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What are the common key elements of scientific discovery !

Social Science
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Data-intensive Science



Sclentific discovery relies on workflows and data

Generic scientific worflow repeat

Observations Hypothesis II Experiments ll Results . Ig
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A scientific worflow Is a process for
accomplishing a scientific objective, typically
expressed as a series of tasks related to hypothesis
testing, physical experimentations and measurements
that produce data



Sclentific Discovery relies on workflows and data

Generic scientific worflow

repeat
Observations Hypothesis Il Experiments ll Results - Ig
No

= = B
DATA :g :% _g

A scientific worflow is a process for
accomplishing a scientific objective, typically
expressed as a series of tasks related to hypothesis
testing, physical experimentations and measurements
that produce data, which can be further analyzed via
multiple computational steps.

—} refered as analytic worflows or data science pipelines




Sclentific Discovery relies on workflows and data

Scientific worflow
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Examples In Large-Scale Mult-Omics Studies

Input: Massive data

Machine learning

Output: biomedical outcomes

genomics predict patient survival

epigenomics

identify potential
biomarker
candidates

proteomics

transcriptomics

\‘.
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metagenomics

patient clustering

—

metabolomics

protein-protein Collect different omics and pre- Analyze and extract patterns from
INteraction process them to ensure quality graph-structured data

Validate models to assess their
generalizability and evaluate them
using suitable metrics

metabolic networks Utilize biomedical knowledge to

construct context-relevant graphs

Discover clusters of nodes that
share similar omics profiles

gene regulatory

of molecular entities as nodes with
their relationships or interactions

Contextualize findings and
interpret results in a biomedically
meaningful way

networks denoted as edges Learn graph embeddings that

capture omics similarities

Refine the analysis by including
additional omics or tweaking the
graph based on performance and
biological insights

Utilize methods for data
integration considering also batch

Predict the class labels of samples
based on their multi-omics

effects and biases features

Source: Valous, N.A., Popp, F., Zornig, |. et al. Graph machine learning for integrated multi-omics analysis. Br J Cancer 131, 205-211 (2024). https://doi.org/10.1038/s41416-024-02706-7
Zheng, Y, Liu, Y, Yang, J. et al. Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials. Nat Biotechnol 42, 1133-1149 (2024). https://doi.org/10.1038/541587-023-01934-1 0



Gravitational waves

LICO

Cosmic rays

cxamples In Multimodal Astrophysics

y-rays

Data Acquisition

y-rays

Data encoding

Data representation

Neutrinos |
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Video
Source: Cuoco, E., Patricelli, B, less, A. et al. Computational challenges for multimodal astrophysics. Nat Comput Sci 2, 479-485 (2022). https://doi.org/10.1038/s43588-022-00288-z

Mészaros, P., Fox, D.B., Hanna, C. et al. Multi-messenger astrophysics. Nat Rev Phys 1, 585-599 (2019). https://doi.org/10.1038/s42254-019-0101-z

Machine learning

Output: Astrophysical
event detection
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Many other examples of analytical workflows. ..
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Analytical Worktlow Litecycle

Experiment/

What are the analytical steps you are anticipating? oo

What are the dependencies among the various tasks i, .-
\ Em‘mem (\ ,,”C e Y L

Workflow Data

What is the amount of data needed? I ] | o

|

. | Project \ e Sy =
What computing power do you need? Space ‘fm,,a,,f T
- Store
How will you share and preserve your work? Post- - -K
S <
Who is going to do what? Runtimé

Monitoring

Data preparation is very time consuming (60-80% of a project)



Computational Reproducibility Concerns

—

Reproducible research is the ability to recreate results given the same
data, analytic code, and documentation.

IMMEDIATE
AUDIENCE

WORKFLOW

GOALS

one-time use of
your workflow

EXPLORE REFINE PRODUCE

&

PHASE PHASE PHASE

- _
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OURSELF/ ¢ OUR SMALL OUR @
FUTURE SELF TEAM @ COMMUNITY
EXPLORE «§mmp REFINE

PRODUCE

_: DECISION  BEYOND SCOPE
/ NEW PROJECT
. PATH TO FINAL RESEARCH PRODUCT

REPRODUCIBLE
PRODUCT DEADEND

Re-runnable
Repeatable
Reproducible

Replicable
CODE MATURATION / DOCUMENTATION / ORGANIZATION I

" . Stoudt, S., Vasquez, V.N., Martinez, C.C., 2021. Reusable
® Assess existing ®* Choose analysis ®* Prepare analysis for
software tools methodologies publication Principles for data analysis workflows. PLOS
® Clean data ® Improve prototypes * Gain credit Computational Biology 17, e1008770.

