Data (Quality) Challenges in **Multimodal AI Pipelines**

Laure Berti-Equille

IRD. ESPACE-DEV

Montpellier, France

https://laureberti.github.io/website/

laure.berti@ird.fr

April 4, 2025

Outline

Methods & Contributions

Motivations (1/4)

4

Motivations (1/4)

Data quality profiling is always required.

Relational data quality problems

Nobel Laureates in Chemistry

Garbage

Garbage

5

Motivations (1/4) out In TRAINING NEW BUILD DATA SET DATA VALIDENOU Data quality profiling is always required. VALIO SET Relational data quality problems **Conflicts intra-**/ Nobel Laureates in Chemistry intermodality **Misfielded Value** Representation Name Institution Institution City DoB Skłodowska-Curie Marie 07-11-1867 Institut Pasteur Varsovie M. Curie Pasteur Institute Paris 1867-11-07 Melvin Calvin UC Berkeley Berkeley 1911-04-08 **Duplicates** Marie Curien 2007-11-07 Paris Pasteur Institute NULL Avram Hershko Haifa NULL **Ronald Hoffman** US 00000000 Typos **Incorrect Values** Inconsistencies **Incorrect Value Missing Values**

Motivations (2/4): Data-centric ML pipeline

From Hima Patel et al., https://fr.slideshare.net/slideshow/data_prep_techniques_challenges_methods-pdf-a190/271527890

Motivations (3/4): Multimodal Learning

We need to select the optimal encoding and fusion functions

Motivations (4/4): Reproducibility & Traceability

 Ensure stable and consistent hyperparameter optimization

 Ensure resilience to multimodal data poisoning attacks

We need reproducibility

 Trace back pre-training, fine-tuning, and prompt engineering

open oource				
G 😣 🖉	cerebras	5 🔿 📕 🧯	aws 🎭 RAY scole	Deploy & hosting only
○ ○	databricks	loneyHive 🗿 DeepN	find Weights & Biases	BENTOML
aws 🗦	replit			agenta
stability.ai In	nflection	HyprVisor 🕅 mos		BANANA
TOGETHER	EleutherAl 000 H	umanloop 🕒 GRAD	ENTJ 🧏 VESSL 🛭 🧐 Sia	C mysus
NOMIC (MA	mosaic	younet 2stac	K 颇 neptune.ai togethe	er.ai \Xi cerebrium
Closed Source				
(G) OpenAI	Al21 labs	📀 NVIDIA.	G co:here	Formic 🔆
ANTHROP	c 💿 Deep		Bai db 百度	NAVER
Mistral AI	Adept		aleph alpha	4Paradigm

We need traceability and explainability

Theoretical, Technical, and Experimental Challenges

Multimodal Deep Learning

- Complex models
- Costly training
- Hard to communicate to non-experts

(Multimodal) Uncertainty Quantification

- Quantify aleatoric and epistemic uncertainty
- Detect multimodal contradictions

Wish list Before Integrating/Using LLMs & MLLMs

We need to:

- Quantify **LLM hallucination & factuality** in perspective with the model/ training size
- Detect **stereotype amplification** due to bias and low quality training corpus
- Evaluate **sensitivity** to prompt variations, noise, conflicting (multimodal) data or domain shift
- Evaluate LLM **vulnerability to adversarial attacks** (e.g., generated texts used in pretraining or prompts)
- Use dedicated **benchmarks** and design **controlled experiments**

Emily Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell, "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 10 In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610-623. 2021.

