-knowledge-graph/

https://neo4j.com/blog/genai/unifying-llm-knowledge-graph/

Outline

15

1. Introduction to Knowledge Graphs (KGs)

2. Two Popular Knowledge Graph Data Models:
• Resource Description Framework (RDF) (Query language:

SPARQL)
• Property Graphs (Query language: Cypher)
• Comparison of RDF and Property Graphs

3. Combining KGs and LLMs

Resource Description Framework

16

● Designed to represent information on the web
● Standardized by World Wide Web (W3C) Consortium
● Triple is the basic unit of representation: Consists of

subject, predicate, and object

Nodes can be of three types:
● Internationalized Resource Identifiers (IRI)

IRI: https://hi.wikipedia.org/�हन्दी _�व�कपी�डया
● URL: http://www.wikipedia.org
● URI: www.wikipedia.org

Resource Description Framework

17

● Designed to represent information on the web
● Standardized by World Wide Web (W3C) Consortium
● Triple is the basic unit of representation: Consists of

subject, predicate, and object

Nodes:
• Uniquely identifies resources on the web
• Literals
• A value of certain type (integer, string, etc.)
• Blank nodes
• A node with no identifier (anonymous)

Example of RDF Model

18

A brother and sister, Daniel and Sunita. Sunita owns and drives a Volvo she
purchased on January 10, 2011. Dan has also driven Sunita’s car since March
15, 2013.

https://neo4j.com/blog/knowledge-graph/rdf-vs-property-graphs-knowledge-graphs/

https://neo4j.com/blog/knowledge-graph/rdf-vs-property-graphs-knowledge-graphs/

Simplified Example of RDF

19

<http://example.org/maria>
<http://xmlns.com/foaf/0.1/knows>
<http://example.org/christophe>

We can define prefixes
@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix ex: <http://example.org/>
ex:maria foaf:knows ex:christophe

maria knows christophe

Querying a RDF Dataset
•

20

RDF Dataset
• A collection of RDF graphs with

• Exactly one default graph
• One or more named graphs

Name can be a blank node or an IRI

Query Language: SPARQL
• Simple Protocol and Query Language (pronounced “sparkl”)
• Queries can go across multiple sources
• Full-featured query language
• Required/optional parameters
• Filtering the results
• Results can be graphs

Examples of SPARQL Query (1/2)

21

Who are the persons that maria knows?

SELECT ?person
WHERE
<http://example.org/maria> <http://xmlns.com/foaf/0.1/knows> ?person

Examples of SPARQL Query (2/2)

22

Who are the persons known by the persons that maria knows?
SELECT ?person ?person1
WHERE
<http://example.org/maria> <http://xmlns.com/foaf/0.1/knows> ?person
?person <http://xmlns.com/foaf/0.1/knows> ?person1

or

PREFIX ex: <http://example.org/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person ?person1
WHERE
ex:maria foaf:knows ?person
?person foaf:knows ?person1

Outline

23

1. Introduction to Knowledge Graphs (KGs)

2. Two Popular Knowledge Graph Data Models:
• Resource Description Framework (RDF) (Query language:

SPARQL)
• Property Graphs (Query language: Cypher)
• Comparison of RDF and Property Graphs

3. Combining KGs and LLMs

Property Graph Model

24

● Do not require a predefined
schema

● Optimize graph traversals
● Used by many Graph DB
● Based on the ISO standard GQL

https://www.iso.org/standard/76120.html

https://www.iso.org/standard/76120.html

Property Graph Model

25

• Nodes, relationships and properties
• Each node and a relationship has a label and set of properties
• Properties are key value pairs
• Keys are strings, values can be any data types
• Each relationship has a direction

maria

rachel

rethymno
24

since = 2024

Property Graph Model

26

• Nodes, relationships and properties
• Each node and a relationship has a label and set of properties
• Properties are key value pairs
• Keys are strings, values can be any data types
• Each relationship has a direction

maria
rachel

rethymno24

since = 2024

Cypher Queries on Property Graphs

27

● Query language for querying graph data
● Being considered for adoption as an ISO Standard
● Supports CRUD operations: Create, read, update, delete

Example:

Which people does maria know?

MATCH (p1:Person {name: maria}) -[:knows]-> (p2: Person)
RETURN p2

Cypher Query Examples

28

● Which people does maria know since 2010?

MATCH (p1:Person {name: maria}) -[:knows {since: 2010}]-> (p2: Person)
RETURN p1, p2

● Which people does maria know since 2010?

MATCH (p1:Person {name: maria}) -[:knows {since: Y}]-> (p2: Person)
WHERE Y <= 2010
RETURN p1, p2

RDF vs Property Graphs

29

● RDF supports several additional layers
● RDF Schema, Web Ontology, etc.

● Property graph model supports edge properties
● Property graph model does not require IRIs
● Property graph model does not support blank nodes

Property graph RDF triples

Node properties Triples (s,p,o)
Edges Triples
Edge properties Reified edges + triples

s,o
p

Cypher Query Examples

30

● Which people does maria know since 2010?

MATCH (p1:Person {name: maria}) -[:knows {since: 2010}]-> (p2: Person)
RETURN p1, p2

● Which people does maria know since 2010?

