
Data (Quality) Challenges in 
Multimodal AI Pipelines 

Laure Berti-Equille

IRD, ESPACE-DEV
Montpellier, France

https://laureberti.github.io/website/
laure.berti@ird.fr

April 4, 2025 



Outline

2

Motivations1

Challenges in MML2

Methods & Contributions3

Conclusions4



Motivations (1/4)

3

1. Motivations 2. Research Challenges 3. Methods & Contributions 4. Conclusions



Motivations (1/4)

4

1. Motivations 2. Research Challenges 3. Methods & Contributions 4. Conclusions

Data quality profiling is always required.
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Conflicts intra-/
intermodality

Data quality profiling is always required.
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1. Motivations 2. Research Challenges 3. Methods & Contributions 4. Conclusions

From Hima Patel et al., https://fr.slideshare.net/slideshow/data_prep_techniques_challenges_methods-pdf-a190/271527890 

Motivations (2/4): Data-centric ML pipeline

Each block affects the end-
results: we need to minimize 
the “snow-ball effect”.
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T 

Motivations (3/4): Multimodal Learning 

Encoding 

We need to select the optimal encoding and fusion functions



Motivations (4/4):  Reproducibility & Traceability
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Trace back pre-training, fine-tuning, 
and prompt engineering

Ensure stable and consistent 
hyperparameter optimization

1. Motivations 2. Research Challenges 3. Methods & Contributions 4. Conclusions

We need reproducibility We need traceability and explainability

Ensure resilience to multimodal
data poisoning attacks



Theoretical, Technical, and Experimental Challenges
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Multimodal Deep Learning

-  Complex models
-  Costly training
-  Hard to communicate to non-experts

(Multimodal) Uncertainty Quantification

-  Quantify aleatoric and epistemic 
uncertainty

 
-  Detect multimodal contradictions

1. Motivations 2. Research Challenges 3. Methods & Contributions 4. Conclusions

MM Network Architecture Search

Cost-driven and frugal models

Beyond XAI: Chain-of-evidences

Text/image contradictionimage 
contradiction



Wish list Before Integrating/Using LLMs & MLLMs 
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Quantify LLM hallucination & factuality in perspective with the model/
training size

1. Motivations 2. Research Challenges 3. Methods & Contributions 4. Conclusions

Emily Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell, "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?
!" In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610-623. 2021. 

Detect stereotype amplification due to bias and low quality training corpus 

Evaluate sensitivity to prompt variations, noise, conflicting (multimodal) data 
or domain shift
 

Use dedicated benchmarks and design controlled experiments

We need to: 

Evaluate LLM vulnerability to adversarial attacks (e.g., generated texts used in 
pretraining or prompts)
 



The Understudied Model Collapse Phenomenon 
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1. Motivations 2. Research Challenges 3. Methods & Contributions 4. Conclusions

Shumailov, I., Shumaylov, Z., Zhao, Y. et al. AI models collapse when trained on recursively generated data. Nature 631, 755–759 
(2024). https://doi.org/10.1038/s41586-024-07566-y 

Source:  
https://en.wikipedia.org/wiki/Model_collapse 

Increasing use and re-use of LLM-generated data and synthetic data 



Inadequacy/Inexistence of benchmarks:  
e.g. MM Fact-checking
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1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

Mishra et al. FACTIFY: A Multi-Modal Fact Verification Dataset, De-Factify: Workshop on Multimodal Fact Checking and 
Hate Speech Detection, co-located with AAAI 2022. https://ceur-ws.org/Vol-3199/paper18.pdf  
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1

2

3

M2-Mixer: Design adaptive, conceptually, computationally 
simple, scalable multimodal deep learning architecture

MixMax: Find the optimal multimodal deep learning 
architecture

DBF: Quantify the uncertainties in multimodal learning

LUMA: Provide a benchmark dataset for multimodal learning 
and uncertainty quantification

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

4
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Contribution 2: 
Improve modality representations by optimizing the learning 
process with multi-head loss

Contribution 1: 
Propose an all MLP-based approach for multimodal fusion

Multimodal Data Fusion - Main Contributions

Contribution 3: 
Propose a micro-benchmarking pipeline for automatic MLP-
based multimodal architecture design

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 M2-Mixer1



Multimodal Data Fusion - Related Work
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Current state-of-the-art model mainly use

▹  Big Convolutional Networks
▹  Transformers
▹  Neural Architecture Search
▹  Pre-trained models
▹  Complex fusion functions

These approaches are often conceptually, computationally complex

Multimodal Networks may favor one modality over the other,  and find 
suboptimal representations for the modalities [Wang et al., 2020]