The Understudied Model Collapse Phenomenon

Increasing use and re-use of LLM-generated data and synthetic data

Replace Data

Accumulate Data

Shumailov, I., Shumaylov, Z., Zhao, Y. *et al*. Al models collapse when trained on recursively generated data. *Nature* **631**, 755–759 (2024). https://doi.org/10.1038/s41586-024-07566-y

Inadequacy/Inexistence of benchmarks: e.g. MM Fact-checking

Name	# Claims	# Labels	Data	Year
LIAR [4]	12836	6	Claim Text, Metadata (Speaker etc.)	2017
CREDBANK [8]	1049	5	Claim Text, Event, Topic	2015
The Lie Detector [9]	600	2	Claim Text	2009
Claim matching be- yond english [10]	2343	3	Claim Text Pairs	2021
FEVER [1]	185445	3	Claim Text, Document Text	2018
MultiFC [12]	36534	40	Claim Text, Document url, Metadata	2019
Fakeddit [13]	1 million	2/3/6	Claim Text, Claim image	2019
Covid-19 Fake News dataset [11]	10700	2	Claim Text	2020
FakeNewsNet [14]	23921	2	Claim Text, Spatiotemporal info	2019
Whatsapp fact- checking dataset [15]	1032	3	Claim Image, Metadata	2020
Factify (ours)	50000	5	Claim Text, Claim Image, Document Text, Document Image, Images OCR	2021

Table 1

Details of related public datasets for automated fact-checking along with available meta data and release year.

Mishra et al. FACTIFY: A Multi-Modal Fact Verification Dataset, De-Factify: Workshop on Multimodal Fact Checking and Hate Speech Detection, co-located with AAAI 2022. <u>https://ceur-ws.org/Vol-3199/paper18.pdf</u>

Our contributions Ph.D. thesis of Grigor Bezirganyan, and collaborators @AMU

- M2-Mixer: Design adaptive, conceptually, computationally simple, scalable multimodal deep learning architecture
- 2 **MixMax:** Find the optimal multimodal deep learning architecture
- **DBF:** Quantify the uncertainties in multimodal learning
- 4 LUMA: Provide a benchmark dataset for multimodal learning and uncertainty quantification

Multimodal Data Fusion - Main Contributions

Contribution 1:

Propose an all MLP-based approach for multimodal fusion

Contribution 2:

Improve modality representations by optimizing the learning process with multi-head loss

Contribution 3:

Propose a micro-benchmarking pipeline for automatic MLPbased multimodal architecture design

Multimodal Data Fusion - Related Work

Current state-of-the-art model mainly use

- Big Convolutional Networks
- Transformers
- Neural Architecture Search
- Pre-trained models
- Complex fusion functions

These approaches are often conceptually, computationally complex

Multimodal Networks may favor one modality over the other, and find suboptimal representations for the modalities [Wang et al., 2020]

Multimodal Data Fusion - Related Work - MLP Mixers

4. Conclusions

Multimodal Data Fusion - Multimodal Mixer

G. Bezirganyan, S. Sellami, L. Berti-ÉQuille and S. Fournier, "M2-Mixer: A Multimodal Mixer with Multi-head Loss for Classification from Multimodal Data," 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 1052-1058, doi: 10.1109/BigData59044.2023.10386252.

Multimodal Data Fusion - M2-Mixer

 $\mathcal{L}(\hat{y}_f, \hat{y}_1, \hat{y}_2, y) = w_f \mathcal{L}_f(\hat{y}_f, y) + w_1 \mathcal{L}_1(\hat{y}_1, y) + w_2 \mathcal{L}_2(\hat{y}_2, y) + \dots + w_k \mathcal{L}_k(\hat{y}_k, y)$

G. Bezirganyan, S. Sellami, L. Berti-ÉQuille and S. Fournier, "M2-Mixer: A Multimodal Mixer with Multi-head Loss for Classification from Multimodal Data," 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 1052-1058, doi: 10.1109/BigData59044.2023.10386252.

4. Conclusions

Multimodal Data Fusion - Experiments

2 Datasets:

Field

Modalities

Samples train/val/test AV-MNIST [Vielzeuf et al., 2018]

Multimedia

Image / Audio

55,000 / 5000 / 10000

MIMIC-III [Johnson et al., 2015]

Healthcare

Time Series / Tabular

26,093 / 3,261 / 3,261

Our models:

- MMixer (no multi-head loss)
 - M2-Mixer (with multi-head loss)

