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Abstract—Choosing a suitable deep learning architecture for
multimodal data fusion is a challenging task, as it requires the ef-
fective integration and processing of diverse data types, each with
distinct structures and characteristics. In this paper, we introduce
MixMAS, a novel framework for sampling-based mixer archi-
tecture search tailored to multimodal learning. Our approach
automatically selects the optimal MLP-based architecture for
a given multimodal machine learning (MML) task. Specifically,
MixMAS utilizes a sampling-based micro-benchmarking strategy
to explore various combinations of modality-specific encoders,
fusion functions, and fusion networks, systematically identifying
the architecture that best meets the task’s performance metrics.

Index Terms—Multimodal Deep Learning, Architecture
Search, MLP-Mixer, Multimodal Fusion.

I. INTRODUCTION

The increasing complexity and diversity of data in various
domains require the use of multimodal learning, which can
leverage and integrate information from different modalities
including text, image, audio, video, time series, etc. [1]. The
application of multimodal learning spans a wide array of fields,
including but not limited to, text-to-image generation, text-to-
video synthesis, robotics, and autonomous driving [7]. The
essence of multimodal learning lies in its ability to provide
a more holistic understanding of the data by harnessing the
complementary nature of different data types. However, the
fusion of multimodal data presents significant computational
and theoretical challenges [7] that arise from the inherent
heterogeneity of the data sources, which makes learning inter-
modal relationships and representations more difficult, as
each modality often exhibits diverse qualities, structures, and
relevance to the task at hand. Computationally, processing
and fusing such diverse data types at scale is very hardware
demanding. This highlights the increasing need for specialized
architectures that can effectively handle multimodal data.

In response to these challenges, Multi-Layer Perceptron
(MLP) based architectures have emerged as a promising
solution [4, 9, 12]. These architectures offer a compelling al-
ternative to transformer models, as achieve a favorable balance
between performance and computational complexity [12]. The
advantages of these architectures lie in being computationally
more efficient [12], exhibiting a simpler architectural design
[8], facilitating ease of implementation and modification, and
robustness in handling a variety of data types and tasks [8]. In-
tegrating these components into an automated search pipeline
enables us to leverage their benefits and design architectures
that address the unique requirements and constraints of each
task, resulting in more effective and specialized models.

In this paper, we present MixMAS, an automated framework
for solving the problem of choosing which MLP-based archi-
tecture to use for a given multimodal machine learning task
(MML). Our contributions can be summarized as follows: 1)
We propose an automated pipeline for selecting the optimal
MLP-based architecture for multimodal tasks. This pipeline
benchmarks various MLP-based encoders for each modality,
identifies the most effective fusion function for integrating all
modalities, and determines the most suitable fusion network.
Although we selected MLP-based architectures for their com-
putational and conceptual simplicity, the framework is flexible
and can accommodate other models, such as transformers,
CNNs, and more. 2) We propose to employ a sampling
approach, where different modules are benchmarked only on
a small sample of the dataset to reduce the computational
cost compared to evaluating on the full dataset. 3) We ex-
perimentally validate that our proposed pipeline for optimiz-
ing multimodal MLP-based architectures improves accuracy
compared to standard MLP-based multimodal networks. 4)
We open-source the code for the proposed framework at
https://github.com/Madjid-CH/auto-mixer.

https://github.com/Madjid-CH/auto-mixer


II. RELATED WORK

This section reviews the related research on MLP-based
models and multimodal architecture search methods.

MLP-Mixers [12] introduced a paradigm shift in the field
of deep learning by achieving competitive results on image
classification benchmarks against the state-of-the-art models
with comparable computational resources. The architecture is
based exclusively on MLPs with two types of layers: MLPs
applied independently to image patches, and MLPs applied
across patches. Many follow-up works improve the MLP-
Mixer architecture, such as: Region-aware MLP (RaMLP) [6],
which addresses the limitation of fixed input sizes in previous
MLP models and captures both local and global visual cues
in a region-aware manner; the HyperMixer [9] introduces a
token mixing mechanism called HyperMixing, which uses hy-
pernetworks to dynamically generate the weights of the token
mixing MLP based on the input. This allows HyperMixer to
handle variable input lengths and ensures systematicity by
modeling interactions between tokens with shared weights
across positions; the Monarch-Mixer [4] uses Monarch ma-
trices for efficient performance on GPUs and demonstrates
comparable or superior results in tasks like language modeling
or image classification, with fewer parameters. These models
are conceptually simpler compared to other architectures like
CNNs and Transformers. They also make a good trade-off
between performance and computational efficiency.

