Data Curation for ML: Toward a Principled Approach

Laure Berti-Equille

laure.berti@ird.fr

Espace-Dev, IRD, Univ Montpellier, Univ Guyane, Univ La Réunion, Univ Antilles, Univ Nouvelle Calédonie, Montpellier France

TALOS AI4SHS Mobility Grant Presentation at UCRC-KEME May 15, 2024

Learning from dirty data is risky

Learning from dirty data is risky

Learning from dirty data is risky

Glitch types and distributions can be very different in the datasets used for training, testing, and validation and they affect accuracy of ML models in different ways.

Two complementary approaches

INTERVENE

How to efficiently fix the data:

- Detect the anomalies
- Correct them with minimal cost (domain expert intervention, time, external master data, etc.)
- Select the repair/preparation strategies that will maximize the ML result quality

MITIGATE

How to reduce the impact of dirty data:

- Robustify the ML algorithms and apply ML ensembling strategies
- Use AutoML to find optimal parameter setting
- Select portions of the data and/or augment the data

Two complementary approaches

INTERVENE

How to efficiently fix the data:

- Detect the anomalies
- Correct them with minimal cost (domain expert intervention, time, external master data, etc.)
- Select the repair/preparation strategies that will maximize the ML result quality

MITIGATE

How to reduce the impact of dirty data:

- Robustify the ML algorithms and apply ML ensembling strategies
- Use AutoML to find optimal parameter setting
- Select portions of the data and/or augment the data

Outline

1. Detection of data quality problems

Profiling data quality

2. Data cleaning

Leveraging the patterns of glitches

3. Data preparation strategies for ML

Learning to clean and prepare the data

Outline

1. **Detection of data quality problems** Profiling data quality

2. **Data cleaning** Leveraging the patterns of glitches

3. **Data preparation strategies** Learning to clean and prepare the data

Data Quality Problems

DATA TYPES	RELATIONSHIPS	DATA QUALITY PROBLEMS					
$\uparrow \frown \frown$		TYPE	CARDINALITY				
<complex-block><complex-block></complex-block></complex-block>	Structural (record) Sequential Graph-based Temporal Spatial	Missing Data Anomalous Data Duplicate Data Inconsistent Data Obsolete Data Incorrect data	Single-Point Collection				
ACACGTGT John Doe High Medium Low	Spatio-Temporal	DETECTION Model-based Data distribution Constraint-base Pattern-based	n-based d				

Data Quality Problems: Example I

Relational data quality problems

Nobel Laureates in Chemistry

Data Quality Problems: Example 2

Data Quality Problems: Example 3 Completeness

Suppose you have the accurate and complete knowledge of the world-wide populations per city grouped into 4 categories: e.g. (<100k, [100k,500k], [500k,1M], >1M) and 4 KBs.

 K_1 is more complete than $K_2\,$ but both are somehow biased toward one category

$K_1 \mbox{ and } K_2 \mbox{ are not as representative as } K_3 \mbox{ or } K_4$

- Soulet, Giacometti, Markhoff, Suchanek: Representativeness of Knowledge Bases with the Generalized Benford's Law. International Semantic Web Conference (1) 2018: 374-390
- Wagner, Garcia, Jadidi, Strohmaier: It's a man's Wikipedia? Assessing gender inequality in an online encyclopedia. ICWSM. pp. 454-463 (2015)
- Callahan, Herring: Cultural bias in Wikipedia content on famous persons. J. of the Association for Information Science and Technology, 62(10), 1899–1915 (2011)
- Pitoura Tsabaras, Flouris, Fundulaki, Pabadakos, Abiteboul, Weikum, On Measuring Bias in Online Information, SIGMOD Record, Vol.46 No.4, December 2017

Example 4. Numerical Outliers

Rejection area: Data space excluding the area defined between 2% and 98% quantiles for X and Y Rejection area based on: Mahalanobis_dist(cov(X,Y)) > $\chi^2(.98,2)$