MATCH (p1:Person {name: maria}) -[:knows {since: Y}]-> (p2: Person)
WHERE Y <= 2010
RETURN p1, p2

Design a Property Graph

31

● Choosing nodes, labels and properties
● When to introduce relationships
● When to introduce relationship properties
● How to handle n-ary relationships

Choose Nodes, labels, and Properties

32

● Nodes usually represent entities in a domain
○ How to represent gender?

Choose Nodes, labels, and Properties

33

● Nodes usually represent entities in a domain
○ How to represent gender?

● Introduce a new Label
● Labels are like classes
● Labels should be natural
● Labels should not change with time
● Could benefit from indexing

Choose Nodes, labels, and Properties

34

● Nodes usually represent entities in a domain
○ How to represent gender?

● Introduce a new node property
● Property should not change with time

Choose Nodes, labels, and Properties

35

● Nodes usually represent entities in a domain
○ How to represent gender?

When to introduce a relationship?

36

● When efficient access is required

When to introduce a relationship?

37

● When efficient access is required

When to introduce relationship properties?

38

● Common use cases for relationship properties
○ Time varying relationships
○ Provenance
○ Confidence
○

● Disadvantages
○ Many systems do not index relationship properties
○ This may not be a problem if relationship properties

are used in the last stage of query processing
○ For performance sensitive queries, it is better to reify

the relationship

How to handle n-ary relationships?

39

● Reification is a common technique to handle
relationships with arity higher than 2
○ Create an object representing the relationship
○ Create objects for each argument of the relationship
○ Introduce relationships to connect them

Outline

40

1. Introduction to Knowledge Graphs (KGs)

2. Two Popular Knowledge Graph Data Models:
• Resource Description Framework (RDF) (Query language:

SPARQL)
• Property Graphs (Query language: Cypher)
• Comparison of RDF and Property Graphs

3. Combining KGs and LLMs

Generic Data Flow

41https://arxiv.org/pdf/2407.06564

https://arxiv.org/pdf/2407.06564

Use Cases in Cultural Heritage (1/3)

42https://users.ics.forth.gr/~tzitzik/publications/Tzitzikas_2024-MBD.pdf

Use Cases in Cultural Heritage (2/3)

43https://users.ics.forth.gr/~tzitzik/publications/Tzitzikas_2024-MBD.pdf

Use Cases in Cultural Heritage (2/3)

44https://users.ics.forth.gr/~tzitzik/publications/Tzitzikas_2024-MBD.pdf

1

45

Further Reading

46

● A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. D. Melo, C. Gutierrez, S. Kirrane,
J. E. L. Gayo, R. Navigli, S. Neumaier, et al., Knowledge graphs, ACM Computing
Surveys (Csur) 54 (2021) 1–37. https://dl.acm.org/doi/abs/10.1145/3447772

● Peng, C., Xia, F., Naseriparsa, M. et al. Knowledge Graphs: Opportunities and
Challenges. Artif Intell Rev 56, 13071–13102 (2023).
https://doi.org/10.1007/s10462-023-10465-9

● S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang and X. Wu, Unifying Large Language
Models and Knowledge Graphs: A Roadmap, in IEEE Transactions on
Knowledge and Data Engineering, vol. 36, no. 7, pp. 3580-3599, July 2024, doi:
10.1109/TKDE.2024.3352100.

● Ibrahim, N., Aboulela, S., Ibrahim, A. et al. A survey on augmenting knowledge
graphs (KGs) with large language models (LLMs): models, evaluation metrics,
benchmarks, and challenges. Discov Artif Intell 4, 76 (2024).
https://doi.org/10.1007/s44163-024-00175-8

https://dl.acm.org/doi/abs/10.1145/3447772
https://doi.org/10.1007/s10462-023-10465-9

Introduction to
LLMs

47

Outline

48

1. Introduction to AI and LLMs

2. Key Elements of LLMs
• Parameters
• Embeddings
• Attention

3. LLMs Architecture
• Types of architecture
• How LLM works
• How to set the LLM hyperparameters

Brief History of AI

https://ourworldindata.org/brief-history-of-ai
49

History of NLP

50https://blog.dataiku.com/nlp-metamorphosis

Brief History of LLMs

51
https://github.com/zzli2022/Awesome-System2-Reasoning-LLM

LLM Evolution

https://github.com/Mooler0410/LLMsPracticalGuide?tab=readme-ov-file 52

LLM Evolution

53https://www.researchgate.net/figure/Evolutionary-tree-of-language-and-multimodal-question-answering-QA-in-general-domain_fig2_379393043

Open/Closed LLMs

54Naveen at al. A Comprehensive Overview of Large Language Models https://arxiv.org/pdf/2307.06435
https://en.wikipedia.org/wiki/List_of_large_language_models

Open source

Closed source instruction-tuned
pre-trained

https://arxiv.org/pdf/2307.06435
https://en.wikipedia.org/wiki/List_of_large_language_models

LLM Capabilities

https://generativeai.pub/a-taxonomy-of-large-language-models-capabilities-b019d3d582b2 55

Types of Models

56

● Pretrained LLMs: Model weights are learned from a vast

repository of knowledge

● Fine-tuned LLMs: The pretrained model weights are used and

updated from specialized knowledge tailored for specific tasks

● Instruction-tuned LLMs: Not only relies on data but also

adapts the outputs based on provided instructions

● RL-tuned LLMs: Continuous learning and adaptation through

feedback

LLM Size Evolution

https://www.analyticsvidhya.com/blog/2023/11/the-llm-revolution-transforming-language-models/ 57

DeepSeek R1

 1.3B

Outline

58

1. Introduction to AI and LLMs

2. Key Elements of LLMs
• Parameters
• Embeddings
• Attention

3. LLMs Architecture
• Types of architecture
• How LLM works
• How to set the LLM hyperparameters

Key elements of LLMs

59

LLM Parameters

60

Attention weights and embedding vectors are the
main LLM parameters.

