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Abstract. Anomaly detection for predictive maintenance is a signifi-
cant concern for industry. Unanticipated failures cause high costs for ex-
perts involved in maintenance policy. Traditional reconstruction-based
anomaly detection methods perform well on multivariate time series but
they do not consider the diversity of samples in the training dataset. An
abrupt change of operating conditions, which is labeled as anomaly by
experts, is often not detected due to the lack of sample diversity. Be-
sides, obtaining large volumes of labeled training data is cumbersome
and sometimes impossible in practice, whereas large amounts of unla-
belled data are available and could be used by unsupervised learning
techniques. In this paper, we apply the principles of contrastive learning
and augmentation in a self supervised way to improve feature represen-
tation of multivariate time series. We model a large variety of operating
conditions with an innovative distance based stochastic method to pre-
pare an anomaly detection downstream task. Our approach is tested on
NASA SMAP/MSL public dataset and shows good performance close to
the state-of-the-art anomaly detection methods.

Keywords: Time Series Regression · Augmentation · Contrastive Learn-
ing · Anomaly Detection.

1 Introduction

Industry devices such as ships, spacecrafts, engines are typically monitored from
sensor-based multivariate time series, for which anomaly detection is critical for
service quality management of the organization owning the devices. However,
due to complex temporal dependence and multiplicity of examples, it is often
though to model diversity of operational modes. For aerospace complex systems,
monitoring is frequently designed on several telemetry channels (Figure 1) in or-
der to capture various behaviours. Due to the limited number of samples, domain
experts determine labels on few portions of time series which appear to be abnor-
mal. The drawback of this approach is generally the lack of data and the lack of
labels characterizing operational modes and/or failure occurrences. In particular
automated methods have to deal with too few samples relative to the diversity
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of pre-existing normal operating conditions. The emergence of machine learn-
ing techniques allowed the design of data-driven systems where labels entered
by human experts are mainly used to validate models trained on normal sam-
ples to detect deviations. These labels are useful to anticipate failure but they
do not necessarily provide information about operational modes of the system.
Frequent contributions propose to split multivariate time series into windows
of fixed length in order to reconstruct them with autoencoding techniques. The
gap of reconstruction is then interpreted as an anomaly score where peeks cor-
respond to potential anomalies. Our experiments are conducted on NASA Soil
Moisture Active Passive (SMAP) and Mars Science Laboratory (MSL) datasets,
proposed by [6], containing respectively 55 and 27 channels (Figure 1). Full data
from each channel is split into two sets (train/test). Test series contain labeled
anomaly segments used to compute performance metrics. In this paper, we pro-
pose the following contributions: (1) an innovative augmentation based method
to design tensor pairs for contrastive learning on time series, (2) an application
of self supervised contrastive learning to multivariate time series anomaly detec-
tion, and (3) an exploration of associated settings impact on anomaly detection
performance.

Fig. 1. Example of normalized feature measured for a single spacecraft channel with
normal operating conditions (top) versus testing (bottom with an highlited anomaly).

2 Related Works

2.1 Reconstruction based time series anomaly detection

Anomaly detection is the task of detecting unseen events in data. Therefore,
different unsupervised methods [2] have been proposed including reconstruction-
based methods. These ones aim to compare the distance between a real input
(time window) and its prediction after regression on relative features. Increas-
ingly frequent use of autoencoders made these methods more popular in the
last few years. We can mention Deep Autoencoding Gaussian Mixture Model
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(DAGMM) [5] which models the density distribution of series by connecting an
encoder to a gaussian mixture model. Variational autoencoders, which learn a
prior distribution of data, are gradually replacing traditional recurrent autoen-
coders. In that way, Su et al [1] proposed a stochastic recurrent neural network
to learn robust multivariate time series representations with stochastic variable
connections and a normalizing flow inference. The hierarchical variational au-
toencoder of Li et al. [4] achieves a blend of temporal dependencies and intermet-
ric dependencies. The latter one corresponds to non linear relationships between
features for a given period and modelled by embeddings. Generative models are
also employed for unsupervised anomaly detection. For example, [24] proposed
Tad-GAN, a generative adversarial network with cycle consistency loss. This one
measures time series reconstruction and is associated to a critic which measures
the quality of mapping in latent space.