Example 5: Up-to-dateness Asynchronous Real World and KG evolution

https://www.dbpedia.org/resources/ontology/

Version	OWL Class			RDF Property				Object Prop.			Datatype Prop.			
VEISIOII	#	Δ	(-)	(+)	#	Δ	(-)	(+)	#	(-)	(+)	#	(-)	(+)
3.2/3	174				720				384			336		
3.4	204	30	-2	32	2168	1448	-271	1719	1144	-139	899	1024	-132	820
3.5	255	51	-6	57	1274	-894	-1198	304	601	-673	130	673	-525	174
3.6	272	17	0	17	1335	61	-37	98	629	-26	54	706	-11	44
3.7	319	47	-1	48	1643	308	-17	325	750	-6	127	893	-11	198
3.8	359	40	-1	41	1775	132	-3	135	800	-1	51	975	-2	84
3.9	529	170	-1	171	2333	558	-8	566	927	-6	133	1406	-2	433
2014	683	154	-5	159	2795	462	-46	508	1079	-9	161	1716	-37	347
2015-04	735	52	-5	57	2819	24	-103	127	1098	-23	42	1721	-80	85
2015-10	739	4	-5	9	2833	14	-9	23	1099	-3	4	1734	-6	19
2016-04	754	15	0	15	2849	16	-2	18	1103	-1	5	1746	-1	13

 Table 1. DBpedia - Classes and Properties

Today's DBpedia Ontology: 768 classes described by 3000 properties 4,233,000 instances.

Mihindukulasooriya, Poveda-Villalon, Garcia-Castro, Gomez-Perez. Collaborative Ontology Evolution and Data Quality -An Empirical Analysis, in OWL: Experiences and Directions – Reasoner Evaluation, Springer International Publishing, Cham, 2017, pp. 95–114. <u>https://www.w3.org/community/owled/files/</u>2016/11/OWLED-ORE-2016_paper_9.pdf

Example 6. Veracity and Trustworthiness

X. L. Dong, K. Murphy, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, W. Zhang. Knowledge Vault: A Web-scale approach to probabilistic knowledge fusion. VLDB 2015

Existing approaches for detecting/fixing DQ problems

Declarative

- Data debugging
- Checking data assertions
- Transform

ML-based

Learn from clean data and replace

Declarative Approaches

Checking data assertions and transform

- Deequ [Schelter et al., VLDB 2018] requires cloud infrastructure and manual integration into training and serving systems; dependent on Apache Spark
- TensorFlow Data Validation (TFDV) [Caveness et al., SIGMOD 2020] integrated with Google TFX difficult to use outside of these platforms
- Lightweight Python-based approaches like great_expectations (<u>https://greatexpectations.io</u>) or hooqu (<u>https://github.com/mfcabrera/hooqu</u>) not integrated with the ML development process

Declarative data profiling with MeSQuaL

https://github.com/ucomignani/MeSQuaL

MeSQuaL Key Concepts

Flexible declarative data quality profiling with UDFs

Procedural approach with UDFs

Declarative approach

Extended query

MeSQuaL Examples

DECLARATION

CREATE CONTRACTTYPE Stat Tests (CREATE CONTRACT RegressionAssumptions (
autocorrelation BY FUNCTION 'durbinWatsonTest.py' LANGUAGE PYTHON,	StatTests.autocorrelation > 0					
multicollinearity BY FUNCTION 'varInflationFactor.py' LANGUAGE PYTHON,	AND StatTests.autocorrelation < 4					
heteroscedasticity BY FUNCTION 'BreuschPaganTest.py' LANGUAGE PYTHON,	AND StatTests.multicollinearity <= 4					
KMerrorNormality BY FUNCTION 'KolmogorovSmirnov.py' LANGUAGE PYTHON,	AND StatTests.heteroscedasticity < 0.05					
SWerrorNormality BY FUNCTION 'ShapiroWilkTest.py' LANGUAGE PYTHON);	AND StatTests.SWerrorNormality < 0.05);					
CREATE CONTRACTTYPE CheckQDB (completeness BY FUNCTION 'completeness.py' LANGUAGE PYTHON, uniqueness BY FUNCTION 'uniqueness.py' LANGUAGE PYTHON, consistency BY FUNCTION 'consistency.py' LANGUAGE PYTHON, outlyingness BY FUNCTION 'outlyingness.py' LANGUAGE PYTHON);	CREATE CONTRACT CheckBeforeAnalysis (RegressionAssumptions AND CheckQDB.consistency > 0.9 AND CheckQDB.outlyingness < 0.2);					