9 Baseline models:

Simple Late Fusion [Liang et al, 2021], LRTF [Liu et al., 2018], MFAS [Pérez-Rúa et al., 2019], RefNet [Sankaran et al., 2021], MVAE [Wu et al., 2018], MFM [Tsai et al., 2019], CCA [Sun et al., 2020], MI-Matrix [Jayakumar et al., 2020], GradBlend [Wang et al., 2020]

M2-Mixer

Multimodal Data Fusion - Results

	AV-MNIST	Image / Audio	55,000 / 5000 / 10	0000
	Architecture	Accuracy % - avg (10 runs)	Accuracy % - max	Train time (s)
	MFAS	72.64 ± 0.2	72.93	6,710 ± 12817
	GradBlend	68.71 ± 0.7	69.51	43768 ± 5554
	M2-Mixer B	73.06 ± 0.2	73.34	10271 ± 6578
	M2-Mixer M	72.81 ± 0.2	73.20	4147 ± 1642
Our Proposed Models	MIMIC-III	Time Series / Tabular	26,093 / 3	3,261 / 3,261
	Architecture	Accuracy % - avg (10 runs)	Accuracy % - max	Train time (s)
different configurations of the same model	MFAS	78.02 ± 0.4	78.63	8043 ± 663
	GradBlend	78.1 ± 0.3	78.51	7988 ± 239
	M2-Mixer H	78.32 ± 0.3	79.03	840 ± 119
	M2-Mixer LC	78.43 ± 0.3	78.76	597 ± 113

B M

Н

LC

: 8.3 m : 88 k : 2.9 k : 2.9K

M2-Mixer outperforms MFAS and GradBlend with much lower training time

G. Bezirganyan, S. Sellami, L. Berti-ÉQuille and S. Fournier, "M2-Mixer: A Multimodal Mixer with Multi-head Loss for Classification from Multimodal Data," 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 1052-1058, doi: 10.1109/BigData59044.2023.10386252.

Our contributions Ph.D. thesis of Grigor Bezirganyan, and collaborators @AMU

- M2-Mixer: Design adaptive, conceptually, computationally simple, scalable multimodal deep learning architecture
- 2 **MixMax:** Find the optimal multimodal deep learning architecture
- **DBF**: Quantify the uncertainties in multimodal learning

4 **LUMA:** Provide a benchmark dataset for multimodal learning and uncertainty quantification

2 MixMAS

M2-Mixer

Architecture search for M2-Mixers

M2-Mixer:

- Use MLP-blocks to extract information from each modality
- Use MLP-blocks for fusing the extracted features
- Use Multi-head loss for optimisation
- MLP-blocks can be any MLP-based architecture

Question:

 What MLP-based architecture to use for each MLP-Block?

2 MixMAS

Contributions:

Contribution 1:

Propose a flexible pipeline that:

- Takes a small sample of the dataset
- Conducts micro-benchmarking on the subset
- Constructs optimal MLP-based networks based on the micro-benchmarking

Contribution 2:

Experimentally validate that our pipeline enhances accuracy over standard MLP-based multimodal networks.

1. Take a representative small sample of the dataset [Hogg et al., 2023]

- 1. Take a representative small sample of the dataset [Hogg et al., 2023]
- 2. Find the best uni-modal encoders for each modality

- 1. Take a representative small sample of the dataset [Hogg et al., 2023]
- 2. Find the best uni-modal encoders for each modality
- 3. Fix encoders, search for best fusion function

- 1. Take a representative small sample of the dataset [Hogg et al., 2023]
- 2. Find the best uni-modal encoders for each modality
- 3. Fix encoders, search for best fusion function
- 4. Fix Fusion function, search for best fusion network

- 1. Take a representative small sample of the dataset [Hogg et al., 2023]
- 2. Find the best uni-modal encoders for each modality
- 3. Fix encoders, search for best fusion function
- 4. Fix Fusion function, search for best fusion network
- 5. Train the final model on the whole dataset

2 MixMAS

Experiments

3 Datasets:	AV-MNIST [Vielzeuf et al., 2018]	MIMIC-III [Johnson et al., 2015]	MM-IMDB [Arevalo, et al., 2017]
Field	Multimedia	Healthcare	Multimedia
Modalities	Image / Audio	Time Series / Tabular	Image / Text
Samples train/val/test	70,000	32,615	36,212