The M2-Mixer [2] architecture has been proposed for mul-
timodal classification, leveraging the simplicity and efficiency
of MLP-Mixers. It employs a multi-head loss function to ad-
dress optimization imbalance, ensuring that no single modality
dominates the learning process. This results in a conceptually
and computationally simple model that outperforms baseline
models on benchmark multimodal datasets, achieving higher
accuracy and significantly reducing training time. However,
MLP-Mixers are not universally effective across all modalities,
and selecting the right MLP-based architecture to optimize
performance can be challenging. To address this, our proposed
pipeline systematically identifies the most suitable MLP-based
network for each specific dataset, ensuring optimal perfor-
mance and compatibility with the data characteristics.

Multimodal NAS: Neural Architecture Search (NAS) meth-
ods try to automate the process of finding the optimal archi-
tecture for given tasks and datasets. Several multimodal NAS
approaches were presented in the literature using different
search algorithm and search space [10, 13, 14, 15]. These
approaches are often complex to implement and train, and
adjusting certain parts of the architecture typically requires
rerunning the entire NAS process. In contrast, our proposed
framework is simple to implement and allows for the retention
of existing micro-benchmarks, enabling quick updates to the
architecture when new modules or components are added to
the search space. Additionally, the modular design of the
pipeline permits micro-benchmarking to be applied selectively
to specific parts of the architecture, streamlining the process.

III. OUR FRAMEWORK

We propose MixMAS, a sampling-based framework for
automatic mixer architecture search in multimodal learning.
MixMAS efficiently selects optimal MLP-based architectures
for various multimodal tasks, leveraging modularity and exten-
sibility for adaptability. This pipeline focuses on efficient MLP
architectures composed solely of matrix multiplications, trans-
formations, and activation functions, streamlining the search
process for suitable configurations in multimodal learning.

As illustrated in Figure 1, our pipeline can be conceptually
divided into four main stages: 1) Sampling, 2) Encoder selec-
tion, 3) Fusion function selection, 4) Fusion Network selection.
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Fig. 1. MixMAS sampling based architecture search pipeline

Sampling: The sampling module selects a subset of the
dataset for comparing the performance of different modules at
each stage. It ensures that the sampled subset is representative
of the entire dataset, which is essential for obtaining accurate
and reliable performance metrics to guide the selection pro-
cess. The number of samples is computed as in (1) using the
sample size determination formula [5]:

N ′ =
n

1 + z2×p̂(1−p̂)
ε2N

, n =
z2 × p̂(1− p̂)

ε2
, (1)

where N is the size of the dataset, z is the z-score, p̂ is the
estimated proportion of the population that has the attribute of
interest, and ε is the margin of error (i.e., 1%). We use random
sampling to approximate the class distribution of the original
dataset. To validate this approach, we calculate the distance
between the class proportions in the original and sampled
datasets, ensuring it remains below 0.05. In future work, we
aim to implement uncertainty-based sampling to obtain more
informative samples.

Encoder Selection involves benchmarking the performance
of various MLP-based encoders on the sampled dataset for
each modality. The choice of encoders depends on the dataset’s
modalities, ensuring all options are MLP-based. Users can
customize the evaluation metrics within the framework to suit
the problem’s specific nature. For example, in a balanced



binary classification problem, accuracy might be preferred,
while for imbalanced classes, metrics like precision, recall,
or F1 score may be more appropriate. While MLP based
encoders were selected for this work, the framework allows
to incorporate arbitrary encoders, such as transformers, CNNs,
RNNs, etc. The best encoder for each modality is then selected
based on the benchmarking results to be used in the next stage.