MANIPULATION

	{ SELECT * FROM ChicagoDataset } QWITH CheckQDB.completeness> 0.95;
οT	<pre>{ SELECT * FROM ChicagoDataset } QWITH CheckBeforeAnalysis AND RegressionAssumptions;</pre>
Ā	{ SELECT timestamp, node_id,value_raw,valuehrf FROM ChicagoDataset WHERE ChicagoDataset.sensor = 'o3'
	<pre>} QWITH CheckBeforeAnalysis AND CheckQDB.completeness> 0.95;</pre>
	{ SELECT * FROM Admissions } QWITH CheckQDB.completeness> 0.95;
н	<pre>{ SELECT * FROM Admissions WHERE Admissions.insurance = 'Private' }</pre>
ij	QWITH CheckBeforeAnalysis AND CheckQDB.completeness> 0.95;
- - - -	{ SELECT gender, dob, admittime FROM Admissions INNER JOIN (SELECT * FROM Patients WHERE dob < '2090-12-12
Ξ	00:00:00' QWITH CheckQDB.completeness> 0.95) as Pat ON Admissions.subject_id=Pat.subject_id; }
Σ	QWITH CheckQDB.completeness> 0.95;

20

MeSQuaL GUI

SQuaL C					Query Results						В	
{ SELECT timestamp, node_id,val	timestamp -								value_hrf			
WHERE ChicagoDataset.sensor =	2019/11/18 12:55:07		001e061146cb			-629.00			0.00			
} QWITH CheckBeforeAnalysis AND Che	ckQDB.completeness > 0.95	2019/11/18 12:55:06		001e06117b41			970.00					
		2019/11/18 12:55:02		001e0610ee43					0.00			
		2019/11/18 12:54:59			001e061183f3			1.83 K			0.00	
Run		2019/11/18 12:54:54			001e061144be			1.67 K 0.00				
Table	s C	2019/11/18 12:54:52			001e0610f6db 4			6.00 0.00				
database v table					1	23450	5 7					
Test CONTRACT	ТҮРЕ					Data Quality Checks						D
Test CONTRACT		completeness	consistency	complet	eness	completeness	consi	stency	consisten	су	heterosced	asticity
Test ChicagoDa	aset											
Contra	0.95											
contractName constraintOperato	r dimensionName comparedVali	db	db	value_	_raw value_hrf value_i			e_raw	aw value_hrf value_hrf			
CheckBeforeAnalysis CONTRACT			Monitoring					Monitoring: La	st Checkpoint 👻		E	
CheckBeforeAnalysis LESSER	outlyingness 0.20	2.5				consistency.db:0.00						
CheckBeforeAnalysis GREATER	20				completeness,db:0.00							
				-	consistency,att:timestamp			\rightarrow	— multicollineari	ity,att:value_raw	2.300	
Contract	1.5		-		consistency,att:node_id							
contractTypeName - dimensionName	1.0				completeness,att:node_id							
CheckQDB outlyingness	PYTHON outlyingness.py	0.5				SWerrorNormality,att:value_r	raw					
CheckQDB consistency	PYTHON consistency.py	0.5			-	multicollinearity,att:value_ra	w 0.5					
CheckQDB uniqueness	PYTHON uniqueness.py	00:00 02:00 04:00	06:00 08:00	10:00 12:00	14:00	autocorrelation,att:value_raw	, o			_		
Queri	9e					Query & Check Logs						
quantida quant	quoruld				dimonsionNamo							
query query { SELECT timestamp, node_id,value_raw,valuehrl FROM c21418d8 5e3c- ChicagoDataset WHERE ChicagoDataset sensor = 'o3') 4814-9556-5e0a7196b502 QWITH CheckBeforeAnalysis AND CheckQDB completeness > 0.95 CheckQDB completeness > 0.95		QUEIYIU	quer	11 26 15:00:00 000	CheckODB				ott	volue brf	0.00	1.00
			2019	11 26 15:00:00 000	ChekTasta	betereseedestisity	0.90		att	value_nn	0.10	1.00
		02141808-5630-4814-9556-56	0071960502 2019	11 26 15:00:00 000	ChackODB		0.05		au	value_nn	0.10	1.00
	C2141808-363C-4614-9556-56	2019	P11-2015.00.00.000	GleckQDB	completeness			au	value_raw	0.80	1.00	