Average of 10 runs

	MM-IMDB		AV-M	INIST	MIMIC-III	
Architecture	F1-w. (%) (avg)	Training Params (M)	Acc. (%) (avg)	Training Params (M)	Acc. (%) (avg)	Training Params (M)
M2-Mixer	46.66 ± 0.44	16.7	73.20 ± 0.2	8.3	78.32 ± 0.3	0.029
MixMAS	49.58 ± 0.5	10.37	75.79 ± 0.3	9.33	78.3 ± 0.73	0.033

Results of Micro-Benchmarking - Encoder Selection

	MM-IMDB	AV-	MNIST	MIMIC-III	
Sampling(%)	23%	12	12%		
Module	Score F1-w(%)	Module	Score Acc(%)	Module	Score Acc(
Image	Encoder Selection	Image Enc	oder Selection	ection Time-Series Encoder Selectio	
MLPMixer	24.02	MLPMixer	44.27	MLPMixer	40.77
HyperMixer	16.89	HyperMixer	56.15	HyperMixer	45.36
RaMLP	14.44	RaMLP	47.52	MonarchMixer	44.38
Text I	Encoder Selection	Audio Encoder Selection		Tabular Encoder Selection	
MLPMixer	9.20	MLPMixer	27.40	_	
HyperMixer	15.07	HyperMixer	29.16	_	
MonarchMixer	28.55	MonarchMixer	28.49	—	—
Fusion	Function Selection	Fusion Fun	ction Selection	Fusion Function Sel	ection
ConcatFusion	19.56	ConcatFusion	18.38	ConcatFusion	28.55
MeanFusion	10.20	MeanFusion	9.61	MeanFusion	4.28
MaxFusion	9.07	MaxFusion	6.20	MaxFusion	6.73
Fusion	Network Selection	Fusion Net	work Selection	Fusion Network Sel	ection
HyperMixer	29.0	HyperMixer	53.47	HyperMixer	38.15
MLPMixer	25.97	MLPMixer	42.17	MLPMixer	34.14

Results of Micro-Benchmarking - Fusion Function Selection

	MM-IMDB	AV-	MNIST	MIMIC-III		
Sampling(%)	23%	12%		21%		
Module	Score F1-w(%)	Module	Score Acc(%)	Module	Score Acc(9	
Image	Image Encoder Selection Image Encoder Selection		oder Selection	Time-Series Encoder 8	Selection	
MLPMixer HyperMixer RaMLP	24.02 16.89 14.44	MLPMixer HyperMixer RaMLP	44.27 56.15 47.52	MLPMixer HyperMixer MonarchMixer	40.77 45.36 44.38	
Text Encoder Selection		Audio Enc	Audio Encoder Selection		Tabular Encoder Selection	
MLPMixer HyperMixer MonarchMixer	9.20 15.07 28.55	MLPMixer HyperMixer MonarchMixer	27.40 29.16 28.49			
Fusion	Function Selection	Fusion Fun	Fusion Function Selection		Fusion Function Selection	
ConcatFusion MeanFusion MaxFusion	19.56 10.20 9.07	ConcatFusion MeanFusion MaxFusion	18.38 9.61 6.20	ConcatFusion MeanFusion MaxFusion	28.55 4.28 6.73	
Fusion Network Selection		Fusion Net	Fusion Network Selection		Fusion Network Selection	
HyperMixer MLPMixer	29.0 25.97	HyperMixer MLPMixer	53.47 42.17	HyperMixer MLPMixer	38.15 34.14	