¢ Compare * Expand data * Establish . https://doi.org/10.1371/journal.pcbi.1008770
expectations and management professional trajectory

Contribution to your community

outputs ) '
* Maintain
reproducibility via
documentation 1 O



Outline

Optimization in Analytical Workflows
. Current Approaches
. Main Challenges
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Architecture of Scientific Workflow
Management Systems (SWMSs)

Textual Ul GDeS::.(OBI Web-portal Ul
raphic Presentation

Monitoring Information
& Steer: Sharin Provenance User
eerin : — -
5 5 Services Minimize execution costs wrt

deadline or security constraints
Find and reduce redundancies
to simplify the workflow Refactoring Parallelization Optimization WEP
(Cohen-Boulakia et al, 2014) Generation

Partition the workflow to Workflow Execution Plan

reduce:
o the storage required for the

: : Task Fault
execution of each fragment Scheduling : " Tol WEP
. ' : xXecution olerance ,
the scheduling complexity execution

(data & workflow fragment

parallelism) Handle failures during task

C e . ata Storage rovisionin roactive and
Provisioning ’ 9 (P

reactive)

Infrastructure Interface Infrastructure

(Liu et al. ,2015)
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Analytical Workflow Execution Plan

Workflows Scheduler Scheduled tasks Computing
(Directed Graph) resources
Sequential Task analysis © O O O O @
tasks e00 0@ e
* Objectives optimization 0000 e @
gt 00000 B %
. m;)‘ Task distribution ©0 0 0 6 z
High Performance
Distributed
Scientific Workflow management System (SWMS) Environment
o (monosite/multisite
Input cloud or cluster)

* data dependencies

v

output -




Multisite Workflow Execution Architecture
(Liu et al. ,2018)

. Master node
@ Slave node

i Metadata Store NoSQL databases: MongoDB, Cassandra

\\ Shared File System

Examples of shared-disk file systems:
* General Parallel File System (GPFS),
e Global File System (GFS) and
 Network File System (NFS)

e.g., Amazon or Microsoft have many
geographically distributed sites

Inter-site interactions

14



Optimization in Analytical Workflows

Optimization Metrics

Efficient Scheduling

Handling massive data

Site 1

Data transfer time/cost
Computation time/cost
Makespan and reliability

Energy consumption (Warade et al., 2023)
Users constraints
QoS

\.

-inding a schedule for any DAG of tasks is an NP-hard
nefficiencies of current batch scheduling systems (Lubrano et al., 2024)

Hardware can fail (fault-tolerance)
Must consider task dependencies and resource requirements dynamically, DAG vs DCG

Cloudlet scheduling is NP-complete (Ala’'anzy et al., 2023) (Ghafir et al., 2023)
Static/dynamic/hybrid scheduling

Different I/O performance metrics
Complex data sharing and coordination (Hewes et al., 2023)

Complex data provenance management
Adaptive caching, hot and cold data in main-memory, cache service (Qin et al., 2019)

Metadata management bottleneck

19



data parallelism

pipeline parallelism

independent parallelism |

(S Vs
Hybrid parallelism

Fine-grained Parallelism in SWMSs

code
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(Liu et al. ,2015)
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Workflow Scheduling

Mapping the workflow tasks generated by workflow parallelization to the physical resources

Architecture
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Management Strategies for Distributed
Workflow Metadata

(Pineda-Morales L. et al., 201 8)
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(c) Non-Replicated (d) Replicated

__ Datacenter ‘Metadata registry e—e Metadata operation

‘ Worker node

ASync agent == Long physical distance
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Data Caching

1) Which intermediate data should be sharedq,
stored, or replicated? Where? When? Plant phenotyping workflow
. . . / 1. Qtighal workflow 2. Workflow activiies 3. Intermediate datasets \
2) Which existing cached data should be reused? in fragments o processed by activities
1 F1
) %
k.ﬁ‘ \ - | :
Presentation Layer Ry =
- e
N\ Ll LTIF4
User service || Cache manager I8 2
9
(" N C h ) A
WEP Catalog ~ache g e
. index 4. Execution in multisite cloud
generation N JAN Y
WEP execution
Cache
Infrastructure
storage

Generic Architecture of SWMS with
Cache Management

Cache-Aware scheduling (Heidsieck, et al. 2021) 50



* Scientific workflows become increasingly com
ata, synthetic data, GenAl ¢

Concluding Remarks

large-scale experiment ¢

* Orchestration between the workflow tasks, the ¢
data storage resources Is cha
ata management, |
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Thanks!
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Laure Berti-Equille
contact: laure.berti@ird.fr

https://laureberti.github.io/website/
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