2.2 Self supervised contrastive learning

Contrastive learning is a recent technique popularized by computer vision com-
munity to learn an embedding space in which similar samples are close to each
other while dissimilar ones are far apart. One common way to proceed is by us-
ing siamese networks [14] consisting of two encoders sharing weights and trained
with a contrastive loss. In computer vision, contrastive loss [12] repulses different
images (negative pairs) while attracting views of the same image (positive pairs).
Recently, Chen et al. [11] proposed a projection network trick that maps repre-
sentations to the space where the loss is applied. Contrastive learning assumes
the possibility of designing positive and negative pairs. For image classification,
this task is often realized by matching images from different classes to build neg-
ative pairs. In the meantime, augmented images by common techniques (e.g.,
rotating, flipping, burring) are associated to their original images to form pos-
itive pairs. When labels are missing or unavailable, positive / negative pairs
could be obtained with other techniques in order to learn representations in a
self-supervised approach [11]. Self-supervision task could be realized by augment-
ing the samples to still obtain positive pairs while negative pairs are designed by
another techniques. For example, semantic information about the datasets have
been successfully used for patient biosignals. In that way, negative pairs are built
by mixing samples from different individuals [15]. We can also mention the use
of unrelated examples for audio signals which do not share same contexts [16].

2.3 Time series augmentation

Augmenting time series dataset is frequently used to reduce generalization error
in classification tasks. Whereas in image dataset, the meaning is kept by rotating,
flipping or transforming the images, augmenting time series requires some min-
imal assumptions. For aperiodic signals, like spacecraft multivariate time series,
traditional signal processing methods can be employed. For example, jittering
(adding noise), scaling, magnitude or time warping [17, 10] can be used with-
out loss of meaning. Recently, specific augmentation techniques to mix existing
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samples (pattern mixing) rather than applying “näıve” operators have been pro-
posed to create new training examples by computing DTW [19] or shape-DTW
[20] distances between real samples. Forestier et al. [9] proposed a method to cre-
ate new samples based on random multivariate time series selection with DTW
comparisons. More recently, Iwana et al. [3] introduced a guided DTW-warping
to select samples with more diversity. Finally, we can cite generative models as
recurrent conditional GAN [18]. The last one generates new samples conserving
class property of different tensors.

3 Our approach

In this paper, we propose to learn multivariate time series representations for
unsupervised anomaly detection. First, as it is commonly done in unsupervised
anomaly detection, we split training time series data into windows of fixed length
(unchanged for every considered series). Then, we design pairs of windows by
random draws on the set formed by the whole windows. In order to get so-called
negative pairs, we use a distance-based approach to select dissimilar samples. The
so-called positive pairs are then built with augmentation techniques. Once these
operations achieved, a siamese network, composed of two encoders, is trained to
learn a joint representation for pairs of windows. The network is completed by
the trick proposed by Chen et al [11]. In other words, a simple projection network
maps the embeddings to the final L2-normalized low dimensional representation
where the contrastive loss is applied. Finally, for detection process, an anomaly
score is inferred from embedding vectors computed for testing windows. The
best threshold is determined by the searching method proposed by [1] where an
anomaly segment is correctly detected if at least one threshold crossing occurs.

3.1 Preprocessing and stochastic pairing

For each multivariate time series (training data), we first apply a z-score scal-
ing. This is then applied to corresponding test series. At first sight, we have no
expert knowledge to determine which portion belongs to which operating mode.
Note that different conditions can appear multiple times across multiple time
segments. Therefore, considering multiple time windows can naively capture op-
erating patterns. The samples are simply obtained by splitting the complete
series into fixed-size windows. This task produces a dataset D where we can
assume variable operating conditions depending on the position of the window
along the global time series. We proceed then to pairing (Figure 2). We split
equally and randomly D into 2 datasets D1, D2 such that D1 ⊔ D2 = D. The
first one is used for reality modelling. The second one is used to make random
batch of windows. Given a window W extracted from D1, we first apply an
augmentation operator to obtain another window W ′, (W,W ′) forms a positive
pair. To get a negative pair, we extract a batch B = (W1, ..Wp) from D2 and
we choose then the most dissimilar windows of B related to W . Similarity is
determined by computing Shape-DTW distance d between W and the observed
windows of B.
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Fig. 2. Pairing process on multivariate time series.