Results of Micro-Benchmarking - Fusion Network Selection

	MM-IMDB		MNIST	MIMIC-III		
Sampling(%)	23%	12%		21%		
Module	Score F1-w(%)	Module	Score Acc(%)	Module	Score Acc(%	
Image	Encoder Selection	Image End	coder Selection	Time-Series Encoder	Selection	
MLPMixer HyperMixer RaMLP	24.02 16.89 14.44	MLPMixer HyperMixer RaMLP	44.27 56.15 47.52	MLPMixer HyperMixer MonarchMixer	40.77 45.36 44.38	
Text Encoder Selection		Audio Encoder Selection		Tabular Encoder Selection		
MLPMixer HyperMixer MonarchMixer	9.20 15.07 28.55	MLPMixer HyperMixer MonarchMixer	27.40 29.16 28.49			
Fusion	Function Selection	Fusion Function Selection		Fusion Function Selection		
ConcatFusion MeanFusion MaxFusion	19.56 10.20 9.07	ConcatFusion MeanFusion MaxFusion	18.38 9.61 6.20	ConcatFusion MeanFusion MaxFusion	28.55 4.28 6.73	
Fusion Network Selection		Fusion Net	Fusion Network Selection		ection	
HyperMixer MLPMixer	29.0 25.97	HyperMixer MLPMixer	53.47 42.17	HyperMixer MLPMixer	38.15 34.14	

Our contributions Ph.D. thesis of Grigor Bezirganyan, and collaborators @AMU

- 1 M2-Mixer: Design adaptive, conceptually, computationally simple, scalable multimodal deep learning architecture
- 2 **MixMax:** Find the optimal multimodal deep learning architecture
- **DBF: Quantify the uncertainties** in multimodal learning

4 LUMA: Provide a benchmark dataset for multimodal learning and uncertainty quantification

3 UQ in MML

4. Conclusions

Related Work: Multimodal Evidential Deep Learning

Evidential Neural Network

Predict the parameters of Dirichlet Distribution

3 UQ in MML

Modalities can often confidently disagree in their decisions

- Decisions made on conflicting data need to be more uncertain
- Modalities that are in conflict with others need to contribute less to the decision ³⁷

3 UQ in MML

Discount opinions that contradict with lots of other modalities

Discount modalities that contradict with lots of other modalities

G. Bezirganyan, S. Sellami, L. Berti-ÉQuille and S. Fournier, (2024). Multimodal Learning with Uncertainty Quantification based on Discounted Belief 39 Fusion. arXiv preprint arXiv:2412.18024. (Accepted to AIStats 2025)

3

4. Conclusions

Discounting Belief Fusion effectively distinguishes between conflictive and non-conflictive modalities

G. Bezirganyan, S. Sellami, L. Berti-ÉQuille and S. Fournier, (2024). Multimodal Learning with Uncertainty Quantification based on Discounted Belief 40 Fusion. arXiv preprint arXiv:2412.18024. (Accepted to AIStats 2025)

Our contributions Ph.D. thesis of Grigor Bezirganyan, and collaborators @AMU

- 1 **M2-Mixer**: Design adaptive, conceptually, computationally simple, scalable multimodal deep learning architecture
- 2 **MixMax:** Find the optimal multimodal deep learning architecture
- **DBF:** Quantify the uncertainties in multimodal learning

4 LUMA: Provide a benchmark dataset for multimodal learning and uncertainty quantification

Existing Multimodal Datasets

- Lack the ability to inject controlled amount of noise in each modality
- Injected noises are artificial and do not reflect real-life scenarios
- Not enough samples in the datasets

4. Conclusions

LUMA: Benchmark Dataset for Learning from Uncertain and Multimodal Data

24000 Images collected from CIFAR-100 Dataset ~50000 Texts Generated with Large Language Models ~130000 Audio samples extracted from various speech corpuses

LUMA: Benchmark Dataset for Learning from Uncertain and Multimodal Data

I was riding my beautiful black stallion named Shadow, through the park yesterday. It was a sunny day, and the wind was blowing in my hair. I felt free and happy.

