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A B S T R A C T

Objective: Machine learning methods hold the promise of leveraging available data and generating higher-
quality data while alleviating the data collection burden on healthcare professionals. International Classifica-
tion of Diseases (ICD) diagnoses data, collected globally for billing and epidemiological purposes, represents a
valuable source of structured information. However, ICD coding is a challenging task. While numerous previous
studies reported promising results in automatic ICD classification, they often describe input data specific model
architectures, that are heterogeneously evaluated with different performance metrics and ICD code subsets.

This study aims to explore the evaluation and construction of more effective Computer Assisted Coding
(CAC) systems using generic approaches, focusing on the use of ICD hierarchy, medication data and a feed
forward neural network architecture.
Methods: We conduct comprehensive experiments using the MIMIC-III clinical database, mapped to the OMOP
data model. Our evaluations encompass various performance metrics, alongside investigations into multitask,
hierarchical, and imbalanced learning for neural networks.
Results: We introduce a novel metric, RE@R, tailored to the ICD coding task, which offers interpretable
insights for healthcare informatics practitioners, aiding them in assessing the quality of assisted coding systems.
Our findings highlight that selectively cherry-picking ICD codes diminish retrieval performance without
performance improvement over the selected subset. We show that optimizing for metrics such as NDCG and
AUPRC outperforms traditional F1-based metrics in ranking performance. We observe that Neural Network
training on different ICD levels simultaneously offers minor benefits for ranking and significant runtime gains.
However, our models do not derive benefits from hierarchical or class imbalance correction techniques for ICD
code retrieval.
Conclusion: This study offers valuable insights for researchers and healthcare practitioners interested in
developing and evaluating CAC systems. Using a straightforward sequential neural network model, we confirm
that medical prescriptions are a rich data source for CAC systems, providing competitive retrieval capabilities
for a fraction of the computational load compared to text-based models. Our study underscores the importance
of metric selection and challenges existing practices related to ICD code sub-setting for model training and
evaluation.
1. Introduction

The different versions of the International Classification of Diseases
(ICD) have been used for annotating clinical data in tens of countries for
several decades. While this annotation is primarily used for healthcare
billing and planning purposes, it should also constitute a wealth of
structured data for large-scale epidemiological studies and personalized
predictions [1].

∗ Corresponding author at: Aix-Marseille Université, Faculté des sciences médicales et paramédicales, Marseille, France.
E-mail address: qm.sci@protonmail.com (Q. Marcou).

However, accurate ICD coding is both difficult and time consuming.
This coding difficulty results in rather low data quality, e.g., with inter-
coder agreement between fair and poor for principal diagnostic coding
at the billing level, even for professional coders [2].

With the release of freely-available datasets such as MIMIC [3],
there has been an endeavor of computer science and health informatics
researchers to help the medical community with this clinical coding
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burden. In the last decade, many different approaches from rule-based
algorithms [4] to supervised learning algorithms (such as Support
Vector Machines (SVMs) [5,6] or Neural Networks (NNs)) have been
explored. The NN approach is the most prevalent nowadays. NNs are
particularly used for automated ICD coding based on unstructured text
(using Transformers [7–9], CNNs [10–15] or RNNs [16–18]) but also
more marginally for ICD automated coding based on structured [19,20]
or multimodal [11,21] data (see Table S1 for a quick review of existing
methods on the MIMIC-III database). The utilization of medication
information in ICD coding has been relatively understudied with, to
our knowledge, only one published study on this topic [20]. Never-
theless, medication information may present several assets: (1) It is
closely linked to actual diagnosis for medical conditions; (2) Systematic
recording by prescription softwares; (3) It is language-insensitive and
uses normalized nomenclatures such as RxNorm; (4) Anonymization
for multi-center training is straightforward; (5) Medical treatments
follow strict recommendations, offering a priori good generalizability;
(6) Being represented as structured data, decent performance could be
expected even with a simple model and limited preprocessing.

Despite promising results, a limited number of studies document
the use of such methods in a production environment [22,23]. The
adoption of such systems by the medical informatics community may
be hindered by several factors. For one, conscious of the limited quality
of training data and the difficulty of the coding task, coders seem to
expect CAC systems, i.e., semi-automatic systems with human in the
loop systems, rather than fully automated coding systems [24,25]. In
turn, commonly reported performance metrics such as F1 score and
analysis on small code subsets, such as top 50 billing codes (see Table
S1), may seem irrelevant for the clinical coding community.

Finally, while existing studies concentrate on optimizing input-
specific model architectures, a notable gap lies in the underexplored
territory of leveraging the inherent properties of the ICD hierarchy,
a feature inherent to any ICD coding system and model architecture.
Indeed, albeit few studies using NNs leverage the ICD hierarchy in-
formation using an attention mechanism in conjunction with a graph
NN [14,15,26,27] or text labels [7,11,16] within their architecture,
only SVMs based studies [5,28] have made use of generic, model ar-
chitecture agnostic, Hierarchical Multilabel Classification (HMC) tech-
niques. Similarly, class imbalance, though inherent to HMC, is also
seldom addressed.