3.2 Shape-dynamic time warping

Shape-DTW is a variation of classic Dynamic Time Warping (DTW) [19] pro-
posed by Zhao et al. [20]. It improves distance measure for time series with shape
descriptors rather than traditional alignments. Consider two multivariate time
series r = (r1,. . . , ri,. . . , rI) and s = (s1,. . . , si,. . . , sJ) with sequence lengths I
and J , respectively. DTW seeks for that minimizes Euclidean distance between
aligned series. To proceed, DTW tests different warping in order to get the best
alignment which minimizes global cost under constraints with dynamic program-
ming. Solving DTW implies to compute a given cumulative sum matrix D using
Equation 1:

D(i, j) = C (ri, sj) + min
(i′,j′)∈{(i,j−1),(i−1,j),(i−1,j−1)}

D (i′, j′) (1)

whereD(i, j) refers to cumulative sum of i-th and j-th elements, and C(ri, sj)
is defined as the local distance between ri and sj . For next steps, as is often the
case, Euclidean distance will be used as cost function for DTW computations
with constant warping window equal to sample length. Finally, global distance
for r = (r1,. . . , ri,. . . , rI), and s = (s1,. . . , si,. . . , sJ) is defined as D(I, J). To
compute shape-DTW, element-wise matching is replaced by shape descriptors
matching. For a series r, a descriptor d at position i is defined as an extracted

sub-series of r with length l : dri =
(
ri−⌈ 1

2 l⌉, . . . , ri, . . . , ri+⌊ 1
2 l⌋

)⊤
. To complete

descriptors located at the beginning of r (respectively at the end), zero-padding
is applied to the left of the sub-series (respectively to the right). Then, series
(r, s) are replaced by series of descriptors ((dr0 ,. . . , drI ), (ds0 ,. . . , dsJ )) in the
previous DTW computation (eq 1). This method which tends to align descriptors
instead of points is commonly used to cope with misalignment of time series.
This is the case in particular when specific peeks might induce a high DTW
distance measurement (Figure 3). Due to processing local time series (windows)
and improper alignments, we choose this distance rather than the classic DTW.
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Fig. 3. DTW and Shape-DTW (right) alignments where cost increase due to curve
pinchs is mitigated by the use of descriptors [20].

3.3 Augmentation methods

To augment windows of the first partitioned dataset D1 and then form positive
pairs (Figure 2), we use the following operators:

– Identity: the positive pair is obtained by duplication of the given window;
– Noising: random Gaussian noise is added to each feature with mean µ = 0

and standard deviation σ = 0.05;
– Magnitude Scaling: each feature is summed to a scalar derived from a

Gaussian distribution with mean µ = 1 and standard deviation σ = 0.1;
– Time Warping: Time Warping based on a random smooth warping curve

generated with cubic spline with 4 knots at random magnitudes with µ = 1
and σ = 0.2;

– Dual Averaging: averaging the window with another one based on shape
DTW computation on a batch from the first partition (as it is done for
negative pairs).

Note that, above parameters of different methods have been obtained with
tuning in a range magnitude proposed proposed by Um et al.[17]. In order to
enrich previous datasets by various methods, a weighted combination of previous
methods is tested with random weights such that the sum of weights equals 1.
We call it mixed augmentation.

3.4 Learning architecture

In this section, we detail in Figure 4 the architecture we propose to encode fea-
tures. The siamese network consists of two encoding pipelines (one by window
extracted from a given pair). Encoding networks are the same for each ones and
share their weights. As it is suggested by [11], the outputs of pipelines are linked
to a simple projection network where the contrastive loss is applied. Projection
network consists in a single layer perceptron of size 32 which will be unchanged
for follow-up applications.

As processing time series implies naturally recurrent aspects, we propose to
use double stacked long-short term memory layers [22] (LSTM) with downstream
fully connected (FC) layers as a first way to encode pairs. The second proposed
encoder is a VGG-like network [23] which consists of 2 stacked monodimensional
convolutional layers. Parameters for each encoder are given below :
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Fig. 4. Siamese architecture with projection networks.

– Recurrent Encoder: LTSM [128]- LSTM [64]-FC [64]. Tanh activation.
Dropout [0.1] after recurrent layers. Embedding (output) dimension: 64.

– Convolutional Encoder: 2 * [ Conv1D [filters: 64, kernel size: 3 strides:
1]– MaxPooling1D ]– 2 * [ Conv1D [filters: 32, kernel size: 3 strides: 1]–
MaxPooling1D ]– FC[1024]– FC[128]. ReLu activation. Dropout [0.3] after
FC layers. Embedding (output) dimension: 128.