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 M2-Mixer1



Multimodal Data Fusion - Related Work - MLP Mixers

18 (Tolstikhin et. al, 2021)

Only MLPs

Competitive with 
Transformers / CNNs

Conceptually / 
Computationally 
Simple

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 M2-Mixer1
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Multimodal Data Fusion - Multimodal Mixer

MLP-
block 

MLP-
block 

MLP-
block 

… 

Modality 1 

Modality 2 

… 

… 

Modality K 

…
 

MLP-
block 

… 

Concatenation

Feature extraction Fusion Task Head 

…
 

…
 

MLP- 
block 

MLP-
Mixer pNLP gMLP s2- 
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Modularity 

G. Bezirganyan, S. Sellami, L. Berti-ÉQuille and S. Fournier, "M2-Mixer: A Multimodal Mixer with Multi-head Loss for Classification from Multimodal 
Data," 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 1052-1058, doi: 10.1109/BigData59044.2023.10386252. 
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Multimodal Data Fusion - M2-Mixer
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G. Bezirganyan, S. Sellami, L. Berti-ÉQuille and S. Fournier, "M2-Mixer: A Multimodal Mixer with Multi-head Loss for Classification from Multimodal 
Data," 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 1052-1058, doi: 10.1109/BigData59044.2023.10386252. 

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 M2-Mixer1
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Multimodal Data Fusion - Experiments

2 Datasets: AV-MNIST 
[Vielzeuf et al., 2018]

Field

Modalities

Samples
train / val / test

Multimedia

Image / Audio

55,000 / 5000 / 10000

Healthcare

Time Series / Tabular

MIMIC-III 
[Johnson et al., 2015]

Our models:

-  MMixer (no multi-head loss)
-  M2-Mixer  (with multi-head loss)

9 Baseline models: 
Simple Late Fusion [Liang et al, 2021],  LRTF [Liu et al., 2018], MFAS [Pérez-Rúa et al., 2019], RefNet 
[Sankaran et al., 2021], MVAE [Wu et al., 2018], MFM [Tsai et al., 2019], CCA [Sun et al., 2020], MI-Matrix 
[Jayakumar et al., 2020], GradBlend [Wang et al., 2020]

26,093 / 3,261 / 3,261

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 M2-Mixer1
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Multimodal Data Fusion - Results

M2-Mixer outperforms MFAS and GradBlend with much lower training time 

AV-MNIST 

MIMIC-III Our Proposed 
Models 

 
B, M, H, LC are 

different 
configurations of 
the same model 

Architecture Accuracy % - avg (10 runs) Accuracy % - max Train time (s) 

MFAS 72.64 ± 0.2 72.93 6,710 ± 12817 

GradBlend 68.71 ± 0.7 69.51 43768 ± 5554 

M2-Mixer B 73.06 ± 0.2 73.34 10271 ± 6578 

M2-Mixer M 72.81 ± 0.2 73.20 4147 ± 1642 

Architecture Accuracy % - avg (10 runs) Accuracy % - max Train time (s) 

MFAS 78.02 ± 0.4 78.63 8043 ± 663 

GradBlend 78.1 ± 0.3 78.51 7988 ± 239 

M2-Mixer H 78.32 ± 0.3 79.03 840 ± 119 

M2-Mixer LC 78.43 ± 0.3 78.76 597 ± 113 

B : 8.3 m
M : 88 k
H : 2.9 k
LC : 2.9K

Number of 
Parameters

G. Bezirganyan, S. Sellami, L. Berti-ÉQuille and S. Fournier, "M2-Mixer: A Multimodal Mixer with Multi-head Loss for Classification from Multimodal 
Data," 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 1052-1058, doi: 10.1109/BigData59044.2023.10386252. 

 M2-Mixer
1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

Image / Audio 55,000 / 5000 / 10000

Time Series / Tabular 26,093 / 3,261 / 3,261

1
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1

2

3

M2-Mixer: Design adaptive, conceptually, computationally 
simple, scalable multimodal deep learning architecture

MixMax: Find the optimal multimodal deep learning 
architecture

DBF: Quantify the uncertainties in multimodal learning

LUMA: Provide a benchmark dataset for multimodal learning 
and uncertainty quantification

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

4
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Architecture search for M2-Mixers 

M2-Mixer:
-  Use MLP-blocks to extract information from each 

modality
-  Use MLP-blocks for fusing the extracted features
-  Use Multi-head loss for optimisation
-  MLP-blocks can be any MLP-based architecture

Question:
-  What MLP-based architecture to use for each 

MLP-Block?