https://github.com/ucomignani/MeSQuaL

ML-based Approaches

Learn from clean data and replace/repair

- Pattern enforcement
 - Syntactic patterns (date formatting)
 - Semantic patterns (name/address)
- Value update to satisfy a set of rules, constraints, FDs, CFDs, Denial Constraints (DCs), Matching Dependencies (MDs) with minimal number of changes.
- Value replacement
- Entity resolution

EXAMPLES

- ◆ SCARE: Scalable Automatic Repair
- ◆ On-demand ETL [Yang et al.,VLDB'15]
- ◆ActiveClean [Krishnan et al.,VLDB'16]
- ✦ HoloClean [Rekatsinas et al., VLDB 2017]
- ◆ Deep learning for Entity Resolution
- ◆Transformers for data prep

SCARE: SCalable Automatic Repair

[Yakout, Berti-Equille, Elmagarmid, SIGMOD 2013]

Goal: Find the repair that would maximize the sum of the probabilities of the values co-occurrence (i.e., association strength between predicted and reliable values) under a certain update cost budget.

HoloClean

[Rekatsinas et al., VLDB 2017] https://github.com/HoloClean/HoloClean

HoloClean generates a factor graph capturing co-occurrences, correlations based on a set of constraints and external evidences. It uses SGD to learn parameters and infer the marginal distribution of unknown variables with Gibbs sampling.

BoostClean

[Krishnan et al., 2017]

BoostClean selects an ensemble of methods (statistical and logic rules) for error detection and for repair combinations using statistical boosting.

4	Algorithm : Boost-and-Clean Algorithm
	Data: (X, Y)
1	Initialize $W_i^{(1)} = \frac{1}{N}$
2	\mathcal{L} generates a set of classifiers $\mathcal{C}\{C^{(0)}, C^{(1)},, C^{(k)}\}$ where
	$C^{(0)}$ is the base classifier and $C^{(1)},, C^{(k)}$ are derived from
	the cleaning operations.
3	for $t \in [1,T]$ do
4	$C_t = \text{Find } C_t \in \mathcal{C}$ that maximizes the weighted accuracy
	on the test set. ϵ_t = Calculate weighted classification
	error on the test set $\alpha_t = \ln(\frac{1-\epsilon_t}{\epsilon_t})$
	$W_i^{(t+1)} \propto W_i^{(t)} e^{-\alpha_t y_i C_t(x_i)}$: down-weight correct
	predictions, up-weight incorrectly predictions.
5	return $C(x) = \operatorname{sign}(\sum_{t}^{T} \alpha_t C_t(x))$

Record Linkage (RL): Generic Workflow

26

Deep learning for Entity Resolution

Outline

1. Detection of data quality problems: Profiling data quality

2. Data cleaning

Leveraging the patterns of glitches

3. **Data preparation strategies:** Learning to clean and prepare the data

SNMP Data Analysis

- Periodic inbound and outbound traffic measurements from interfaces of network devices
- 10 attributes, every 5 minutes, over 4 weeks
- Axes transformed for plotting

SNMP Data Analysis

Understanding Complex Glitch Patterns

Benefits

- A common root cause can generate correlated data errors
- In-depth anomaly analysis could help for:
 - Characterizing anomaly sources, processes, and propagation mechanisms
 - Systematizing data cleaning