Selected loss for training is the Normalized Temperature-scaled Cross Entropy
(NT-Xent) [11] defined in Equation 2:

li,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
(2)

Where sim represents the cosine similarity between input vectors. τ is the tem-
perature parameter (equals to 1 for this contribution) and N is the batch size.

3.5 Anomaly score

After training the siamese network, we aim to determine an anomaly score (AS)
related to testing windows and based on embedding representation. The key idea
is to consider the separating property of contrastive learning which tends to take
away abnormal windows from an averaging pattern (operating mode for indus-
trial time series). In order to achieve this, we compute the Frobenius distance
between embeddings of a given testing window Wtest and the mean representa-
tions of training windows in the latent space. So, considering the encoded vector
E(Wtest), the anomaly score is defined as follows (Equation 3):

AS (Wtest) =
∥∥∥E (Wtest)− {E (Wtraining)}

∥∥∥
2

(3)

For convenience, mean representation of training windows is computed once
before anomaly score processing. To limit noise and extreme peeks, exponential
weighted moving average smoothing is applied to the computed score (eq 3).

3.6 Detection method

Anomalies are often stretched on time-segments which are longer than the length
of sliding windows. We propose to use the point-adjust detection already em-
ployed by [1, 4]. This approach allocates a label to every observed window. If it
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contains at least one point of anomaly segment, label will be 1, 0 otherwise. The
goal is now to find the best threshold for the given metrics (Equation 4) :

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
F1 = 2

Precision ·Recall

Precision+Recall
(4)

A high precision means that the model will limit the number of false posi-
tive windows. For sensitive systems with low risk-tolerance, precision will be the
first criterion of the detector. High recall is associated to a low number of unde-
tected true anomalies. Depending on the situation, a prioritization decision has
to be formulated to privilege a metric. F1 score is a popular trade-off between
previous metrics to evaluate the quality of detection. It can be used without
industrial assumptions and it is often proposed as single metric to compare de-
tection methods. To evaluate our approach, we use a fixed threshold. If anomaly
score is higher than this one on a single point, the window containing the point
will be detected as anomaly window. In other words, its predicted label will be 1.
On the contrary, windows below the threshold will have a predicted label equals
to 0. To find the optimal threshold, we use the F1 score as a criterion. We adjust
the value of the threshold by a grid search procedure to select the threshold
corresponding to the best F1 value.

4 Experiments on public datasets

Experiments are conducted on MSL and SMAP public datasets [6]. Testing se-
ries are labelled with anomaly segments. For every experiment run, we suppose
a fixed length for each window of 32. The mixed augmentation (combination of
each augmentation method) is applied for positive pairing with best weights de-
termined by random search: (0.36, 0.28, 0.11, 0.04, 0.21). Batch size for negative
pairing will be initially fixed to 15 and explored in next section. For training
process, Adam optimizer [7] is used to train the model. Each model is trained
for 250 epochs with a learning rate 5 x 10e-4. To control the loss variation,
train/validation partition of ratio 80/20 is applied. To reduce the overall train-
ing time, an early stopping is applied when the validation loss did not decrease
for more than 15 epochs. Experiments are conducted with tensorflow [8] (v
2.4.1) and CUDA-GPU acceleration on Nvidia Quadro RTX 5000 device. We
give results compared to other unsupervised methods proposed in literature in
Table 1. LSTM encoding achieves better performance than VGG-encoder for
both datasets. As we can observe, autoencoding techniques [1] remain the most
adapted models but they have to process the complete dataset rather than trying
to model data with a given fraction as we made with augmented pairs. These
methods perform the best possible reconstruction regardless of the existence of
anomalies in the input window. Our method achieves comparable performance
and can be adapted to limited samples augmented to obtain as many pairs as
needed for training. Although our approach is limited to anomalies based on ex-
isting contrast between windows, it could allow exhaustive normality modelling
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Method SMAP MSL
P R F1 P R F1

TadGAN [24] 0.523 0.835 0.643 0.490 0.694 0.574
MRONet[21] 0.487 0.833 0.615 0.521 0.806 0.632
Hundman et al.[6] 0.855 0.835 0.844 0.926 0.694 0.793
OmniAnomaly [1] 0.758 0.974 0.852 0.914 0.888 0.900
VGG-contrastive 0.708 0.852 0.763 0.845 0.903 0.869
LSTM-contrastive 0.751 0.923 0.827 0.860 0.891 0.874

Table 1. SMAP / MSL results for the proposed encoders compared to state-of-the-art.

by augmentation techniques. However, our architecture works with different en-
coding methods, so it will be suited for contextual anomalies that are often
produced in altered operating conditions. In next section we observe the influ-
ence of parameters of pairing process on performance. For conciseness, results
will be given for SMAP dataset with LSTM encoder in network.