● The attention mechanism empowers a model to
selectively zoom into pivotal segments of input, sidelining
the extraneous bits. The attention weights dictate this
selective focus.

● Embedding vectors transmute textual tokens into arrays
of numbers encapsulating semantics and context.

Embeddings

61

Word embeddings are dense, low-dimensional, and continuous vector
representations of words that capture semantic and syntactic
information.

If “king” is represented by a vector
v_king and "queen" by v_queen, the
relationship between these vectors can
capture the gender difference, as in
 v_king - v_man + v_woman ≈ v_queen.

Many embeddings
● Word
● Sentence
● Document
● Image
● Audio
● Context
● User
● etc.

https://medium.com/@vipra_singh/llm-architectures-explained-word-embeddings-part-2-ff6b9cf1d82d

Types of Embeddings

62

Attention in LLM

63

Attention mechanisms allows the model to focus on specific parts of the
input text when generating an output.

Seminal paper “Attention is all you need” https://arxiv.org/abs/1706.03762

Types of attention

● Self-Attention allows LLMs to understand the context of each word in relation to
every other word in the sequence, capturing dependencies and relationships across
long distances.

● Scaled Dot-Product Attention involves computing the dot product between a query
vector and a set of key vectors, and then scaling the result by the square root of the
dimensionality of the key vectors.

● Multi-Head Attention enhances the model’s ability to process input sequences.
Instead of relying on a single attention head, which computes weighted sums of
input elements based on their relevance to a specific context, multi-head attention
employs multiple attention heads simultaneously. Each head focuses on different
aspects of the input, such as local dependencies, global context, or specific patterns.

https://arxiv.org/abs/1706.03762

Simplified Example

64https://www.youtube.com/watch?v=OxCpWwDCDFQ

https://www.youtube.com/watch?v=OxCpWwDCDFQ

Simplified Example

65

Embeddings learn dependencies, proximity of words, and contextual
similarly based on co-occurence statistics

?

Simplified Example

66

Embeddings are learned and updated from the different contexts

There are many embeddings and
linear transformations of existing
embeddings can improve them

Simplified Example

67

Outline

68

1. Introduction to AI and LLMs

2. Key Elements of LLMs
• Parameters
• Embeddings
• Attention

3. LLMs Architecture
• Types of architecture
• How LLM works
• How to set the LLM hyperparameters

Types of LLM Architecture: Encoder Only

69

Autoencoding Models: BERT family, ROBERTA

Use Cases: Sentiment Analysis, Named Entity Recognition, Topic Classification

Encoder
only

https://medium.com/the-rag-explorer/3-llm-architectures-f527ed781ba9

Trained by predicting words from
surrounding words on both sides

https://medium.com/the-rag-explorer/3-llm-architectures-f527ed781ba9

Types of LLM Architecture: Decoder Only

70

Autoregressive Models: GPT, Claude, Llama, Mistral, Bloom

Decoder
only

Generate text one token at a time based on the previously generated tokens

Types of LLM Architecture:
Encoder-Decoder Models

71

Sequence-to-Sequence Models: BART, Flan-T5, Whisper

Use Cases: Translation, Question-Answering, Text summarization

Encoder-
Decoder

Trained to map from one
sequence to another

How LLMs work?

72

Tokenization

How LLMs work?

73

Embedding & Encoding

How LLMs work?

74

LLM Calculation

How LLMs work?

75

LLM Calculation

/ T
/ T

temperature

How LLMs work?

76

Output

LLM Hyperparameters: Temperature

77

Controls how deterministic or creative the responses are
by adjusting the probability distribution of the next word
predicted.

● High Temperature (e.g., 0.8–1.0): Increases randomness and
creativity. Useful for open-ended tasks like storytelling or
brainstorming.

● Low Temperature (e.g., 0.0–0.4): Produces more deterministic
and focused outputs. Suitable for factual or technical tasks.

● Medium Temperature (e.g., 0.5–0.7): Balances randomness and
determinism, often a good starting point for general purposes.

LLM Hyperparameters: Temperature

78https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086

https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086

LLM Hyperparameters: Temperature

79https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086

https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086

LLM Hyperparameters: Temperature

80https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086

https://medium.com/@nigelgebodh/why-does-my-llm-have-a-temperature-f2e314a52086

LLM Temperature: Examples (1/3)

81

Creative Writing (High Temperature)
Prompt: "Once upon a time in a galaxy far, far away,"

Temperature = 1.0: "Once upon a time in a galaxy far, far away, a talking
nebula named Zorbo set out to collect cosmic dust to brew the
universe’s most powerful elixir. But little did Zorbo know, the dust was
guarded by ancient star dragons."