In this paper, we present several significant model architecture-
agnostic contributions to ICD coding using a CAC system through a
systematic study of techniques to exploit CAC systems and ICD proper-
ties. First, we define a set of performance metrics, RE@R, tailored to
the ICD coding task, and ensuring interpretability by clinical coders
who may not be experts in machine learning. Second, we investigate
and compare various performance metrics, revealing that optimizing
NDCG or precision–recall based metrics leads to improved ranking per-
formance compared to traditional F1 based metrics. Third, we examine
the impact of utilizing the entire set of ICD codes instead of cherry-
picked subsets, finding that it maintains performance on selected codes
and enables more efficient recovery of additional codes from seem-
ingly limited medication input data. Fourth, we conduct a systematic
study of generic approaches with low computational overhead to test
whether exploiting the hierarchical properties of the ICD classification
can improve CAC systems. This includes multitask learning scenarios,
hierarchical multilabel classification techniques, and class imbalance
correction techniques. Our findings suggest that NNs benefit from
learning from the whole hierarchy; however, neither HMC nor class
imbalance correction methods improved results upon the simple mul-
titask learning NNs. Finally, our study serves as a valuable replication
of predicting ICD-9 codes based on medication information [20] using
the MIMIC-III dataset [3], achieving superior classification and ranking
results, as well as promoting broader applicability through the use of
2

the OMOP-CDM data-standard.
Statement of significance
Problem or Issue Accurate ICD coding is challenging

and time consuming, leading to low
data quality.

What is Already Known Machine learning algorithms, could
improve ICD coding but their use in
production environments remains
limited. Existing work focuses on input
data specificities and automated
classification on heterogeneous subsets
of ICD codes.

What this Paper Adds We introduce interpretable
performance metrics tailored for
computer assisted coding, and identify
target metrics to improve ranking
performance. We show that utilizing
the full set of ICD codes is beneficial
even for input data with seemingly
low information. Furthermore, we
explore multitask, hierarchical and
class imbalance correction methods
demonstrating their limited benefits.

2. Material and methods

2.1. Data

2.1.1. MIMIC-III OMOP
We performed all our experiments on the MIMIC-III v1.4 clinical

database [3], a freely-available database of 58,976 ICU stays. The raw
database was mapped to the OMOP-OHDSI common data model using
scripts from [29], in order to exploit the mapping of the non-standard
drug prescription representation in MIMIC-III to the RxNorm standard.

2.1.2. Medication prescription data
We then transformed the resulting RxNorm codes into their cor-

responding RxNorm ingredients, thereby discarding any clinical form,
dose or brand information. This process resulted in a set of 1164 unique
RxNorm ingredients. Subsequently, we further simplified the medica-
tion prescription data by transforming it into one binary hot-encoded
vector per stay, indicating whether a particular RxNorm ingredient had
been prescribed at least once during the patient’s stay.

2.1.3. ICD9-CM
MIMIC-III diagnoses use the ICD9-CM nomenclature, which is hier-

archical with a maximal depth of 5 levels denoted, in increasing depth,
as Chapters, Subchapters, 3 digits, 4 digits, and 5 digits codes. Stays
are generally annotated only by leaf nodes, as only leaf nodes are used
for billing purposes. Notably, not all branches have the same depth,
resulting in Billing codes of either 3, 4, or 5 digits.

In order to obtain complete annotations for each ICU stay, we
performed a roll-up of the ICD9 hierarchy. The resulting numbers of
unique codes and the numbers of codes per ICU stay are shown in
Tables 1 and 2, respectively.

2.1.4. Cherry-picked ICD9 codes
As shown in Table S1 many studies investigating automatic ICD cod-

ing using MIMIC-III focus on a cherry-picked subset of ICD9 codes. In
particular in Hansen et al. [20], the only existing study focusing on the
use of medication to predict ICD diagnoses, codes were cherry-picked
according to both frequency and researchers’ prior belief regarding
medication’s information content about the different diagnoses. Aiming
to reproduce Hansen et al. [20]’s filters and construct our cherry-picked
code set, we discarded the following codes:
• codes with less than 100 occurrences in the complete dataset;
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Table 1
Number of unique ICD codes per level. The cherry-picked subset corresponds to a subset
of codes filtered on both frequency and a prior belief about the potential amount of
information contained in the input data, as defined in Section 2.1.4.

ICD9-CM MIMIC III Cherry-picked

Chapters 19 19 16
Subchapters 154 151 68
3 digits 1,234 1070 312
4 digits 7,473 4380 520
5 digits 8,846 3716 318
Billing 12,167 5871 613
All levels 17,726 9336 1234

Table 2
Number of codes per stay for different ICD levels on the complete MIMIC-III code
set.

Min Max Median Mean SD

Chapters 0 16 6 5.77 2.97
Subchapters 0 28 7 8.10 4.38
3 digits 0 39 9 10.18 5.70
4 digits 0 39 9 10.48 6.15
5 digits 0 28 4 5.02 3.64
Billing 0 39 8 9.13 5.83
All levels 0 137 34 39.54 21.95

• codes belonging to chapters Injury And Poisoning (800–999), Sup-
plementary Classification Of External Causes Of Injury And Poisoning
(E000-E999), and Supplementary Classification Of Factors Influenc-
ing Health Status And Contact With Health Services (V01-V91);

• codes belonging to Disorders relating to short gestation and low
birth-weight (765 3-digits code).

The resulting number of unique codes and number of codes per ICU stay
for the cherry-picked code set are respectively shown in Table 1 and
Table S2. Note that despite our efforts to replicate their code filtering
we ended up retaining significantly more codes than reported in Hansen
et al. [20].

