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What are the common key elements of scientific discovery ? 

AstrophysicsPhysicsOmics Social Science

Data-intensive Science
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Scientific discovery relies on workflows and data 

A scientific worflow is a process for 
accomplishing a scientific objective, typically 

expressed as a series of tasks related to hypothesis 
testing, physical experimentations and measurements 

that produce data, which can be furhther analyzed via 
multipe computational steps.

Observations Hypothesis Experiments Results

revise

support 
hypothesis  

?

No

Yes

repeat

Scientific 
discovery

Generic scientific worflow



A scientific worflow is a process for 
accomplishing a scientific objective, typically 

expressed as a series of tasks related to hypothesis 
testing, physical experimentations and measurements 

that produce data, which can be further analyzed via 
multiple computational steps.
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Scientific Discovery relies on workflows and data 

refered as analytic worflows or data science pipelines
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Scientific Discovery relies on workflows and data 
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Examples in Large-Scale Multi-Omics Studies

Zheng, Y., Liu, Y., Yang, J. et al. Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials. Nat Biotechnol 42, 1133–1149 (2024). https://doi.org/10.1038/s41587-023-01934-1

Source: Valous, N.A., Popp, F., Zörnig, I. et al. Graph machine learning for integrated multi-omics analysis. Br J Cancer 131, 205–211 (2024). https://doi.org/10.1038/s41416-024-02706-7

    Machine learning   

protein-protein 
interaction   

metabolic networks   

gene regulatory 
networks  

proteomics

metabolomics

metagenomics

transcriptomics

epigenomics

genomics

patient clustering

predict patient survival 

identify potential 
biomarker 
candidates

Input: Massive data      Output: biomedical outcomes 
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Examples in Multimodal Astrophysics

Source: Cuoco, E., Patricelli, B., Iess, A. et al. Computational challenges for multimodal astrophysics. Nat Comput Sci 2, 479–485 (2022). https://doi.org/10.1038/s43588-022-00288-z

    Machine learning   Data Acquisition      Output: Astrophysical 
event detection 

Data encoding   

Mészáros, P., Fox, D.B., Hanna, C. et al. Multi-messenger astrophysics. Nat Rev Phys 1, 585–599 (2019). https://doi.org/10.1038/s42254-019-0101-z
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Many other examples of analytical workflows…

Source: https://pegasus.isi.edu/workflow_gallery/gallery/galactic/index.php

SeismologyBioinformatics

Souce: https://kepler-project.org/users/projects-using-kepler.html

Geoscience

Oceanography

https://workflowhub.eu/workflows

Epigenomics
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Analytical Workflow Lifecycle

?



Computational Reproducibility Concerns
Reproducible research is the ability to recreate results given the same 

data, analytic code, and documentation.

one-time use of 
your workflow
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Outline

I. Scientific Workflows and Analytical Workflows 
• Definitions and Differences 
• Illustrative Examples 

II.  Optimization in Analytical Workflows  
• Current Approaches 
• Main Challenges

11



Architecture of Scientific Workflow 
Management Systems (SWMSs) 
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Task distribution Workflow Execution Plan

Find and reduce redundancies 
to simplify the workflow 
(Cohen-Boulakia  et al, 2014)

(Liu et al.  , 2015)

Partition the workflow to 
reduce : 
• the storage required for the 

execution of each fragment  
• the scheduling complexity 

(data & workflow fragment 
parallelism)

Minimize execution costs wrt 
deadline or security constraints

Handle failures during task 
execution and resource 
provisioning (proactive and 
reactive)



Analytical Workflow Execution Plan
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 Workflows  
(Directed Graph) 

Sequential 
tasks

Parallel 
tasks

<code/>

input

output

Task analysis 

Objectives optimization 

Task distribution 

Scheduler Scheduled tasks Computing 
resources 

IaaS

PaaS

SaaS

data dependencies

High Performance 
Distributed 

Environment

 (monosite/multisite 

cloud or cluster)

Scientific Workflow management System (SWMS)



Multisite Workflow Execution Architecture
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 inter-site interactions

(Liu et al.  , 2018)

e.g., Amazon or Microsoft have many 
geographically distributed sites

Examples of shared-disk file systems: 

• General Parallel File System (GPFS), 

• Global File System (GFS) and 

• Network File System (NFS) 

NoSQL databases: MongoDB, Cassandra



Optimization in Analytical Workflows
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Efficient Scheduling

Handling massive data

• Finding a schedule for any DAG of tasks is an NP-hard 
• Inefficiencies of current batch scheduling systems (Lubrano et al., 2024)  
• Hardware can fail (fault-tolerance) 
• Must consider task dependencies and resource requirements dynamically, DAG vs DCG 
• Cloudlet scheduling is NP-complete (Ala’anzy et al., 2023) (Ghafir et al., 2023) 
• Static/dynamic/hybrid scheduling

• Different I/O performance metrics 
• Complex data sharing and coordination (Hewes et al., 2023) 
• Complex data provenance management 
• Adaptive caching, hot and cold data in main-memory, cache service (Qin et al., 2019) 
• Metadata management bottleneck 

• Data transfer time/cost 
• Computation time/cost 
• Makespan and reliability 
• Energy consumption (Warade et al., 2023)  
• Users constraints 
• QoS 
• …

Optimization Metrics



Fine-grained Parallelism in SWMSs
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(Liu et al.  , 2015)

code

input 1

input 2

output 1

output 1

output 2
data parallelism

output 2pipeline parallelism

input 4

input 3

output 4

output 3

output 3output 4

independent parallelism

output 5 output 6

Hybrid parallelism

Efficient S
cheduling
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Workflow Scheduling

 Mapping the workflow tasks generated by workflow parallelization to the physical resources

•Objective
•Objective

Execution time 
Data transfer time/cost 
Compute cost 
Usage charge period 
VM per task 
VM cores 
VM overhead cost/time 

Efficient S
cheduling
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Workflow Scheduling

 Mapping the workflow tasks generated by workflow parallelization to the physical resources

Kepler

•Objective

Execution time 
Data transfer time/cost 
Compute cost 
Usage charge period 
VM per task 
VM cores 
VM overhead cost/time 

Efficient S
cheduling



Management Strategies for Distributed 
Workflow Metadata
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(Pineda-Morales L. et al., 2018)Handling m
assi

ve data
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Data Caching

Generic Architecture of SWMS with 
Cache Management

1) Which intermediate data should be shared, 
stored, or replicated? Where? When? 

2) Which existing cached data should be reused?

Cache-Aware scheduling (Heidsieck,  et al. 2021)

Plant phenotyping workflow

Handling m
assi

ve data



• Scientific workflows become increasingly complex with simulation data, 
large-scale experiment data, synthetic data, GenAI data, etc.

• Orchestration between the workflow tasks, the distributed computing and 
data storage resources is challenging and requires various expertises and 
R&D in data management, HPC, and optimization.

• Metadata management is a keystone for optimizing scientific workflows.

• Still research is needed for optimizing the next generation of scientific 
workflows involving deep learning, pre-trained models, LLMs, and 
multimodal GenAI data.

Concluding Remarks
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KG	Consolidation	&	
Enrichment
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Thanks! 

Laure Berti-Equille 
contact: laure.berti@ird.fr 

https://laureberti.github.io/website/ 
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