Explanation: At a high temperature, the model generates imaginative
and unpredictable ideas, ideal for creative storytelling.

LLM Temperature: Examples (2/3)

82

Technical Explanation (Low Temperature)

Prompt: "Explain Newton's second law of motion."

Temperature = 0.2: "Newton's second law of motion states that the
force acting on an object is equal to the mass of the object multiplied
by its acceleration. Mathematically, F = ma."

Explanation: At a low temperature, the model provides precise and
reliable information with minimal deviation from established facts.

LLM Temperature: Examples (3/3)

83

Conversational Tone (Medium Temperature)
Prompt: "How do I bake a chocolate cake?"

Temperature = 0.6: "To bake a chocolate cake, start by preheating your
oven to 350°F. Mix flour, sugar, cocoa powder, and baking powder in a
bowl. In another bowl, whisk eggs, milk, and melted butter. Combine
the wet and dry ingredients, pour into a greased pan, and bake for 30
minutes. Cool before serving."

Explanation: A medium temperature generates a coherent response
that is both informative and conversational.

Best Practices for LLM Temperature

84

Recommendations

● Factual Answers 0.0–0.3 Deterministic, avoids creative deviations
● Code Generation 0.2–0.4 Predictable and accurate outputs
● Creative Writing 0.7–1.0 Diverse and imaginative results
● Brainstorming 0.8–1.0 Generates unique ideas
● Conversational Agents 0.5–0.7 Balanced and engaging dialogue

Best Practices for Experimentation

● Start Simple: Begin with a medium temperature (e.g., 0.7) and adjust
based on the desired outcome.

● Test Iteratively: Evaluate outputs with different temperatures for the same
prompt.

● Combine with other hyperparameters: Use temperature alongside
parameters like top-k or top-p sampling for finer control over the output.

LLM Hyperparameters: Top-K

85

Sampling strategy used to generate text from a language
model by selecting the next word in a sequence from the
top K most probable words, rather than considering all
possible words.

● Use low K values (10–50) when you want to restrict the model to
only the most likely words, useful for focused, deterministic
outputs

● Use higher K values (100–1000) to allow more diversity while still
preventing the selection of highly improbable tokens

● Top-K is particularly effective for maintaining output quality in
shorter sequences

Combining Temperature and Top-K

86

● Pairing these methods can offer fine-grained control over both
the diversity and quality of generated text.

● Use a moderate K value (e.g., 50–100) to filter out unlikely tokens,
then apply temperature to control randomness within this subset

● This combination is often more stable than using either method
alone, especially for longer generation tasks

Guidelines for combined use

1. Start with a moderate K value (e.g., 50) and temperature (e.g., 0.7).
2. If outputs are too random or off-topic, decrease K or lower the temperature.
3. If outputs are too repetitive or predictable, increase K or raise the temperature.
4. Fine-tune based on your specific use case and desired output characteristics.

Other LLM Hyperparameters: Top-p

87

Top-p, aka nucleus sampling influences the randomness of
LLM output. Top-p determines the threshold probability for
including tokens in a candidate set used by the LLM to
generate output.

Top-p

● Top-p parameter to 0.1 leads to deterministic and focused
output

● Increasing Top-p to 0.8 allows for less constrained and more
creative responses.

Other LLM Hyperparameters

88

Max Tokens & Context Window

● Context window and max tokens parameters add constraints on the
size of the input accepted or the output generated by the model,
directly affecting LLM performance and data processing capabilities.

● The context window, measured in tokens (which can be whole words,
subwords, or characters), determines the number of words an LLM
can process at once.

● Max tokens parameter sets the upper limit for the total number of
tokens, encompassing both the input provided to the LLM as a
prompt and the output tokens generated by the LLM in response to
that prompt.

Context Window Effect

89

● If the input exceeds the context window, the model starts to
“forget” earlier information, potentially resulting in less relevant
and lower-quality output.

● Context window places constraints on prompt engineering
techniques. Methods like Tree-of-Thoughts or Retrieval
Augmented Generation (RAG) require large context windows to
be effective

● Context window limits
○ GPT-4: 8,192 tokens,
○ GPT-4 Turbo: 128K tokens.
○ Claude from 9,000 tokens to 200K tokens in the Claude 2.1

version.

2

90

Further Reading

91

So many courses and resources on LLMs…
https://gist.github.com/veekaybee/be375ab33085102f9027853128dc5f0e
https://github.com/Jason2Brownlee/awesome-llm-books
https://github.com/mlabonne/llm-course
https://github.com/Hannibal046/Awesome-LLM

The Llama 3 Herd of Models
Qwen2.5 Technical Report
DeepSeek-V3 Technical Report
Mistral 7B
Llama 2: Open Foundation and Fine-Tuned Chat Models

https://gist.github.com/veekaybee/be375ab33085102f9027853128dc5f0e
https://github.com/Jason2Brownlee/awesome-llm-books
https://github.com/mlabonne/llm-course
https://github.com/Hannibal046/Awesome-LLM
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.19437v1
https://arxiv.org/pdf/2310.06825.pdf
https://arxiv.org/pdf/2307.09288.pdf

Prompting

92

Outline

93

1. Definition, Principles & Structure
2. Main Techniques

• Zero-shot Prompting
• Few-shot Prompting
• Chain-of-Thoughts Prompting
• Meta Prompting
• Self-Consistency Prompting
• Contrastive CoT Prompting
• Tree-of-Thoughts Prompting
• Multi-Chain-Reasoning

3. Prompting Frameworks
• CO-STAR
• AUTOMAT

What is Prompt Engineering?