2.2. Models

2.2.1. Architecture
As the emphasis of our study is not to optimize a model structure

specific to drug prescriptions, but rather perform a systematic evalu-
ation of techniques making use of the ICD hierarchy properties, we
favored a computationally frugal approach and used simple sequential
NNs with hyperparameters described in Table S3.

Our neural networks take as input a vector of length 1166 contain-
ing:

• a binary indicator for patient’s sex;
• the age of the patient clipped and normalized by 89 years, the

maximum age reported in MIMIC;
• 1164 binary indicators for hot encoded RxNorm ingredients pre-

scribed at least once during the patient’s stay.

We performed a three-fold Monte Carlo cross-validation using
8,976 visits for training, 5000 for development, and another 5000
or testing. The model training and selection process is detailed in
ppendix B.

.2.2. Dummy model
For the sake of comparison, we introduce a dummy ranking model

hat ranks codes solely based on their frequencies estimated from the
raining set. Consequently, the predictions of this dummy model remain
onstant for any input.

.3. Performance metrics

Table S1 presents research conducted on ICD code prediction using
3

he MIMIC-III dataset, where various performance metrics, primarily r
derived from the field of automatic classification, have been employed.
However, these metrics might not be ideal for evaluating a recommen-
dation system designed to assist clinical coders in the coding process.
Their practical significance for clinical coders, who are the primary
users, could be particularly challenging to grasp. In turn, this lack of
clarity may hinder the adoption of CAC systems. In this section, we
introduce a dedicated set of metrics of performance quantifying ranking
errors. We defer the definition of other usual metrics that we will use
as comparison to Appendix D.

Our objective is to identify a performance metric that possesses the
following essential characteristics:

• it captures the idea that all relevant codes must be retrieved by
the clinical coder;

• it quantifies each non-relevant code mistakenly ranked before a
relevant one as one unit of lost time for clinical coders;

• it allows for meaningful comparisons between different datasets
or hospital wards;

• it can be easily understood and interpreted by clinical coders
and healthcare informatics staff who may not have expertise in
machine learning.

While widely used for assessing the performance of recommender
systems, Normalized Discounted Cumulative Gain (NDCG) presents
challenges in interpretation due to its nonlinear discounting, which
assigns different weights to errors based on label rank. Additionally, its
value is influenced by the number of labels considered [30], making
it difficult to compare models trained on different code subsets or
databases. In contrast, Precision@Recall implicitly assigns different
weights to errors based on the number of positive labels per sample.
Recall@K is more straightforward to interpret, but the choice of the
relevant K depends on the average number of codes expected to be
found in a given patient stay. For example, a clinical coder may be
willing to browse a longer list of recommended codes annotating an ICU
stay than annotating a simple day clinic visit for chemotherapy. Lastly,
Coverage, a metric that measures the number of labels that must be
examined in a ranked list to achieve 100% recall, is easily interpretable
but also influenced by the number of positive labels per stay.

We introduce a set of related metrics RankErrors@Recall or RE@R.
These metrics represent the number of negative labels that are mistak-
enly ranked above the positive labels until a fraction 𝑅 of the positive
labels is recovered. This set of metrics is a generalization of the notion
of Coverage made independent of the number of positive labels per
example:

RE@R(𝑦, 𝑦̂) =
∑

{𝑖|𝑟(𝑖)≤𝑅}
1ỹi=0,

here 𝑟(𝑘) is the recall at rank 𝑘, or Recall@K, and 𝑦̃𝑖 the vector
f ground truth labels sorted in decreasing order according to the
redicted score 𝑦̂. Note that given this definition:

RE@100(𝑦, 𝑦̂) = Coverage(𝑦, 𝑦̂) −
∑

𝑖
𝑦𝑖,

meaning that the sample averaged RE@R is simply a more granular
ersion of coverage that is independent of the average number of
ositive labels per sample in the dataset.

.4. Multitask learning

Multitask Learning (MTL) is the process of training an algorithm
o perform multiple related tasks simultaneously, with the aim to
mprove both performance and generalization compared to isolated
ask training [31]. In that sense, performing multilabel ranking or
lassification for a single level of the ICD hierarchy, already is an
nstance of multitask learning.

In the remaining of this paper, we will however refer to the notion
f multitask with the hierarchical nature of the ICD in mind, where

anking or classification at each level of the hierarchy corresponds
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to a different task. We evaluate whether learning simultaneously on
different hierarchy levels is beneficial using three distinct learning
strategies:

• Learning per level: a different model is trained for each level
of interest in the hierarchy (Chapters, Subchapters, 3-digits and
Billing levels), yielding four separate models;

• Naive multitask learning: a flat classifier is trained with an output
layer containing an output neuron for each node of the hierarchy
(9336 labels);

• Re-weighted multitask learning: by construction, there exist more
labels at each level as we progress towards the leaves of the
hierarchy, resulting in higher importance of finer grained levels
of the hierarchy in the cost function. To give equal importance to
each task, or level, we have re-weighted the cost of each example
such that each task have the same weight in the cost function
(Appendix F3).