Pronunciation of word "Horse"

Adding Noises to LUMA:

1. Diversity

3. Label Noise

2. Sample Noise

4. OOD Injection

Grigor Bezirganyan, Sana Sellami, Laure Berti-Equille, and Sebastien Fournier. Luma: A benchmark dataset for learning from uncertain and multimodal data. arXiv preprint arXiv:2406.09864,2024

4. Conclusions

LUMA: Benchmark Dataset for Learning from Uncertain and Multimodal Data

Method	Clo	lean 📐 l		iversity ∧ L		el Noise		
	Ale.	Epi.	Ale.	Epi.	Ale.	Epi.	Ale.	Epi.
MCD Image	1.00	1.03	-15.73%	-11.66%	+59.20%	+54.51%	+4.44%	+2.18%
MCD Audio	0.52	0.70	-5.54%	+2.16%	+96.63%	+54.49%	+23.12%	+14.40%
MCD Text	0.37	1.01	-3.91%	-2.62%	+93.59%	+2.41%	+64.96%	-2.03%
MCD Multi.	0.26	0.78	-8.52%	-1.21%	+122.44%	+11.60%	+59.14%	+9.89%
DE Image	1.45	1.40	-37.49%	-8.54%	-7.43%	+0.24%	-18.46%	-3.22%
DE Audio	0.56	0.99	-27.39%	-3.34%	+156.40%	+50.43%	+70.26%	+34.41%
DE Text	0.42	1.01	+5.02%	-6.15%	+81.26%	-0.51%	+62.24%	-7.11%
DE Multi.	0.31	0.82	-22.80%	-3.40%	+115.15%	+20.62%	+45.97%	+5.54%
RCML Multi.	1.99	0.43	+8.34%	+16.16%	+64.72%	+106.16%	+36.19%	+58.21%

 $(\mathbf{\Phi})$

۲

Conclusion & Future Work (1/2)

- M2-Mixer: an all-MLP based architecture for multimodal fusion with multihead loss to Improve modality representations
- MixMAS: a sampling based micro-benchmarking pipeline for mixer based architecture search
 - **DBF:** a Discount Belief Approach for uncertainty quantification in multimodal classification
 - **LUMA:** a benchmarking dataset for uncertainty quantification in multimodal settings
- Model hybridation / ensembling architectures
 Add more advanced sampling strategies (e.g. uncertainty based sampling)

Conclusion & Future Work (2/2)

- Learning from multimodal data offer new challenges for data and model engineering R&D
 - Requires interdisciplinary research:
 - DB, ML, Statistics
 - Modality-dependent expertise (e.g., remote sensing, audio signal processing, computer vision, etc.)
 - Application-dependent expertise (climate, biology, healthcare, etc.)
- Requires humans in the loop orchestration with higher degree of complexity
 - There are many **research opportunities** for:
 - Managing and orchestration human/machine or agent resources
 - Revisiting our methods & technologies to leverage multimodal data

Thanks!

References

- 1. Wang, C., Liu, X., Yue, Y., Tang, X., Zhang, T., Jiayang, C., ... & Zhang, Y. (2023). Survey on factuality in large language models: Knowledge, retrieval and domain-specificity. arXiv preprint arXiv:2310.07521
- 2. Munn, L., Magee, L., & Arora, V. (2023). Truth Machines: Synthesizing Veracity in Al Language Models. arXiv preprint arXiv:2301.12066.
- 3. Fadeeva, E., Vashurin, R., Tsvigun, A., Vazhentsev, A., Petrakov, S., Fedyanin, K., ... & Shelmanov, A. (2023). LM-Polygraph: Uncertainty Estimation for Language Models. arXiv preprint arXiv:2311.07383.
- 4. James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2019. Evaluating adversarial attacks against multiple fact verification systems. In Proc. of the 2019 EMNLP-IJCNLP, pages 2944–2953, Hong Kong, China. https://aclanthology.org/D19-1292
- 5. Atanasova, P., Wright, D., & Augenstein, I. (2020). Generating label cohesive and well-formed adversarial claims. arXiv preprint arXiv:2009.08205. <u>https://github.com/copenlu/fever-adversarial-attacks</u>
- 6. Gao, J., Hoffmann, H. F., Oikonomou, S., Kiskovski, D., & Bandhakavi, A. (2021). Logically at Factify 2022: Multimodal Fact Verification. arXiv preprint arXiv:2112.09253. <u>https://arxiv.org/abs/2112.09253</u>
- 7. Verschuuren, P. J., Gao, J., van Eeden, A., Oikonomou, S., & Bandhakavi, A. (2023). Logically at Factify 2023: A Multi-Modal Fact Checking System Based on Evidence Retrieval techniques and Transformer Encoder Architecture. arXiv preprint arXiv:2301.03127. <u>https://arxiv.org/abs/2301.03127</u>
- 8. FEVER 2.0 Adversarial Attacks Dataset, https://fever.ai/dataset/adversarial.html
- 9. Defactify Workshop <u>https://aiisc.ai/defactify/</u>
- 10. Factify Multi-Modal Fact Verification dataset, https://competitions.codalab.org/competitions/35153
- Dan Saattrup Nielsen and Ryan McConville. "MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset." arXiv preprint arXiv:2202.11684 (2022). <u>https://mumin-dataset.github.io/</u>
- 12. L Berti-Equille, ML Ba. Veracity of big data: challenges of cross-modal truth discovery. Journal of Data and Information Quality (JDIQ) 7 (3), 1-3