MLP 
Mixer 

Hyper 
Mixer 

Monarch 
Mixer RaMLP 

 MixMAS
1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

2



Contributions:
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Contribution 1: 
Propose a flexible pipeline that:

-  Takes a small sample of the dataset
-  Conducts micro-benchmarking on the 

subset
-  Constructs optimal MLP-based networks 

based on the micro-benchmarking

Contribution 2: 
Experimentally validate that our pipeline enhances accuracy over standard 
MLP-based multimodal networks.

 MixMAS
1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

Abdelmadjid Chergui, Sana Sellami, Laure Berti-Équille, Sébastien Fournier. MixMAS: A Framework for Sampling-Based Mixer Architecture Search 
for Multimodal Fusion and Learning. 2024 IEEE International Conference on Big Data, MMAI 2024 workshop, Dec 2024, Washington DC, USA. 

2
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MixMAS: Sampling based micro-benchmarking

1.  Take a representative small sample of the dataset [Hogg et al., 2023]

 MixMAS
1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

2
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MixMAS: Sampling based micro-benchmarking

1.  Take a representative small sample of the dataset [Hogg et al., 2023]

 2.   Find the best uni-modal encoders for each modality 
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… 

… 

Modality K 

…
 

MLP-
block … 

…
 

MLP-
block 

MLP-
block 

MLP 
Mixer 

Hyper 
Mixer 

Monarch 
Mixer RaMLP 

 MixMAS
1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
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MixMAS: Sampling based micro-benchmarking

1.  Take a representative small sample of the dataset [Hogg et al., 2023]

 2.   Find the best uni-modal encoders for each modality 
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… 

… 

Modality K 

…
 

MLP-
block … 

…
 

MLP-
block 

MLP-
block 

Concatenation 

 3.   Fix encoders, search for best fusion function

Fu
sion

 
Fu

n
ction

Summation 

Averaging 

 MixMAS
1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
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MixMAS: Sampling based micro-benchmarking

1.  Take a representative small sample of the dataset [Hogg et al., 2023]

 2.   Find the best uni-modal encoders for each modality 
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MixMAS: Sampling based micro-benchmarking

1.  Take a representative small sample of the dataset [Hogg et al., 2023]

 2.   Find the best uni-modal encoders for each modality 

Modality 1 

Modality 2 

… 

… 

Modality K 

…
 

MLP-
block … 

…
 

MLP-
block 

MLP-
block 

 3.   Fix encoders, search for best fusion function

Fu
sion

 
Fu

n
ction

 4.   Fix Fusion function, search for best fusion network

MLP-
block 

MLP-
block 

MLP-
block … 

 5.   Train the final model on the whole dataset

 MixMAS
1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

2



Experiments
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3 Datasets: AV-MNIST 
[Vielzeuf et al., 2018]

Field

Modalities

Samples
train / val / test

Multimedia

Image / Audio

70,000

Healthcare

Time Series / Tabular

MIMIC-III 
[Johnson et al., 2015]

32,615

Multimedia

Image / Text

MM-IMDB
[Arevalo, et al., 2017]

36,212

Average of 10 runs

 MixMAS
1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

2



Results of Micro-Benchmarking - Encoder Selection

32

 MixMAS
1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

2



Results of Micro-Benchmarking - Fusion Function Selection
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 MixMAS
1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

2
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Results of Micro-Benchmarking - Fusion Network Selection
 MixMAS

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
2
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1

2

3

M2-Mixer: Design adaptive, conceptually, computationally 
simple, scalable multimodal deep learning architecture

MixMax: Find the optimal multimodal deep learning 
architecture

DBF: Quantify the uncertainties in multimodal learning

LUMA: Provide a benchmark dataset for multimodal learning 
and uncertainty quantification

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

4
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Related Work: Multimodal Evidential Deep Learning

Modality 3

Modality 4

Modality 1

Modality 2

Fusion 
Function 

Evidential Neural Network

Predict the parameters 
of Dirichlet Distribution

Final Prediction

(Han et. al, 2022)

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 UQ in MML3
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Modalities can often confidently disagree in their decisions

I hear a 

dog 

I see a 
dog Hmm, I 

don’t know

-  Decisions made on conflicting data need to be more uncertain
-  Modalities that are in conflict with others need to contribute less to the decision

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 UQ in MML3
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Discount opinions that contradict with lots of other modalities

" # Uncertainty

I hear a 

dog 

I see a 
dog Hmm, I 

don’t know

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 UQ in MML3
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Discount modalities that contradict with lots of other modalities