5 Effects of parameter settings

5.1 Augmentation techniques

In this section, we aim to study the influence of augmentation techniques on
performance metrics. Every augmentation method is tested as a single augmen-
tation applied to every window from the first partition (positive pair design).
As we can see in Table 2, augmentations methods sharply differ in terms of per-
formance. First, it appears, that a combination of methods performs well than
separated ones.

Method P R F1

Identity 0.801 0.765 0.782
Noising 0.788 0.826 0.807
Magnitude Scaling 0.641 0.722 0.679
Time Warping 0.414 0.603 0.491
Dual Averaging 0.700 0.942 0.803
Mixed 0.751 0.923 0.827

Table 2. Separate evaluation of augmentation techniques used for positive pairing.
“Mixed“ refers to a weighted combination of augmentations (0.36, 0.28, 0.11, 0.04,
0.21).

Obviously, the positive pairs need diversity in order to model similarity be-
tween windows sharing contextual information. As we previously mentioned,
mixed augmentation has been obtained by random search on weight combina-
tions (with 30 iterations). The best weights do not strictly correspond to the
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linear combination of metrics. Besides, we can notice that our architecture can
consider pairing without augmentation in order to get the best precision. This
result can be explained by the increasing number of false positives induced by
an excessive augmentation which tends to add noise. For the next sections, aug-
mentation method will be the mixed one.

5.2 Batch parameters

In this section, we study the influence of batch parameters. First we observe its
size in terms of negative pairing with mixed augmentation. At a first glance,
selecting a high number of windows in a batch will improve the contrast be-
tween windows for negative pairs. The bias induced by stochastic sampling will
consequently be reduced. However, large batch sizes will eliminate pairs with a
moderate similarity which might be useful to model soft contrast. Thus, a de-
crease of recall is expected due to a high sensitive contrast required. As can be
seen on Figure 5a, optimal batch size is around 15 windows . For high batch sizes,
contrast modelling relies on redundant pairs. It causes a significant decrease of
performance in terms of recall and F1-score. But moderate increase of size tends
to slightly improve the precision. This can be useful for monitoring system with
scarce anomalies. Another way to limit the bias due to the batching process is to

(a) (b)

Fig. 5. Metrics variations according to batch size and ratio mitigation

post-process the negative pairs by observing the shape-DTW distances between
paired windows. For a fixed batch size of 15, we observe how varying elimination
ratio of the lowest shape-DTW pairs impact metrics. Note that in order to work
with a constant number of negative pairs, deleted pairs are replaced by dupli-
cating those with the highest shape-DTW. In other words, ratio corresponds
to percentage of deleted windows from the batch. As it is shown on Figure 5b,
post-process batch by mitigating similar pairs may slightly improve detection.
The method is clearly limited to small ratios but implies less computations than
raising the batch size as it was done just before.
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6 Conclusion

We proposed an application of contrastive learning to anomaly detection with
a method dealing with missing assumptions, as is the case for unsupervised
anomaly detection. Our approach has been successfully tested on two public
datasets and tend to demonstrate that our pairing design is intrinsically linked
to the nature of data. This method and the siamese architecture are generic
and can be adapted to model several phenomena with an enhancing tolerance
to noise. In addition, the unsupervised representations allow us to explore other
downstream tasks. For example, with provided labels, it is possible to infer the
class (anomaly/normal) of windows from latent representations. It has to be
optimized in terms of precision and recall according to industry requirements.
Future developments will focus on local anomaly scoring by comparing sequences
of consecutive windows instead of computing distance to a mean embedding
vector. Another possible extension could also consist in an incremental learning
to aggregate previous detected anomalies to pairing process.

Acknowledgements This material is based on research fund by Naval Group.
The views and results contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies of Naval Group.

References

1. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D. (2019, July). Robust anomaly
detection for multivariate time series through stochastic recurrent neural network.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery Data Mining (pp. 2828-2837).
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