.5. Hierarchical Multilabel Classification (HMC)

While multitask learning leverages the ICD hierarchy in an implicit
anner, dedicated methods exist to explicitly exploit the known hi-

rarchical links in multilabel classification or ranking. In our study,
e implemented several of them, employing different approaches to

ncorporate hierarchical knowledge. These include the use of simple
ogical rules (roll-down and roll-up) to enforce hierarchical consistency
f predictions, modifications of the cost functions based on logical rules
uch as TreeMin loss [32] and MCLoss [33], as well as hierarchical
egularization techniques [34] (Appendix G).

.6. Class imbalance

Large scale hierarchical problems inherently exhibit imbalanced
abel distributions, often following a power-law like distributions for
eep hierarchies [35] (Fig. S1). Severe imbalance can lead an algorithm
o ignore positive examples of the minority class to limit the amount of
alse negative for the majority class, or lead to poor generalization on a
ataset with different class frequencies. In classification settings, class
mbalance can be mitigated using regularization, cost function modi-
ications or more frequently using resampling methods. Despite being
he most frequent, resampling approaches increase computational load
nd impose constraints on model types and learning objectives for
MC. Thus, we focused on applying a regularization approach, using L2

egularization on the last classification layer, and three cost sensitive
pproaches: two based on upweighting the cost of positive examples
y the imbalance ratio, namely Imbalance Ratio Weighting (IRW) and
mbalance Ratio Normalized Weighting (IRNW), and one variant of the
ross-entropy loss, initially used in computer vision, and referred to as
ocal loss (Appendix H).

. Results

.1. ICD code cherry-picking degrades retrieval performance

A distinctive aspect of medication data as input for building a CAC
ystem is that medication could be expected to convey little to no
nformation about some diagnoses, such as, for example, diagnosis
odes belonging to the 3-digits node V50-V59 Persons Encountering
Health Services For Specific Procedures And Aftercare. This has led some
authors to design algorithms only on cherry-picked subsets of codes
filtered both by code frequency and researchers’ prior beliefs about
the information content of input data regarding ICD codes [20] (see
Section 2.1.4). Such filtering can be justified assuming that (1) the input
data conveys no information about some diagnostics and/or (2) that
data is too scarce to allow any learning and/or (3) that the inclusion
of such codes in the model deteriorates predictions for the selected
cherry-picked codes.
4

o

We challenged the validity of these first two assumptions by train-
ing models on the complete code set and quantifying the amount of
information a model, using a naive multitask architecture and trained
to maximize 𝜇F1, extracted for different code subsets. Fig. 1(a) shows
the resulting cumulative distribution of per-code entropy reduction,
i.e., the reduction in uncertainty regarding the presence or absence
of a code once the model’s output is known. We find that, despite a
generally lower information content, the model was still able to extract
some information for more than 75% of low frequency codes with ≤100
occurrences in the entire MIMIC dataset, with a reduction of entropy
of at least 10% for 31.8% of such codes. In fact, the algorithm was
able to extract some information even for some codes with less than
5 occurrences in the whole dataset (see Fig. S2). Strikingly, Fig. 1(a)
also suggests that codes filtered out based on researcher’s prior beliefs
about information content are not harder to predict than cherry-picked
codes. In fact, the entropy reduction distribution was comparable for
both code sets (p = .155, Mann–Whitney U test).

Fig. 1(b) illustrates how this extracted information content trans-
lates into ranking capabilities by comparing ranks for positive examples
versus ranks for negative examples for a given code. 89.2% of codes
were better ranked for positive examples than negative examples,
59.3% of codes had their rank at least halved on positive examples
and 13.5% had their rank on positive examples being less than a tenth
of their rank on negative examples. Every code in the cherry-picked
subsets or filtered out codes based on researcher’s prior beliefs had
better ranks on positive examples, and 83.65% of them had a rank more
than halved on positive examples.

Then, we challenged the assumption that adding codes on which
the algorithm would fail to extract information could worsen the al-
gorithm’s predictions on cherry-picked codes. To that end, we carried
hyperparameter optimization and training both using the complete
code set and the cherry-picked code subset. Fig. 1(c), displaying the
Recall@K on the cherry-picked code subset, shows that both models
had equivalent code retrieval performance on that subset. Similar
conclusions could be drawn for automatic coding systems, relying on
hard classification as shown by the μF1 scores in Table S4.

Finally, one might still wonder whether cherry-picking codes actu-
ally matters from a clinical coder perspective. Fig. 1(d) shows that using
a model trained on the complete code set does improve Recall@K on
billing codes even for K as low as 9, the average number of billing codes
er stay (see Table 2), with for instance 4.16% of added recall for K =
0.

.2. NDCG and AUPRC variants are better target metrics than F1

ICD codes prediction can be viewed as two different tasks: fully
utomatic coding or building a coding assistant system. The latter can
e seen as a learning to rank problem with the specificity that all
odes that must be coded should be found in the recommendations.
hile building a perfect classifier for automatic coding entails building
perfect recommender system, classical classification metrics may not

onvey complete or intuitive information on how useful an imperfect
oft classification algorithm is as a coding assistant.

Having this hybrid system between multi-label classification and
ecommender or learning to rank system in mind, we defined the RE@R
et of metrics in Section 2.3. This metric denotes the average number
f non relevant codes that have to be seen by a clinical coder browsing
he ranked list of codes before achieving a recall of R.