Current methods

- Make unrealistic assumptions (e.g., MAR)
- Treat glitches in isolation
- Are one-shot approaches (no reiteration between detection and cleaning)

```
Data cleaning and preprocessing may introduce new errors and distortions.
```

Joint work with Parni Dasu and Divesh Srivastava (AT&T Lab Research) [ICDE 2011]

Detection-Exploration-Cleaning Framework

Detection-Exploration-Cleaning Framework

Detection-Exploration-Cleaning Framework

Detection-Exploration-Cleaning Framework

[Berti-Equille, Dasu, Srivastava, ICDE 2011]

Problem Statement:

as

Find the quantitative cleaning strategy *B* composed of *M* methods among the candidate strategies *S* such that its resulting dataset D^B is the closest to an ideal dataset D^* specified from *D*

 $D^{B} = \arg \min \left(\operatorname{dist}_{\{s \in S\}} (D^{s}, D^{*}) \right)$ subject to $Cost(s) \le U$ and $Eff(s) \ge \Gamma > 0$

 \cap ${f dist}$ is the Kullback-Leibler distance between two data distributions

- \mathbf{U} is a pre-defined upper bound for the cost of strategy s
- ${}^{} \ \Gamma$ is the lower bound of *Eff(s)*, the effectiveness of strategy *s*

[ICDE 2011]

Real-world and semi-synthetic data

- EPO Dataset: 754,075 records, 4 non-key attributes (string, categorical and numerical data)
- •Intel Berkeley Research lab Dataset: 2,313,682 million readings, 8 attributes (timestamp, sensorID, temperature, light, voltage) collected every 31 seconds from 54 sensors deployed in the between February 28th and April 5th, 2
- •**SNMP Dataset:** (8,632 tuples, 11 variables) collected every 5 minutes during one month (timestamps, categorical and numerical values)

Comparison of various cleaning strategies

- Cost-based
- Effectiveness-based
- Resource-driven to treat just p% of glitches (DEC-RD)
- Specification-driven to treat a particular glitch type (DEC-SD)
- Pattern-based (DEC-PD)

[ICDE 2011]

Experimental results

61% of the best strategies are pattern-based.

38

Outline

1. Detection of data quality problems: Profiling data quality with MeSQuaL

2. **Data cleaning** Leveraging the patterns of glitches

3. Data preparation strategies

Learning to clean and prepare the data

Data preparation pipeline

ML method

Optimization Problem

Can we help the user in composing the data preparation pipeline that maximizes the quality performance of the ML method ?

First Solution: Learn2Clean

https://github.com/LaureBerti/Learn2Clean

 \bigcap

Experiments

Datasets

Name	# Att.	# Rows	Clustering	Regression	Classification
House Prices	81	1.46k	\checkmark	\checkmark	\checkmark
Google Playstore Users	5	64.3k	\checkmark		
Google Playstore Apps	13	10.8k	\checkmark		

Evaluation : Silhouette for Clustering

MSE for Regression Accuracy for Classification

Experimental Results

House Prices

Experimental Results Clustering (Silhouette) 1 0.75 NO_PREP RAND 0.5 DS_EXP AUTO Learn2Clean 0.25 0 **KMEANS** HCA **KMEANS** HCA **KMEANS** HCA **Google Play Store Google Play Store Apps House Prices** Users

[HILDA@SIGMOD2019] HIL with Active Reward Learning

Ongoing work

- New version of Learn2Clean with deep RL agents
- Combine AutoML, AutoCuration, and HIL
- Learn better reward functions
- Extend the library of ML and data preparation methods
- Extend experiments with more intricate data glitches and various glitch distributions

Code: <u>https://github.com/LaureBerti/Learn2Clean</u>

Concluding Remarks

- ML crucially needs principled data curation and preparation, adequate tooling, and user assistance
- The impact of data preprocessing variability is largely underestimated in ML
- Many data preprocessing tasks require seamless integration of <u>Human-in-</u> <u>the-Loop</u> and <u>automated ML-based</u> solutions
- Perfect timing for many R&D opportunities:
 - Manage and orchestrate human/machine resources
 - Challenge and transfer research ideas to operational and very large-scale contexts