94

Prompt engineering is the process of structuring
or crafting an instruction in order to produce the
best possible output from a generative artificial
intelligence model. A prompt is natural language
text describing the task that an AI should perform.

https://spectrum.ieee.org/prompt-engineering-is-dead

https://spectrum.ieee.org/prompt-engineering-is-dead

Prompt Principles

95

Bsharat et al. defined 26 ordered prompt principles, which can be
organized into five distinct categories:

1. Prompt Structure and Clarity: Integrate the intended audience in
the prompt.

2. Specificity and Information: Implement example-driven prompting
(Use few-shot prompting)

3. User Interaction and Engagement: Allow the model to ask precise
details and requirements until it has enough information to provide
the needed response

4. Content and Language Style: Instruct the tone and style of
response

5. Complex Tasks and Coding Prompts: Break down complex tasks
into a sequence of simpler steps as prompts

https://arxiv.org/pdf/2312.16171.pdf

Basic Prompt Structure

96

A well-crafted prompt typically consists of:

● Examples: Sample inputs/outputs to guide the expected response.
● Role (Persona): The perspective or tone the AI should adopt.
● The Directive: The main instruction or task.
● Output Formatting: Specifications for how the response should be

structured.
● Additional Information: Background or context that informs the task.

Role-based prompting assigns a specific
persona to the AI, such as a doctor or
historian, to tailor the response’s tone,
style, and content. This helps ensure the
output matches the intended context or
professional setting.

One-shot prompting involves
giving the AI a single example
before the task. This clarifies
the expected output and can
improve accuracy for tasks that
benefit from a sample
demonstration.

Techniques of Prompt Engineering

97
Sahoo et al. A Systematic Survey of Prompt Engineering in Large Language Models:
Techniques and Applications https://arxiv.org/pdf/2402.07927

Outline

98

1. Definition & Structure
2. Main Techniques

• Zero-shot Prompting
• Few-shot Prompting
• Chain-of-Thoughts Prompting
• Meta Prompting
• Self-Consistency Prompting
• Contrastive CoT Prompting
• Tree-of-Thoughts Prompting
• Multi-Chain-Reasoning

3. Prompting Frameworks
• CO-STAR
• AUTOMAT

Zero-shot Prompting

99

Technique that instructs an LLM to perform a task without providing any
examples within the prompt. A zero-shot prompt relies on the LLM's ability to
understand the task based on the instructions alone, leveraging the vast
amount of data it has been trained on.

Example for a sentiment analysis task:

> Classify the following text as neutral, negative, or positive.
> Text: I think the vacation was okay. Sentiment:

Tasks: Translation, summarization, or content moderation, where pre-defined
examples are not always available or even necessary. Massive training and perhaps
fine-tuning, combined with an easy-to-understand zero-shot prompt, enable the
LLM to perform these tasks accurately.

Best practice: If zero-shot prompting proves insufficient, switching to few-shot
prompting might help.

Few-shot Prompting

100

Technique where examples are included in the prompt to facilitate learning.

Example of task: using a new word correctly in a sentence

> An example of a sentence using the word flamingo is: We saw many
red flamingos on our trip to Florida.

> Write a short story about a flamingo that found itself on a ship
bound for California .

Tasks: Text generation, summarization

Best practice: For more complex tasks, few-shot prompting may be insufficient,
requiring more advanced techniques like chain-of-thought prompting.

Chain-of-Thoughts (CoT) Prompting

101

Technique that enhances the reasoning abilities of LLMs by breaking down
complex tasks into simpler sub-steps. It instructs LLMs to solve a given
problem step-by-step, enabling them to field more intricate questions.

Example of reasoning task

> I started out with 8 marbles. I gave 3 to a friend, and then
found 4 more. How many marbles do I have now? Think step by step .

Tasks: Reasoning, explanation

Best practice: CoT prompting includes providing clear logical steps in the
prompt as well as a few examples to guide the model. Combining CoT with
few-shot prompting can be particularly effective for complex tasks.

Few-shot vs CoT Prompting

102

Few-shot Prompting

Meta-Prompting

103

Focuses on structuring and guiding LLM responses in a more organized and
efficient manner. Unlike few-shot prompting, which relies on detailed
examples to steer the model, meta prompting is a more abstract approach
that emphasizes the format and logic of queries.

Example of task for solving a math problem

> Step 1: Define the variables.
> Step 2: Apply the relevant formula.
> Step 3: Simplify and solve.

Tasks: Code generation

Best practices: focusing on logical structures, keeping prompts abstract, and
ensuring the task’s format is clearly defined. The meta prompt engineering
technique is especially useful for token efficiency and for tasks where traditional
few-shot examples can lead to biases or inconsistencies.

Self-consistency Prompting

104

Improves the accuracy of CoT reasoning. Instead of relying on a single,
potentially flawed flow of logic, self-consistency generates multiple
reasoning paths and then selects the most consistent answer from them.