While achieving the minimal RE@100 of 0 would mean achieving a
erfect recommender system, RE@100 alone is insufficient to describe
he performance of an imperfect recommender system, and RE@R for
ifferent values of R is of interest. Trying to minimize RE@R for different
alues of R at the same time would, however, be impractical. We
hus searched for a more traditional scalar performance metric that
y optimizing, we would also minimize RE@R for different values of
. With that aim, we performed hyperparameter search and training

n the complete code set targeting various widely used ranking and
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Fig. 1. a. Cumulative distribution of the entropy reduction, or information gain, per ICD code at any level of the hierarchy by performing soft classification using our naive
multitask neural network model. Low frequency codes designate labels with ≤100 occurrences in the complete dataset. Filtered out roots designate codes excluded based on prior
beliefs (Section 2.1.4) b. Cumulative distribution of the relative difference of median ranks between positive and negative examples for each ICD code. ICD codes that are, as
expected, better ranked on positive than on negative examples exhibit negative values, while codes with worse ranking on positive examples have positive values. For legibility,
we added a horizontal black line at y = 1. c. Recall@K on the cherry-picked code subset using a dummy model (grey), or neural networks models trained respectively on the
cherry-picked subset only (orange) or the complete code subset (blue). Shades around the lines show the standard error on the estimated sample averaged Recall@K computed
via three-fold Monte-Carlo cross-validation. d. Recall@K on the complete code set using the same models. ICD codes not seen at training time by the model trained on the
cherry-picked subset only were assigned 0 probability at inference time. The four sub-figures were made using models built to optimize 𝜇F1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Relative improvement in ranking performance, measured by RE@R for different
values of R, achieved by optimizing various scalar performance metrics instead of
the commonly reported 𝜇F1. Error bars represent the standard error of the mean
computed over cross-validation runs. We indicate, as reference, the absolute RE@R
values, averaged over cross validation runs, achieved by the baseline model optimizing
the 𝜇F1.
5

classification metrics. The results are shown in Fig. 2, as relative RE@R
improvement over a model selected and trained trying to optimize the
μF1 score.

Despite being by far the most reported performance metric for
automated ICD coding on MIMIC (see Table S1), Fig. 2 shows that
optimizing F1 based metrics leads to lower ranking performance, and
that optimizing either NDCG or a micro averaged AUC variant leads
to ranking performance improved by ∼5% for any recall. In general,
macro-averaged metrics seem to lead to lower ranking performance
compared to their micro averaging counterparts. Similar conclusions
can be drawn on a per hierarchy level basis from Fig. S3. To further
strengthen these points, without extra model training computations,
we show in Fig. S4 taking into account all models we have trained,
that NDCG has highest correlation with RE@R for all values of R, closely
followed by Precision-Recall based metrics.

Unsurprisingly, the NDCG, a dedicated ranking metric, seemed to be
the most effective target metric to optimize ranks. However, because
the computation of NDCG only relies on rank, it may not always
prioritize models whose predictions can be readily interpreted as prob-
abilities. Interestingly, our best NDCG models already demonstrated
strong calibration. Nevertheless, our models chosen to maximize Area
Under the Precision Recall Curve (AUPRC) exhibited notably enhanced
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Fig. 3. Relative improvement in ranking performance, measured by NDCG, across
different levels of the ICD hierarchy using various multitask learning strategies
compared to the baseline naive multitask model. Absolute NDCG values, averaged over
cross-validation runs, for the baseline naive multitask model are provided as reference.

calibration, reflected in significantly improved Expected Calibration
Error (ECE) and Maximum Calibration Error (MCE) values (Table S5).

3.3. Multitask learning improves ranking and runtime

Using multitask learning a NN may discover and exploit hierarchical
relationships between tasks in hidden layers [31]. In this section, we
investigate three distinct training strategies (see details in Section 2.4)
to assess whether a naive use of the hierarchy information, by training
a NN to rank (or classify) simultaneously codes from different levels of
the hierarchy, can impact performance.

As depicted in Fig. 3, when using NDCG as a ranking performance
indicator, the re-weighted multitask approach led to a significant degra-
dation in performance across all levels of the ICD hierarchy. In contrast,
while the average NDCG per level was generally higher for the naive
multitask approach compared to the per-level strategy, the observed
differences remained within error bounds (Fig. 3). Similarly, looking at
RE@R (Fig. S5), the estimated performance was greater for the naive
multitask model across various values of R and all hierarchy levels
when compared to the per level models. These estimated differences,
were however deemed statistically significant (paired t-test) only at the
Billing level and for recalls higher than 75%. Notably, hyperparameters
selected for the per-level models closely resembled those obtained for
the naive multitask model (see Table S10). This observation indicate a
runtime advantage associated with the naive multitask approach, which
scales linearly with the number of hierarchy levels.

3.4. Hierarchical learning methods do not improve ICD code retrieval

In the previous section, we have shown that simply adding hier-
archy levels as complementary tasks only marginally improves perfor-
mance. In this section, we investigate whether explicit use of known
hierarchical relationships, at learning or inference time, can further im-
prove performance. We compared a flat classifier (naive multitask) with
a diverse set of global hierarchical approaches using logical constraints
(roll-up and roll-down), special cost functions (MCLoss, TreeMin), or
regularization (HierL2) (see Section 2.5).