References

[Toliskin et al., 2021] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, M. Lucic, and A. Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In NeurIPS 34, pages 24261–24272, 2021. [Vielzeuf et al., 2018] V. Vielzeuf, A. Lechervy, S. Pateux, and F. Jurie. Centralnet: A multilayer approach for multimodal fusion. In Computer Vision - ECCV 2018 Workshops, Springer, 2018. A. Johnson, T. Pollard, and R. Mark. MIMIC-III Clinical Database, 2015. [Johnson et al., 2015] P. P. Liang, Y. Lyu, X. Fan, Z. Wu, Y. Cheng, J. Wu, L. Chen, P. Wu, M. A. Lee, Y. Zhu, R. Salakhutdinov, and L. Morency. [Liang et al., 2021] Multibench: Multiscale benchmarks for multimodal representation learning. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, 2021. [Liu et al., 2018] Z. Liu, Y. Shen, V. B. Lakshminarasimhan, P. P. Liang, A. Bagher Zadeh, and L.-P. Morency. Efficient Low-rank Multimodal Fusion With Modality-Specific Factors. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2247-2256. 2018. J. Pérez-Rúa, V. Vielzeuf, S. Pateux, M. Baccouche, and F. Jurie. MFAS: multimodal fusion architecture search. In IEEE [Pérez-Rúa et al., 2019] Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 6966-6975. Computer Vision Foundation / IEEE, 2019. S. Sankaran, D. Yang, and S.-N. Lim. Multimodal Fusion Refiner Networks, Apr. 2021. arXiv:2104.03435 [cs], unpublished. [Sankaran et al., 2021] M. Wu and N. D. Goodman. Multimodal generative models for scalable weakly-supervised learning. In Advances in Neural [Wu et al., 2018] Information Processing Systems 31, pages 5580–5590, 2018. Y. H. Tsai, P. P. Liang, A. Zadeh, L. Morency, and R. Salakhutdinov. Learning factorized multimodal representations. In 7th [Tsai et al., 2019] International Conference on Learning Representations, ICLR, 2019. [Sun et al., 2020] Z. Sun, P. K. Sarma, W. A. Sethares, and Y. Liang. Learning relationships between text, audio, and video via deep canonical correlation for multimodal language analysis. In The 34 AAAI Conference on Artificial Intelligence, 2020. [Jayakumar et al., 2020] S. M. Jayakumar, W. M. Czarnecki, J. Menick, J. Schwarz, J. W. Rae, S. Osindero, Y. W. Teh, T. Harley, and R. Pascanu. Multiplicative interactions and where to find them. In 8th International Conference on Learning Representations, ICLR 2020, 2020. W. Wang, D. Tran, and M. Feiszli. What makes training multi-modal classification networks hard? In 2020 IEEE/CVF [Wang et al., 2020] Conference on Computer Vision and Pattern Recognition, CVPR, 2020