Example of reasoning task

> When I was 6, my sister was half my age.
> Now I’m 70. How old is my sister?

A LLM might answer 35 (half one’s age) but, with self-consistency prompting, the model
generates additional reasoning paths, such as:

> When you were 6, your sister was 3.
> The difference in your ages is 3 years and that doesn’t vary.
> Now that you’re 70, she must be 67.

Best practice: Useful for improving model performance on complex reasoning
tasks and can be applied to a variety of domains, from arithmetic problems to
real-world decision-making

https://www.k2view.com/blog/chain-of-thought-reasoning/
https://www.k2view.com/blog/chain-of-thought-reasoning/

Self-consistency vs CoT Prompting

105

Contrastive CoT Prompting

106https://arxiv.org/pdf/2311.09277

CCoT employs negative examples along with positive ones to
enhance the reasoning capabilities of language models.

https://arxiv.org/pdf/2311.09277

Tree-of-Thought Prompting (ToT)

107https://arxiv.org/pdf/2305.10601

ToT enables problem solving with the generation and evaluation of thoughts, then
combined with search algorithms (e.g., breadth-first search and depth-first search)
to enable systematic exploration of thoughts with lookahead and backtracking

Multi-Chain Reasoning (MCR)

108Yoran, O., Wolfson, T., Bogin, B., Katz, U., Deutch, D., & Berant, J. (2024). Answering Questions by
Meta-Reasoning over Multiple Chains of Thought. https://arxiv.org/abs/2304.13007 ↩

https://arxiv.org/abs/2304.13007
https://learnprompting.org/docs/advanced/ensembling/multi-chain-reasoning#user-content-fnref-1

Other Chain-of-* Prompting

109

ReAct Prompting

110https://react-lm.github.io/

Generates reasoning traces allowing the model to induce, track, and
update action plans, and handle exceptions.

https://react-lm.github.io/

Outline

111

1. Definition & Structure
2. Main Techniques

• Zero-shot Prompting
• Few-shot Prompting
• Chain-of-Thoughts Prompting
• Meta Prompting
• Self-Consistency Prompting
• Contrastive CoT Prompting
• Tree-of-Thoughts Prompting
• Multi-Chain-Reasoning

3. Prompting Frameworks
• CO-STAR
• AUTOMAT

CO-STAR Framework

112

● Context: Set the scene! Provide background details for the LLM to
understand the situation.

● Objective: What do you want to achieve? Clearly define the task for
focused results.

● Style & Tone: Dress it up! Specify the desired writing style and emotional
tone for your LLM’s response.

● Audience: Know your reader. Identify who you’re targeting to tailor the
LLM’s output.

● Response: Pick your format. Define the output format (text, code, etc.) for
the LLM’s response.

https://towardsdatascience.com/how-i-won-singapores-gpt-4-prompt-engineering-competition-34c195a93d41/#10b2

https://towardsdatascience.com/how-i-won-singapores-gpt-4-prompt-engineering-competition-34c195a93d41/#10b2

Example of CO-STAR

113
https://medium.com/the-modern-scientist/best-prompt-techniques-for-best-llm-responses-24d2ff4f6bca

https://medium.com/the-modern-scientist/best-prompt-techniques-for-best-llm-responses-24d2ff4f6bca

AUTOMAT Framework

114

1. Act as a Particular persona (Who is the bot impersonating?)
2. User Persona & Audience (Who is the bot talking to?)
3. Targeted Action (What do you want the bot to do?)
4. Output Definition (How should the bot’s response be

structured?)
5. Mode / Tonality / Style (How should its response be

communicated?)
6. Atypical Cases (Are there edge cases where the bot should react

differently?)
7. Topic Whitelisting (What relevant topics can the bot talk about?)

https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba

https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba

AUTOMAT Framework

115https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba

https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba

AUTOMAT Framework

116
https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba

https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba

AUTOMAT Framework

117
https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba

https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba

3
118

Further Reading

119

● https://learnprompting.org/docs/introduction
● https://medium.com/the-generator/the-perfect-prompt-prompt-eng

ineering-cheat-sheet-d0b9c62a2bba
● OpenAI Cookbook has many in-depth examples for how to utilize

LLM efficiently.
● Prompt Engineering Guide repo contains a pretty comprehensive

collection of education materials on prompt engineering.
● https://github.com/dmatrix/genai-cookbook/blob/main/llm-prompts

/README.md
● learnprompting.org
● PromptPerfect
● Semantic Kernel

https://learnprompting.org/docs/introduction
https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba
https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba
https://github.com/openai/openai-cookbook
https://github.com/dair-ai/Prompt-Engineering-Guide
https://github.com/dmatrix/genai-cookbook/blob/main/llm-prompts/README.md
https://github.com/dmatrix/genai-cookbook/blob/main/llm-prompts/README.md
https://learnprompting.org/docs/intro
https://promptperfect.jina.ai
https://github.com/microsoft/semantic-kernel

Introduction to
RAG

120

Outline

121

1. Definition & Evolution

2. Main Components of a RAG Pipeline
• Ingestion
• Retrieval

3. Comparisons
• RAG vs LLM
• RAG vs Fine-tuning

What is RAG?

122

Retrieved Augmented Generation is a technique that
allows generative AI models to search and incorporate new
additional external data and knowledge that are relevant to
create more accurate domain-specific content without
needing further training.