The NDCG achieved by these different models are illustrated in
Fig. 4. We find that, analyzing performance based on NDCG, none of the
hierarchical methods tested significantly change ranking performance.
In fact judging by rank errors statistics, the two cost based methods,
TreeMin and MCLoss, even seem to degrade ranking performance on
billing codes below 50% recall (Fig. S5).

3.5. Class imbalance correction does not benefit ICD codes retrieval

As illustrated in Fig. S1, the breadth and depth of the ICD classi-
fication result in highly imbalanced labels. Taking into account class
6

Fig. 4. Relative improvement in ranking performance, measured by NDCG, across
different levels of the ICD hierarchy using various hierarchical multilabel classification
strategies compared to the baseline naive multitask model. Absolute NDCG values,
averaged over cross-validation runs, for the baseline naive multitask model are provided
as reference.

Fig. 5. Relative improvement in ranking performance, measured by NDCG, across
different levels of the ICD hierarchy using various class imbalance handling strategies
compared to the baseline naive multitask model. Absolute NDCG values, averaged over
cross-validation runs, for the baseline naive multitask model are provided as reference.

imbalance has proven beneficial for some classification tasks, but has
been less studied for recommender systems.

We have implemented and applied several cost sensitive and reg-
ularization based methods used for imbalanced classification (see Sec-
tion 2.6) to assess whether addressing class imbalance could improve
our recommending system. Our results, shown in Fig. 5, suggest that
these different methods either did not improve or even worsened
the global ranking performance at every level of the ICD hierarchy.
In fact, our baseline naive multitask model seem to exploit jointly
code frequency (Fig. S6) and input data information (Fig. 1) for rank
predictions, while still being able to output high ranks (e.g., top-10) for
some very low frequency codes (Fig. S6).

Still, relying on code frequency for ranking purposes raises ques-
tions about the models generalization and equity in performance, espe-
cially across different wards within the same hospital. To assess the
latter we evaluated our model’s performance on exclusive newborn,
surgical and medical patients subsets (Appendix J). Overall we found
that, despite being a minority class, newborn stays exhibited signifi-
cantly better ranking performance (Table S9). Moreover, despite the
categories having similar frequencies, which may not translate directly
into ICD code frequencies, significantly better ranking performance

were obtained on the medical stays compared to the surgical ones.
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Fig. 6. Comparison of ICD code retrieval performance, focused on the billing level,
between our top-performing model (shown in purple) and a model employing a strategy
similar to the state-of-the-art for ICD code prediction using medication data as described
in Hansen et al. [20] (represented in orange). Shades around the lines show the
standard error on the estimated sample averaged Recall@K computed via three-fold

onte-Carlo cross-validation. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

.6. Overall performance summary

.6.1. Predictions
Taken altogether we show in Fig. 6 that our proposed model, with

aive multitask learning selected to maximize NDCG, improves the
ample averaged Recall@K at all values of K when compared to the
trategy similar to the one presented in Hansen et al. [20], the only
xisting study predicting ICD codes based on medications only. On
illing codes average sample recall was increased by 5.22% for K = 30
o reach a Recall@30 of 57.05%. On 3-digits codes, the improvement
as even greater with 14.77% extra codes retrieved with a Recall@30
f 70.66% (Fig. S7). Beyond ranking, we found that by fine-tuning a
odel initially optimized for 𝜇AUPRC and adjusting the probability

hreshold at each hierarchy level to maximize 𝜇F1 (see Appendix K)
e achieved superior μF1 than by direct maximization of μF1 as a

arget metric (Table S4). Detailed tables presenting ranking and soft
lassification performance of our models can be found as Table S7 and
able S8.

.6.2. Runtime
In our extensive experiments and across various cross-validation

uns, we consistently observed the emergence of models with similar
yperparameters. Notably, the top-performing models tended to be
elatively shallow yet wide networks, featuring 2 to 3 hidden lay-
rs, each containing approximately 2–3k units and a dropout rate of
pproximately 60% (details available in Table S10).

Our model, achieving the best NDCG performance, demonstrated re-
arkable efficiency in processing the comprehensive MIMIC-III dataset,

ncompassing 58,976 hospital stays, in 1.92 ± 0.19 s employing an
nference batch size of 1024 samples on a T4 NVIDIA GPU.

. Discussion

The first, model-agnostic step towards developing improved CAC
ystems and encouraging their adoption is the thoughtful selection
r definition of a suitable and interpretable performance evaluation
etric. To this end, we introduced the RE@R set of evaluation metrics

ased on existing literature [24,25] and discussions with health infor-
atics professionals. Subsequently, we demonstrated that filtering ICD

odes was detrimental to code retrieval without yielding any positive
7

m

effect on the model’s performance within the cherry-picked subset (Sec-
tion 3.1). Additionally, we showed that using ranking-based metrics,
such as NDCG or Precision-Recall curve-derived metrics as proxies to
optimize RE@R, proved more effective in selecting superior models com-
ared to μF1 (Section 3.2). These findings mark a second step towards
nhancing ICD CAC systems in a model-agnostic manner. Regarding
eneric NNs training strategies, our results suggest that minor ranking
mprovements and significant computational load reduction can be
chieved using a naive multitask design (Section 3.3). In evaluating the
xplicit use of the ICD hierarchy (Section 3.4), our results indicate that
MC methods did not yield improvements. Concerning class imbalance

Section 3.5), our results suggest that our neural network models
xploit both input information and code frequency to build predictions
ithout negative impact on minority classes. Furthermore, we observed
o added performance gains, from a ranking perspective, when at-
empting to correct for label imbalance through various approaches
ith low computational overhead.