Fusion Function Selection entails choosing the best fusion
function to combine features from each modality. We use
intermediate fusion, as raw fusion is often impractical with
differing data structures, and late fusion may be suboptimal
for highly correlated modalities [11]. The fusion function is
evaluated based on classification performance.

Fusion Network Selection is responsible for selecting the
appropriate network for encoding cross-modal information and
preparing the last embedding for the task head. Similar to
the Encoder Selection, multiple MLP-based networks will be
benchmarked. The encoders for each modality and the fusion
function are the ones fixed from the previous stages.

A recommended approach is to retain the micro-
benchmarking scores after identifying the final architecture.
By avoiding the need to re-benchmark previously evaluated
architectures, this strategy streamlines the process when in-
corporating new components or making adjustments.

IV. EXPERIMENTS

A. Experimental Setup

In this section, we describe the datasets we used in the
experiments and the experimental setup.

MM-IMDB 1 is a multimodal dataset with images (movie
posters) and text (plots) for genre classification. We used
BERT [3] for text embeddings. AV-MINST 2 combines
MNIST 3 images with FSDD 4 (digit pronunciations).
MIMIC-III 5 is a clinical dataset with time-series (12 hourly
medical measurements over 24 hours) and tabular data.

For micro benchmarks, we use a learning rate of 0.001,
training with sampled data from the sampler for 10 epochs.
For full training, we start with a learning rate of 0.001 on
MM-IMDB, using a scheduler that reduces it by a factor of
10 if validation loss shows no improvement for 2 epochs. For
AV-MINST and MIMIC-III, we follow the training setup of
M2-Mixer [2]. For the MM-IMDB dataset, we compute the
weighted F1 score due to the imbalanced labels. The other
datasets were evaluated conducted using the accuracy metric.

We use MLP-Mixers, RaMLP [6], HyperMixer [9] and
MonarchMixer [9] as candidates for encoder function, and
HyperMixer and MLPMixer as candidates for Fusion Network.
In MIMIC we opted for a fixed, simple feed-forward MLP as
an encoder for the tabular modality. We compare MixMAS’s
performance against M2-Mixer.

1https://github.com/johnarevalo/gmu-mmimdb
2https://github.com/slyviacassell/ MFAS/tree/master
3https://yann.lecun.com/exdb/mnist/
4https://github.com/Jakobovski/free-spoken-digit-dataset
5https://physionet.org/content/mimiciii/1.4/

We utilized two internal clusters with NVIDIA GeForce
RTX 3090, GeForce RTX 2080, A40 and V100 GPUS. The
total runtime of all experiments was 144 hours.

B. Results

Table I summarizes the micro-benchmarking results, where
the pipeline selects the highest-scoring modules to construct
the final architecture. The results show that there is no uni-
versal solution for modality encoders or fusion networks, as
different datasets and modalities benefit from distinct modules.
This underscores the strength of the MixMAS pipeline in
tailoring the architecture and fusion function to the task. No-
tably, ConcatFusion is consistently selected during the Fusion
Function stage, validating our assumption that concatenation
preserves more information from the modalities compared to
mean or max pooling, improving overall model performance.

Table II presents the results of training the final model on
full datasets. On MM-IMDB, MixMAS surpasses M2-Mixer,
achieving an average F1-weighted score of 49.58% compared
to M2-Mixer’s 42.3%, with fewer parameters (10.37 million
vs. 16.7 million). For AV-MNIST, MixMAS also outperforms
M2-Mixer, achieving 75.79% average accuracy versus 73.2%.
Results for MIMIC-III show similar performance between
MixMAS and M2-Mixer. We hypothesize that the tabular
modality’s incompatibility with MLP-Mixers, alongside fixing
a simple MLP for this modality, reduces the search space.

V. CONCLUSION

In this paper, we introduce MixMAS, a framework for
selecting optimal MLP-based architectures using sampling and
micro-benchmarking. Our approach builds on the simplicity
and efficiency of MLP-Mixers, extending them to multimodal
learning. Experiments confirm the framework’s effectiveness
on bi-modal datasets, and future work includes testing on
datasets with more modalities. We also plan to explore alterna-
tive sampling methods, like uncertainty and diversity sampling,
and expand the search to include a broader range of modules.
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