RAG & Prompting Evolution

123https://cobusgreyling.medium.com/updated-emerging-rag-prompt-engineering-architectures-for-llms-17ee62e5cbd9

https://cobusgreyling.medium.com/updated-emerging-rag-prompt-engineering-architectures-for-llms-17ee62e5cbd9

When to Choose RAG

124

Use Prompt Engineering:

● You need a quick, low-resource solution.
● The task doesn’t require access to external or updated information.

Use Fine-Tuning:

● You have a large, domain-specific dataset.
● High accuracy is critical, and you have the computational resources.

Use RAG:

● Your application requires up-to-date or specialized knowledge.
● You want to minimize hallucinations by grounding responses in

external data.
● You need a balance between performance and resource efficiency.

Best Practices for Implementing RAG

125

● Maintain a High-Quality Knowledge Base
Ensure that the documents used for retrieval are accurate,
relevant, and up-to-date.

● Optimize Retrieval Mechanisms
Use effective embedding models and similarity measures to
improve the relevance of retrieved documents.

● Monitor and Evaluate Performance
Regularly assess the system’s responses for accuracy and
relevance, and adjust components as needed.

● Ensure Data Privacy and Security
Implement appropriate measures to protect sensitive
information in your knowledge base.

Outline

126

1. Definition & Evolution

2. Main Components of a RAG Pipeline
• Ingestion
• Retrieval

3. Comparisons
• RAG vs LLM
• RAG vs Fine-tuning

Basic RAG pipeline

127https://learn.deeplearning.ai/courses/building-evaluating-advanced-rag/lesson/nwy74/introduction

https://learn.deeplearning.ai/courses/building-evaluating-advanced-rag/lesson/nwy74/introduction

Main Chunking Strategies (1/2)

128

Fixed-size chunking

● The most common and straightforward approach
● decide the number of tokens in our chunk and, optionally, whether there should be any

overlap between them.
● overlap between chunks to make sure that the semantic context doesn’t get lost

between chunks.
● computationally cheap and simple to use since it doesn’t require the use of any NLP

libraries.

Recursive Chunking

○ It divides the input text into smaller chunks in a hierarchical and iterative manner
using a set of separators.

○ If the initial attempt at splitting the text doesn’t produce chunks of the desired
size or structure, the method recursively calls itself on the resulting chunks with a
different separator or criterion until the desired chunk size or structure is
achieved.

Specialized chunking

Markdown and LaTeX are two examples of structured and formatted content you might run into. In
these cases, you can use specialized chunking methods to preserve the original structure of the
content during the chunking process.

Ingestion

Main Chunking Strategies (2/2)

129

Semantic Chunking

1. Split the documents into sentences based on separators(.,?,!)
2. Index each sentence based on position.
3. Group: Choose how many sentences to be on either side. Add a buffer of

sentences on either side of our selected sentence.
4. Calculate distance between group of sentences.
5. Merge groups based on similarity i.e. keep similar sentences together.
6. Split the sentences that are not similar.

Ingestion

Regular vs Semantic Chunking

130

Scientific
papers

Ingestion

Chunk Size Matters

131

Choosing the right chunk_size can influence the efficiency and accuracy of a RAG
system in several ways:

1. Relevance and Granularity:
○ A small chunk_size, like 128, yields more granular chunks. This granularity, however,

presents a risk: vital information might not be among the top retrieved chunks,
especially if the similarity_top_k setting is as restrictive as 2.

○ Conversely, a chunk size of 512 is likely to encompass all necessary information within
the top chunks, ensuring that answers to queries are readily available. To navigate this,
we employ the Faithfulness and Relevancy metrics. These measure the absence of
‘hallucinations’ and the ‘relevancy’ of responses based on the query and the retrieved
contexts respectively.

2. Response Generation Time
○ As the chunk_size increases, so does the volume of information directed into the LLM

to generate an answer. This might also slow down the system. Ensuring that the added
depth doesn't compromise the system's responsiveness is crucial.

Ingestion

Basic RAG pipeline

132https://learn.deeplearning.ai/courses/building-evaluating-advanced-rag/lesson/nwy74/introduction

https://learn.deeplearning.ai/courses/building-evaluating-advanced-rag/lesson/nwy74/introduction

Lexical Retrieval

133

Traditional approach to information retrieval based on exact word matches and
term frequency.

Main Approaches
○ TF-IDF (Term Frequency-Inverse Document Frequency) evaluates the importance of a word

in a document relative to a corpus. It increases proportionally with the number of times a word
appears in the document but is offset by how frequently the word appears across all
documents.

○ BM25 (Best Matching 25). A more refined version of TF-IDF. It introduces term frequency
saturation and document length normalization, improving relevance scoring.

Advantages of Lexical Retrieval

○ Fast and computationally efficient.
○ Easy to interpret and implement.
○ Works well when exact keyword matching is important.

Limitations

○ Cannot handle synonyms or paraphrased queries effectively.
○ Limited ability to capture semantic meaning.

Retrieval

Semantic Retrieval

134

Use neural networks to embed both queries and documents into a shared vector
space, where semantic similarity can be calculated using metrics like cosine similarity.