A previous real-world study [23] showed that a text-based auto-
atic classification model optimized for μF1 improved coding quality

ut failed to reduce coding time for medical coders, highlighting the
mportance of performance metric selection and CAC system design.

hile our proposed evaluation metric fulfills all identified usability
nd interpretability criteria, further research is needed to validate
ts usage by studying its correlation with both coding quality and
oding time. Regarding target metric choice, although the ranking-
ased metric NDCG demonstrated the highest correlation with RE@R,
ur results indicate that AUPRC-based metrics selects better-calibrated
odels, offering enhanced interpretability for clinical coders. While

he observed difference in calibration remained marginal with shallow
Ns, this distinction might become critical with deep networks, such
s text models, which have shown poor calibration without additional
orrection [36]. Beyond its adverse impact on code retrieval, code
herry-picking posed significant challenges for reproducibility, as illus-
rated by our struggles to replicate filtered code sets across different
tudies [19,20,28].

At first glance, our results regarding multitask learning may seem
o contradict previous results reporting significant improvement on ICD
lassification with a multimodal SVM adapted for hierarchical multitask
earning [28]. However, the proposed SVM only shares information
etween explicitly hierarchy-related tasks, while our neural network
pproach enables multitask learning even using a single hierarchy level
hrough common hidden features [31]. This difference already makes it
ore akin to explicit HMC methods. Second, the small training set size

3750 MIMIC-III patients, compared to our 48,976 stays) used in Malak-
uti and Hauskrecht [28] may have placed their algorithm in a more
hallenging learning situation where hierarchical multitask learning
ould be more beneficial. Overall, using our naive multitask neural net-
ork approach we obtained much higher classification performances,
ith 11,64% macro AUROC and 11.72% macro AUPRC differences on

omparable code subsets, using only medication information compared
o the best reported multimodal SVM in Malakouti and Hauskrecht [28]
see Table S6).

Our results also contrast with reports of substantial gains using
MC methods with neural networks [32,33], in particular for ICD
lassification using medication data [20]. For the latter, we found
hat our model’s classification performance was generally superior to
esults reported by Hansen et al. [20], as discussed later in this section.
oreover, their hierarchical strategy, where parent node predictions

re set to be the average of children nodes’ predicted probabilities,
nherently creates hierarchical violations. This design forces parent
ode probabilities to be inferior to the most probable child node.
e hypothesize that their hierarchical loss formulation promoted a

ompensatory inflation of leaf node probabilities, resulting in higher
ecall at the expense of precision and possibly calibration, ultimately
ontributing to a generally improved μF1. Regarding other proper HMC

ethods, Giunchglia and Lukasiewicz [33] reported positive results
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over several dataset with structured input. However the training set
size in their experiments was generally much lower than our setting,
on the order of ∼1.5 K examples compared to our ∼50k examples.
We hypothesize that while HMC methods could show benefits on
small datasets, this advantage might diminish with increasing dataset
size. Indeed, through multitask learning NN are able to learn implicit
hierarchical representations [31]. This implicit hierarchical learning
could lead to an implicit hierarchy rewiring and ultimately compensate
for hierarchical ontological inconsistencies, that would be enforced by
an explicit HMC method [35]. The quality of the ICD9 ontology could
thus constitute an alternative hypothesis for this lack of improvement
using HMC methods.

While class imbalance correction techniques are frequently applied
for classification purposes, their exploration within the recommender
system domain has been limited. In general, these correction tech-
niques might only alter the position of the decision plane, leaving the
embedding space unaffected and resulting in identical ranking perfor-
mance, as evidenced by our results. The absence of improvement in
ranking performance may also stem from the intrinsic multitask nature
of recommender systems when using neural networks. This could be
particularly beneficial for rare labels, as suggested by the observed
ranking benefits of multitask learning on codes with least favorable
ranks, and the correlation between code rank and code frequency (Fig.
S5 and Fig. S6).

Regarding computational efficiency, our model can process medica-
tion data with a very high throughput (Section 3.6.2). Comparatively,
Gao et al. [10] reported runtimes for Convolutionnal Neural Network
(CNN) and Transformer text models. These models processed 1000 sam-
ples in 8.40 and 75.86 s, respectively, using a comparable V100 NVIDIA
GPU, and focusing on a single level of the hierarchy. In the same
experimental conditions, our model exhibited a considerable speed
advantage, completing predictions for 1000 samples in 0.077 ± 0.001 s.
n addition to being faster by several orders of magnitude, our model
utput predictions for the entire hierarchy of ICD codes.