0.23

0.43

0.11

0.41

Conflict Matrix

Discount scores

Discount beliefs of each modality using the computed discount factors Modality 3

Modality 3

Modality 4

Modality 1

Modality 2

G. Bezirganyan, S. Sellami, L. Berti-ÉQuille and S. Fournier, (2024). Multimodal Learning with Uncertainty Quantification based on Discounted Belief 
Fusion. arXiv preprint arXiv:2412.18024. (Accepted to AIStats 2025) 

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 UQ in MML3

Unimodal Classifiers Computed
 Discount Factors

Readjust 
Uncertainties & 

Beliefs and Fusion 
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Discounting Belief Fusion effectively distinguishes between 
conflictive and non-conflictive modalities

G. Bezirganyan, S. Sellami, L. Berti-ÉQuille and S. Fournier, (2024). Multimodal Learning with Uncertainty Quantification based on Discounted Belief 
Fusion. arXiv preprint arXiv:2412.18024. (Accepted to AIStats 2025) 

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 UQ in MML3
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1

2

3

M2-Mixer: Design adaptive, conceptually, computationally 
simple, scalable multimodal deep learning architecture

MixMax: Find the optimal multimodal deep learning 
architecture

DBF: Quantify the uncertainties in multimodal learning

LUMA: Provide a benchmark dataset for multimodal learning 
and uncertainty quantification

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

4
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Existing Multimodal Datasets

-  Lack the ability to inject controlled amount of noise in each 
modality

-  Injected noises are artificial and do not reflect real-life 
scenarios

-  Not enough samples in the datasets

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
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LUMA: Benchmark Dataset for Learning from Uncertain 
and Multimodal Data

Image T Text Audio

24000 Images 
collected from 
CIFAR-100 Dataset

~50000 Texts 
Generated with 
Large Language 
Models

~130000 Audio 
samples extracted 
from various speech 
corpuses

Grigor Bezirganyan, Sana Sellami, Laure Berti-Equille, and Sebastien Fournier. Luma: A benchmark dataset for learning from uncertain and multimodal data. arXiv 
preprint arXiv:2406.09864,2024 

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 LUMA4
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LUMA: Benchmark Dataset for Learning from Uncertain 
and Multimodal Data

Image T Text Audio

I was riding my beautiful 
black stallion named Shadow, 
through the park yesterday. 
It was a sunny day, and the 
wind was blowing in my hair. 

I felt free and happy. 

Pronunciation of 
word “Horse”

Grigor Bezirganyan, Sana Sellami, Laure Berti-Equille, and Sebastien Fournier. Luma: A benchmark dataset for learning from uncertain and multimodal data. arXiv 
preprint arXiv:2406.09864,2024 

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 LUMA4



Adding Noises to LUMA: 
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1.  Diversity 2.    Sample Noise

3.    Label Noise 4.    OOD Injection

Label noise OOD data

Grigor Bezirganyan, Sana Sellami, Laure Berti-Equille, and Sebastien Fournier. Luma: A benchmark dataset for learning from uncertain and multimodal data. arXiv 
preprint arXiv:2406.09864,2024 

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 LUMA4
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LUMA: Benchmark Dataset for Learning from Uncertain 
and Multimodal Data

Grigor Bezirganyan, Sana Sellami, Laure Berti-Equille, and Sebastien Fournier. Luma: A benchmark dataset for learning from uncertain and multimodal data. arXiv 
preprint arXiv:2406.09864,2024 

1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions
 LUMA4
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1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

Conclusion & Future Work (1/2)

Model hybridation  / ensembling architectures

Add more advanced sampling strategies (e.g. uncertainty based 
sampling)

MixMAS: a sampling based micro-benchmarking pipeline for mixer 
based architecture search

M2-Mixer: an all-MLP based architecture for multimodal fusion with multi-
head loss to Improve modality representations

 

LUMA: a benchmarking dataset for uncertainty quantification in 
multimodal settings

DBF: a Discount Belief Approach for uncertainty quantification in 
multimodal classification
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1. Motivation 2. Research Challenges 3. Methods & Contributions 4. Conclusions

Conclusion & Future Work (2/2)

Learning from multimodal data offer new challenges for data  and model  
engineering R&D

 

Requires interdisciplinary research: 
•  DB, ML, Statistics
•  Modality-dependent expertise (e.g., remote sensing, audio signal 

processing, computer vision, etc.)
•  Application-dependent expertise (climate, biology, healthcare, etc.)

Requires humans in the loop orchestration with higher degree of 
complexity

There are many research opportunities for:
•  Managing and orchestration human/machine or agent resources 
•  Revisiting our methods & technologies to leverage multimodal data



 
Thanks! 
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