● How it works
○ Vector Encoding: Both queries and documents are transformed into dense vectors

using pre-trained or fine-tuned encoders. These encoders are typically trained on large
datasets, enabling them to capture semantic nuances beyond surface-level keyword
overlap.

○ Semantic Matching: Vectors are compared to identify the most semantically relevant
documents, even if they don’t share explicit terms with the query.

● Advantages of Semantic Retrieval
○ Handles paraphrasing, synonyms, and conceptual similarity effectively.
○ Supports more natural and conversational queries.
○ Multilingual capabilities are often built-in.

● Challenges and Considerations
○ Requires significant computational resources.
○ Retrieval quality is sensitive to training data and may reflect biases.
○ Updating document embeddings for dynamic content can be complex.

Retrieval

Hybrid Retrieval: Lexical + Semantic

135

Reciprocal Rank Fusion (RRF) merges the rankings from different retrieval
models (e.g., BM25 and a neural retriever) by assigning higher scores to
documents that consistently rank well across systems.

How RRF works: Each document receives a score based on its position in the ranked
lists from multiple retrieval methods.

Benefits of Hybrid Retrieval:

○ Increases recall by retrieving relevant documents that either lexical or
semantic methods might miss individually.

○ Balances precision and coverage.
○ Makes the retrieval system more resilient to query variations and noise.

Retrieval

RAG Retriever

136

Retriever here could be any of the following depending on the need for
semantic retrieval or not:

● Vector database: Typically, queries are embedded using models like BERT
for generating dense vector embeddings. Alternatively, traditional methods
like TF-IDF can be used for sparse embeddings. The search is then
conducted based on term frequency or semantic similarity.

● Graph database: Constructs a knowledge base from extracted entity
relationships within the text. This approach is precise but may require exact
query matching, which could be restrictive in some applications.

● Regular SQL database: Offers structured data storage and retrieval but
might lack the semantic flexibility of vector databases.

rRetrieval

Vector DB vs Graph DB

137

r

https://www.linkedin.com/posts/da
mienbenveniste_machinelearning-d
atascience-artificialintelligence-activ
ity-7119708674868051969-5HA1/?utm
_source=share&utm_medium=mem
ber_desktop

Retrieval

https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/damienbenveniste_machinelearning-datascience-artificialintelligence-activity-7119708674868051969-5HA1/?utm_source=share&utm_medium=member_desktop

Choice of Vector Database

138

Retrieval

https://www.vecdbs.com/

https://www.vecdbs.com/

Re-Ranking

139

Re-ranking in RAG refers to the process of evaluating and sorting the retrieved
documents or info snippets based on their relevance to the given query or task.

● Lexical Re-Ranking: Based on lexical similarity between the query and the retrieved
documents. Common Methods: BM25 or cosine similarity with TF-IDF

● Semantic Re-Ranking: Uses semantic understanding to judge the relevance of
documents. It often involves neural models like BERT or other transformer-based
models to understand the context and meaning beyond mere word overlap.

● Learning-to-Rank (LTR) Methods: Involve training a model specifically for the task
of ranking documents (point-wise, pair-wise, and list-wise) based on features
extracted from both the query and the documents. This can include a mix of lexical,
semantic, and other features.

● Hybrid Methods: These combine lexical and semantic approaches, possibly with
other signals like user feedback or domain-specific features, to improve re-ranking.

Retrieval

Outline

140

1. Definition & Evolution

2. Main Components of a RAG Pipeline
• Ingestion
• Retrieval

3. Comparisons
• RAG vs LLM
• RAG vs Fine-tuning

RAG vs LLM

141

RAG vs Fine-tuning

142

https://arxiv.org/pdf/2312.10997v1

https://arxiv.org/pdf/2312.10997v1

Efficiency Comparison

143

RAG

144

4
145

Further Reading

146

● Fan et al., 2024. A Survey on RAG Meeting LLMs: Towards
Retrieval-Augmented Large Language Models. KDD 2024
https://arxiv.org/pdf/2405.06211

● Gao et al. 2024 Retrieval-Augmented Generation for Large Language
Models: A Survey https://arxiv.org/abs/2312.10997

● Retrieval Augmented Generation. https://aman.ai/primers/ai/RAG/
● Everything you need to know about Vector Databases — A Deep Dive.

https://generativeai.pub/everything-you-need-to-know-about-vector-datab
ases-a-deep-dive-4903a40e67a9

● https://github.com/Danielskry/Awesome-RAG?tab=readme-ov-file
● https://medium.com/@OpenRAG/modular-rag-and-rag-flow-part-%E2%85

%B0-e69b32dc13a3

https://arxiv.org/pdf/2405.06211
https://arxiv.org/abs/2312.10997
https://aman.ai/primers/ai/RAG/
https://generativeai.pub/everything-you-need-to-know-about-vector-databases-a-deep-dive-4903a40e67a9
https://generativeai.pub/everything-you-need-to-know-about-vector-databases-a-deep-dive-4903a40e67a9
https://github.com/Danielskry/Awesome-RAG?tab=readme-ov-file
https://medium.com/@OpenRAG/modular-rag-and-rag-flow-part-%E2%85%B0-e69b32dc13a3
https://medium.com/@OpenRAG/modular-rag-and-rag-flow-part-%E2%85%B0-e69b32dc13a3

Thank You
For Attending!

147