Regarding classification performance using medication data alone,
ur naive multitask model surpassed the classification results on the
herry-picked code subset reported in Hansen et al. [20] at every
evel of the hierarchy, except for the 3-digit level (Table S4). Our
esults also have to be put in perspective with other approaches using
ifferent input data. For instance, Rodrigues-Jr et al. [19] reported
58% Recall@20 using ICD codes history. However this result was

btained on a subset of 855 ICD codes which we were unable to
eplicate. Additionally, their method is limited to patients who have
een previously hospitalized in the database. Our model seemed to
e generally surpassed by deep Natural Language Processing (NLP)
odels that leveraged medical text data [10,12,13,27] on F1 and
UROC based metrics. It is worth noting that these NLP models were

ypically evaluated on a broader range of ICD data, encompassing
oth diagnoses and procedures, making direct comparisons with our
ork challenging. However, in a noteworthy exception, Gao et al. [10]

eported significantly higher μF1 scores using a CNN text model for
and 5-digit codes compared to our adaptive threshold model (Table

1 and Table S4). From a computational intensity perspective, though,
ur feed forward NN aligns more closely with a text-based SVM model
mploying a bag of words as input [5]. In that study, the SVM achieved
reported μF1 of 29.3% on billing codes. In contrast, our adaptive

hreshold model exhibits a considerably superior hard classification
erformance with a 38.04% μF1 on billing codes.

We conducted our systematic analysis of plug-in methods to en-
ance ICD coding using MIMIC-III, a widely utilized real-world ICU
linical dataset. This choice was motivated by its availability, extensive
enchmarks against other algorithms, and the facilitation of repro-
ucibility in our work. Although the reliance on a single dataset might
eem to restrict the generalization of our results, particularly given its
se of ICD-9 labels instead of the more contemporary ICD-10, prior
8

tudies employing text-based models [17,23], diagnosis history [19],
nd even medication data [20] have demonstrated generalization with
imilar performance across ICD-10 [17,20,23] variants and other clin-
cal ontologies [19], both on national databases [20] and hospital
ide settings [17,19,23], when compared to identical architectures

rained and evaluated on MIMIC-III. Still, it is important to note that
IMIC-III and other retrospective real-world databases likely contain

umerous ICD labeling errors, which may in turn impact our model’s
erformance evaluation. Furthermore, MIMIC-III contains only ICU
tays, which might not fully represent the diversity of medical practices,
nd potential ward balance issues that could arise on a hospital level
espite our reassuring initial experiments.

In summary, we have demonstrated the efficacy of various ap-
roaches to enhance CAC systems in a model-architecture agnostic
anner, while refuting the efficacy of others through a systematic

valuation, using medication data and feed-forward NNs. While our
odel appear to be outperformed by deep NLP models leveraging
edical text data, the significant discrepancy in observed runtimes
nderscores the importance of employing a feed-forward NN architec-
ure for conducting our assessment of target metric choice, multitask,
ierarchical, and class imbalance correction techniques. Employing
ore computationally intensive architectures would have rendered this

ystematic evaluation computationally intractable. Furthermore, our
pproach demonstrated significantly better performance than existing
nes employing similarly complex models, highlighting the valuable
nformation contained in medication data for ICD coding. In addition
o providing precious insights for the construction of CAC systems,
ur findings may be applicable to any semi-automatic system designed
o assist humans in data labeling from large-scale ontologies. Such
ystems are indispensable in healthcare for alleviating the data collec-
ion burden on practitioners while enhancing data quality for further
euse. Although MIMIC-III only contains ICU stay data, the volume of
ata it offers should be attainable even by small hospitals, thereby
aking our conclusions about HMC and multitask learning portable

o real clinical settings. Building on our results, future research is
eeded to validate our proposed evaluation metric RE@R in a production

system. Additionally, there is a need to develop more sophisticated
architectures that can fully leverage medication information, including
dosage, route of administration, and temporal patterns in medication
intake, to further enhance prediction quality.

5. Conclusions

We have explored the construction of more effective CAC systems
using generic approaches, with medication data and a simple neural
network architecture as examples. We demonstrated that the practice of
ICD code cherry-picking reduce overall retrieval performance without
gain in the cherry-picked subset. This practice not only compromises
performance but also poses challenges for reproducibility in research.
Our investigation, introducing a novel metric RE@R tailored for the ICD
coding task, revealed that optimizing for metrics like NDCG and AUPRC
leads to superior ranking performance compared to the commonly used
F1-based metrics. We found that multitask learning, by training NNs si-
multaneously on different ICD hierarchy levels, provides minor benefits
for ranking as well as runtime gains. Surprisingly, our sequential NN
models did not draw benefits from HMC methods or class imbalance
correction techniques.

Our generic experiments offer valuable insights for researchers and
healthcare practitioners interested in developing or evaluating CAC
systems. Despite employing a straightforward sequential NN model, we
confirmed that medical prescriptions represent a rich data source for
CAC systems, providing competitive ICD codes retrieval capabilities for
a fraction of the computational load compared to text-based models.
Future work should validate our findings in a production setting and
explore more sophisticated architectures to fully leverage medication

information.
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Acronyms

AUPRC Area Under the Precision Recall Curve
AUROC Area Under the Receiver Operating Characteristic Curve
BCE Binary Cross-Entropy
CAC Computer Assisted Coding
CNN Convolutional Neural Network
ECE Expected Calibration Error
HMC Hierarchical Multilabel Classification
ICD International Classification of Diseases
IRNW Imbalance Ratio Normalized Weighting
IRW Imbalance Ratio Weighting
MCE Maximum Calibration Error
MTL Multitask Learning
NDCG Normalized Discounted Cumulative Gain
NLP Natural Language Processing
NN Neural Network
RNN Recurrent Neural Network
SVM Support Vector Machine
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